f64.rs 16.0 KB
Newer Older
C
Clar Charr 已提交
1 2 3 4
//! This module provides constants which are specific to the implementation
//! of the `f64` floating point data type.
//!
//! *[See also the `f64` primitive type](../../std/primitive.f64.html).*
M
Michael Lamparski 已提交
5 6
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
7

B
Brian Anderson 已提交
8
#![stable(feature = "rust1", since = "1.0.0")]
9

10
use mem;
11
use num::FpCategory;
A
Alex Crichton 已提交
12

O
Oliver Middleton 已提交
13
/// The radix or base of the internal representation of `f64`.
A
Aaron Turon 已提交
14
#[stable(feature = "rust1", since = "1.0.0")]
15
pub const RADIX: u32 = 2;
16

O
Oliver Middleton 已提交
17
/// Number of significant digits in base 2.
A
Aaron Turon 已提交
18
#[stable(feature = "rust1", since = "1.0.0")]
19
pub const MANTISSA_DIGITS: u32 = 53;
O
Oliver Middleton 已提交
20
/// Approximate number of significant digits in base 10.
A
Aaron Turon 已提交
21
#[stable(feature = "rust1", since = "1.0.0")]
22
pub const DIGITS: u32 = 15;
23

24 25 26 27 28
/// [Machine epsilon] value for `f64`.
///
/// This is the difference between `1.0` and the next largest representable number.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
B
Brian Anderson 已提交
29
#[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
30
pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
31

O
Oliver Middleton 已提交
32
/// Smallest finite `f64` value.
33 34
#[stable(feature = "rust1", since = "1.0.0")]
pub const MIN: f64 = -1.7976931348623157e+308_f64;
O
Oliver Middleton 已提交
35
/// Smallest positive normal `f64` value.
36 37
#[stable(feature = "rust1", since = "1.0.0")]
pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
O
Oliver Middleton 已提交
38
/// Largest finite `f64` value.
39 40 41
#[stable(feature = "rust1", since = "1.0.0")]
pub const MAX: f64 = 1.7976931348623157e+308_f64;

42
/// One greater than the minimum possible normal power of 2 exponent.
A
Aaron Turon 已提交
43
#[stable(feature = "rust1", since = "1.0.0")]
44
pub const MIN_EXP: i32 = -1021;
O
Oliver Middleton 已提交
45
/// Maximum possible power of 2 exponent.
A
Aaron Turon 已提交
46
#[stable(feature = "rust1", since = "1.0.0")]
47
pub const MAX_EXP: i32 = 1024;
48

O
Oliver Middleton 已提交
49
/// Minimum possible normal power of 10 exponent.
A
Aaron Turon 已提交
50
#[stable(feature = "rust1", since = "1.0.0")]
51
pub const MIN_10_EXP: i32 = -307;
O
Oliver Middleton 已提交
52
/// Maximum possible power of 10 exponent.
A
Aaron Turon 已提交
53
#[stable(feature = "rust1", since = "1.0.0")]
54
pub const MAX_10_EXP: i32 = 308;
55

O
Oliver Middleton 已提交
56
/// Not a Number (NaN).
B
Brian Anderson 已提交
57
#[stable(feature = "rust1", since = "1.0.0")]
58
pub const NAN: f64 = 0.0_f64 / 0.0_f64;
O
Oliver Middleton 已提交
59
/// Infinity (∞).
B
Brian Anderson 已提交
60
#[stable(feature = "rust1", since = "1.0.0")]
61
pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
O
Oliver Middleton 已提交
62
/// Negative infinity (-∞).
B
Brian Anderson 已提交
63
#[stable(feature = "rust1", since = "1.0.0")]
64
pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
65

J
Jed Davis 已提交
66
/// Basic mathematical constants.
A
Aaron Turon 已提交
67
#[stable(feature = "rust1", since = "1.0.0")]
68 69 70
pub mod consts {
    // FIXME: replace with mathematical constants from cmath.

