mod.rs 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
10 11
//
// ignore-lexer-test FIXME #15679
12 13 14

//! Numeric traits and functions for generic mathematics

A
Aaron Turon 已提交
15
#![allow(missing_docs)]
16

17 18 19 20
use intrinsics;
use {int, i8, i16, i32, i64};
use {uint, u8, u16, u32, u64};
use {f32, f64};
21
use clone::Clone;
J
Josh Haberman 已提交
22
use cmp::{Ord, PartialEq, PartialOrd};
23 24 25 26 27 28 29
use kinds::Copy;
use mem::size_of;
use ops::{Add, Sub, Mul, Div, Rem, Neg};
use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use option::{Option, Some, None};

/// The base trait for numeric types
30
pub trait Num: PartialEq + Zero + One
31 32 33 34 35 36 37
             + Neg<Self>
             + Add<Self,Self>
             + Sub<Self,Self>
             + Mul<Self,Self>
             + Div<Self,Self>
             + Rem<Self,Self> {}

38 39 40 41 42 43 44 45
macro_rules! trait_impl(
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {}
    )*)
)

trait_impl!(Num for uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/// Simultaneous division and remainder
#[inline]
pub fn div_rem<T: Div<T, T> + Rem<T, T>>(x: T, y: T) -> (T, T) {
    (x / y, x % y)
}

/// Defines an additive identity element for `Self`.
///
/// # Deriving
///
/// This trait can be automatically be derived using `#[deriving(Zero)]`
/// attribute. If you choose to use this, make sure that the laws outlined in
/// the documentation for `Zero::zero` still hold.
pub trait Zero: Add<Self, Self> {
    /// Returns the additive identity element of `Self`, `0`.
    ///
    /// # Laws
    ///
J
Jonas Hietala 已提交
64
    /// ```{.text}
65 66
    /// a + 0 = a       ∀ a ∈ Self
    /// 0 + a = a       ∀ a ∈ Self
J
Jonas Hietala 已提交
67
    /// ```
68 69 70 71 72 73 74 75 76 77
    ///
    /// # Purity
    ///
    /// This function should return the same result at all times regardless of
    /// external mutable state, for example values stored in TLS or in
    /// `static mut`s.
    // FIXME (#5527): This should be an associated constant
    fn zero() -> Self;

    /// Returns `true` if `self` is equal to the additive identity.
78
    #[inline]
79 80 81
    fn is_zero(&self) -> bool;
}

82 83 84 85 86 87 88 89 90 91 92 93
macro_rules! zero_impl(
    ($t:ty, $v:expr) => {
        impl Zero for $t {
            #[inline]
            fn zero() -> $t { $v }
            #[inline]
            fn is_zero(&self) -> bool { *self == $v }
        }
    }
)

zero_impl!(uint, 0u)
94 95 96 97
zero_impl!(u8,   0u8)
zero_impl!(u16,  0u16)
zero_impl!(u32,  0u32)
zero_impl!(u64,  0u64)
98 99 100 101 102 103 104

zero_impl!(int, 0i)
zero_impl!(i8,  0i8)
zero_impl!(i16, 0i16)
zero_impl!(i32, 0i32)
zero_impl!(i64, 0i64)

105 106
zero_impl!(f32, 0.0f32)
zero_impl!(f64, 0.0f64)
107

108 109 110 111 112 113 114 115 116
/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }

/// Defines a multiplicative identity element for `Self`.
pub trait One: Mul<Self, Self> {
    /// Returns the multiplicative identity element of `Self`, `1`.
    ///
    /// # Laws
    ///
J
Jonas Hietala 已提交
117
    /// ```{.text}
118 119
    /// a * 1 = a       ∀ a ∈ Self
    /// 1 * a = a       ∀ a ∈ Self
J
Jonas Hietala 已提交
120
    /// ```
121 122 123 124 125 126 127 128 129 130
    ///
    /// # Purity
    ///
    /// This function should return the same result at all times regardless of
    /// external mutable state, for example values stored in TLS or in
    /// `static mut`s.
    // FIXME (#5527): This should be an associated constant
    fn one() -> Self;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
macro_rules! one_impl(
    ($t:ty, $v:expr) => {
        impl One for $t {
            #[inline]
            fn one() -> $t { $v }
        }
    }
)

one_impl!(uint, 1u)
one_impl!(u8,  1u8)
one_impl!(u16, 1u16)
one_impl!(u32, 1u32)
one_impl!(u64, 1u64)

one_impl!(int, 1i)
one_impl!(i8,  1i8)
one_impl!(i16, 1i16)
one_impl!(i32, 1i32)
one_impl!(i64, 1i64)

one_impl!(f32, 1.0f32)
one_impl!(f64, 1.0f64)

155 156 157 158 159 160 161
/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }

/// Useful functions for signed numbers (i.e. numbers that can be negative).
pub trait Signed: Num + Neg<Self> {
    /// Computes the absolute value.
    ///
162
    /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
163 164
    ///
    /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
165 166 167 168 169 170 171 172 173 174
    fn abs(&self) -> Self;

    /// The positive difference of two numbers.
    ///
    /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
    /// between `self` and `other` is returned.
    fn abs_sub(&self, other: &Self) -> Self;

    /// Returns the sign of the number.
    ///
175 176 177 178 179
    /// For `f32` and `f64`:
    ///
    /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// * `NaN` if the number is `NaN`
180
    ///
181
    /// For signed integers:
182 183 184 185
    ///
    /// * `0` if the number is zero
    /// * `1` if the number is positive
    /// * `-1` if the number is negative
186 187 188 189 190 191 192 193 194
    fn signum(&self) -> Self;

    /// Returns true if the number is positive and false if the number is zero or negative.
    fn is_positive(&self) -> bool;

    /// Returns true if the number is negative and false if the number is zero or positive.
    fn is_negative(&self) -> bool;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
macro_rules! signed_impl(
    ($($t:ty)*) => ($(
        impl Signed for $t {
            #[inline]
            fn abs(&self) -> $t {
                if self.is_negative() { -*self } else { *self }
            }

            #[inline]
            fn abs_sub(&self, other: &$t) -> $t {
                if *self <= *other { 0 } else { *self - *other }
            }

            #[inline]
            fn signum(&self) -> $t {
                match *self {
                    n if n > 0 => 1,
                    0 => 0,
                    _ => -1,
                }
            }

            #[inline]
            fn is_positive(&self) -> bool { *self > 0 }

            #[inline]
            fn is_negative(&self) -> bool { *self < 0 }
        }
    )*