O
Oliver Middleton 已提交
71
    /// Archimedes' constant (π)
A
Aaron Turon 已提交
72
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
73
    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
74

O
Oliver Middleton 已提交
75
    /// π/2
A
Aaron Turon 已提交
76
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
77
    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
78

O
Oliver Middleton 已提交
79
    /// π/3
A
Aaron Turon 已提交
80
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
81
    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
82

O
Oliver Middleton 已提交
83
    /// π/4
A
Aaron Turon 已提交
84
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
85
    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
86

O
Oliver Middleton 已提交
87
    /// π/6
A
Aaron Turon 已提交
88
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
89
    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
90

O
Oliver Middleton 已提交
91
    /// π/8
A
Aaron Turon 已提交
92
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
93
    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
94

O
Oliver Middleton 已提交
95
    /// 1/π
A
Aaron Turon 已提交
96
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
97
    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
98

O
Oliver Middleton 已提交
99
    /// 2/π
A
Aaron Turon 已提交
100
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
101
    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
102

O
Oliver Middleton 已提交
103
    /// 2/sqrt(π)
A
Aaron Turon 已提交
104 105 106
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;

O
Oliver Middleton 已提交
107
    /// sqrt(2)
A
Aaron Turon 已提交
108 109 110
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;

O
Oliver Middleton 已提交
111
    /// 1/sqrt(2)
A
Aaron Turon 已提交
112 113 114
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;

O
Oliver Middleton 已提交
115
    /// Euler's number (e)
A
Aaron Turon 已提交
116
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
117
    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
118

C
Clar Charr 已提交
119 120 121 122
    /// log<sub>2</sub>(10)
    #[unstable(feature = "extra_log_consts", issue = "50540")]
    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;

O
Oliver Middleton 已提交
123
    /// log<sub>2</sub>(e)
A
Aaron Turon 已提交
124
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
125
    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
126

C
Clar Charr 已提交
127 128 129 130
    /// log<sub>10</sub>(2)
    #[unstable(feature = "extra_log_consts", issue = "50540")]
    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;

O
Oliver Middleton 已提交
131
    /// log<sub>10</sub>(e)
A
Aaron Turon 已提交
132
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
133
    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
134

O
Oliver Middleton 已提交
135
    /// ln(2)
A
Aaron Turon 已提交
136
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
137
    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
138

O
Oliver Middleton 已提交
139
    /// ln(10)
A
Aaron Turon 已提交
140
    #[stable(feature = "rust1", since = "1.0.0")]
A
Alex Crichton 已提交
141
    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
142 143
}

S
Simon Sapin 已提交
144 145 146
#[lang = "f64"]
#[cfg(not(test))]
impl f64 {
147 148 149 150 151 152 153 154 155 156 157 158 159
    /// Returns `true` if this value is `NaN` and false otherwise.
    ///
    /// ```
    /// use std::f64;
    ///
    /// let nan = f64::NAN;
    /// let f = 7.0_f64;
    ///
    /// assert!(nan.is_nan());
    /// assert!(!f.is_nan());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
160 161 162
    pub fn is_nan(self) -> bool {
        self != self
    }
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    /// Returns `true` if this value is positive infinity or negative infinity and
    /// false otherwise.
    ///
    /// ```
    /// use std::f64;
    ///
    /// let f = 7.0f64;
    /// let inf = f64::INFINITY;
    /// let neg_inf = f64::NEG_INFINITY;
    /// let nan = f64::NAN;
    ///
    /// assert!(!f.is_infinite());
    /// assert!(!nan.is_infinite());
    ///
    /// assert!(inf.is_infinite());
    /// assert!(neg_inf.is_infinite());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
183 184 185
    pub fn is_infinite(self) -> bool {
        self == INFINITY || self == NEG_INFINITY
    }
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    /// Returns `true` if this number is neither infinite nor `NaN`.
    ///
    /// ```
    /// use std::f64;
    ///
    /// let f = 7.0f64;
    /// let inf: f64 = f64::INFINITY;
    /// let neg_inf: f64 = f64::NEG_INFINITY;
    /// let nan: f64 = f64::NAN;
    ///
    /// assert!(f.is_finite());
    ///
    /// assert!(!nan.is_finite());
    /// assert!(!inf.is_finite());
    /// assert!(!neg_inf.is_finite());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
205 206 207
    pub fn is_finite(self) -> bool {
        !(self.is_nan() || self.is_infinite())
    }
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    /// Returns `true` if the number is neither zero, infinite,
    /// [subnormal][subnormal], or `NaN`.
    ///
    /// ```
    /// use std::f64;
    ///
    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
    /// let max = f64::MAX;
    /// let lower_than_min = 1.0e-308_f64;
    /// let zero = 0.0f64;
    ///
    /// assert!(min.is_normal());
    /// assert!(max.is_normal());
    ///
    /// assert!(!zero.is_normal());
    /// assert!(!f64::NAN.is_normal());
    /// assert!(!f64::INFINITY.is_normal());
    /// // Values between `0` and `min` are Subnormal.
    /// assert!(!lower_than_min.is_normal());
    /// ```
    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
232 233 234
    pub fn is_normal(self) -> bool {
        self.classify() == FpCategory::Normal
    }
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    /// Returns the floating point category of the number. If only one property
    /// is going to be tested, it is generally faster to use the specific
    /// predicate instead.
    ///
    /// ```
    /// use std::num::FpCategory;
    /// use std::f64;
    ///
    /// let num = 12.4_f64;
    /// let inf = f64::INFINITY;
    ///
    /// assert_eq!(num.classify(), FpCategory::Normal);
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
S
Simon Sapin 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263
    pub fn classify(self) -> FpCategory {
        const EXP_MASK: u64 = 0x7ff0000000000000;
        const MAN_MASK: u64 = 0x000fffffffffffff;

        let bits = self.to_bits();
        match (bits & MAN_MASK, bits & EXP_MASK) {
            (0, 0) => FpCategory::Zero,
            (_, 0) => FpCategory::Subnormal,
            (0, EXP_MASK) => FpCategory::Infinite,
            (_, EXP_MASK) => FpCategory::Nan,
            _ => FpCategory::Normal,
        }
    }
264 265 266 267 268 269 270 271 272 273 274 275 276

    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with
    /// positive sign bit and positive infinity.
    ///
    /// ```
    /// let f = 7.0_f64;
    /// let g = -7.0_f64;
    ///
    /// assert!(f.is_sign_positive());
    /// assert!(!g.is_sign_positive());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
277 278 279
    pub fn is_sign_positive(self) -> bool {
        !self.is_sign_negative()
    }
280 281 282 283 284

    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")]
    #[inline]
    #[doc(hidden)]
S
Simon Sapin 已提交
285 286 287
    pub fn is_positive(self) -> bool {
        self.is_sign_positive()
    }
288 289 290 291 292 293 294 295 296 297 298 299 300

    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with
    /// negative sign bit and negative infinity.
    ///
    /// ```
    /// let f = 7.0_f64;
    /// let g = -7.0_f64;
    ///
    /// assert!(!f.is_sign_negative());
    /// assert!(g.is_sign_negative());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
301 302 303
    pub fn is_sign_negative(self) -> bool {
        self.to_bits() & 0x8000_0000_0000_0000 != 0
    }
304 305 306 307 308

    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")]
    #[inline]
    #[doc(hidden)]
S
Simon Sapin 已提交
309 310 311
    pub fn is_negative(self) -> bool {
        self.is_sign_negative()
    }
312 313 314 315 316 317 318 319 320 321 322

    /// Takes the reciprocal (inverse) of a number, `1/x`.
    ///
    /// ```
    /// let x = 2.0_f64;
    /// let abs_difference = (x.recip() - (1.0/x)).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
323 324 325
    pub fn recip(self) -> f64 {
        1.0 / self
    }
326 327 328 329 330 331 332 333 334 335 336 337 338 339

    /// Converts radians to degrees.
    ///
    /// ```
    /// use std::f64::consts;
    ///
    /// let angle = consts::PI;
    ///
    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
340 341 342 343 344 345
    pub fn to_degrees(self) -> f64 {
        // The division here is correctly rounded with respect to the true
        // value of 180/π. (This differs from f32, where a constant must be
        // used to ensure a correctly rounded result.)
        self * (180.0f64 / consts::PI)
    }
346 347 348 349 350 351 352 353 354 355 356 357 358 359

    /// Converts degrees to radians.
    ///
    /// ```
    /// use std::f64::consts;
    ///
    /// let angle = 180.0_f64;
    ///
    /// let abs_difference = (angle.to_radians() - consts::PI).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
S
Simon Sapin 已提交
360 361 362 363
    pub fn to_radians(self) -> f64 {
        let value: f64 = consts::PI;
        self * (value / 180.0)
    }
364 365 366 367 368 369 370 371 372 373 374 375 376 377

    /// Returns the maximum of the two numbers.
    ///
    /// ```
    /// let x = 1.0_f64;
    /// let y = 2.0_f64;
    ///
    /// assert_eq!(x.max(y), y);
    /// ```
    ///
    /// If one of the arguments is NaN, then the other argument is returned.
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn max(self, other: f64) -> f64 {
S
Simon Sapin 已提交
378 379 380 381 382 383 384 385 386
        // IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
        // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
        // is either x or y, canonicalized (this means results might differ among implementations).
        // When either x or y is a signalingNaN, then the result is according to 6.2.
        //
        // Since we do not support sNaN in Rust yet, we do not need to handle them.
        // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
        // multiplying by 1.0. Should switch to the `canonicalize` when it works.
        (if self.is_nan() || self < other { other } else { self }) * 1.0
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    }

    /// Returns the minimum of the two numbers.
    ///
    /// ```
    /// let x = 1.0_f64;
    /// let y = 2.0_f64;
    ///
    /// assert_eq!(x.min(y), x);
    /// ```
    ///
    /// If one of the arguments is NaN, then the other argument is returned.
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn min(self, other: f64) -> f64 {
S
Simon Sapin 已提交
402 403 404 405 406 407 408 409 410
        // IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
        // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
        // is either x or y, canonicalized (this means results might differ among implementations).
        // When either x or y is a signalingNaN, then the result is according to 6.2.
        //
        // Since we do not support sNaN in Rust yet, we do not need to handle them.
        // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
        // multiplying by 1.0. Should switch to the `canonicalize` when it works.
        (if other.is_nan() || self < other { self } else { other }) * 1.0
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    }

    /// Raw transmutation to `u64`.
    ///
    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
    ///
    /// See `from_bits` for some discussion of the portability of this operation
    /// (there are almost no issues).
    ///
    /// Note that this function is distinct from `as` casting, which attempts to
    /// preserve the *numeric* value, and not the bitwise value.
    ///
    /// # Examples
    ///
    /// ```
    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
    ///
    /// ```
    #[stable(feature = "float_bits_conv", since = "1.20.0")]
    #[inline]
    pub fn to_bits(self) -> u64 {
S
Simon Sapin 已提交
433
        unsafe { mem::transmute(self) }
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    }

    /// Raw transmutation from `u64`.
    ///
    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
    /// It turns out this is incredibly portable, for two reasons:
    ///
    /// * Floats and Ints have the same endianness on all supported platforms.
    /// * IEEE-754 very precisely specifies the bit layout of floats.
    ///
    /// However there is one caveat: prior to the 2008 version of IEEE-754, how
    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
    /// (notably x86 and ARM) picked the interpretation that was ultimately
    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
    ///
    /// Rather than trying to preserve signaling-ness cross-platform, this
    /// implementation favours preserving the exact bits. This means that
    /// any payloads encoded in NaNs will be preserved even if the result of
    /// this method is sent over the network from an x86 machine to a MIPS one.
    ///
    /// If the results of this method are only manipulated by the same
    /// architecture that produced them, then there is no portability concern.
    ///
    /// If the input isn't NaN, then there is no portability concern.
    ///
    /// If you don't care about signalingness (very likely), then there is no
    /// portability concern.
    ///
    /// Note that this function is distinct from `as` casting, which attempts to
    /// preserve the *numeric* value, and not the bitwise value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    /// let v = f64::from_bits(0x4029000000000000);
    /// let difference = (v - 12.5).abs();
    /// assert!(difference <= 1e-5);
    /// ```
    #[stable(feature = "float_bits_conv", since = "1.20.0")]
    #[inline]
    pub fn from_bits(v: u64) -> Self {
S
Simon Sapin 已提交
477 478
        // It turns out the safety issues with sNaN were overblown! Hooray!
        unsafe { mem::transmute(v) }
479 480
    }
}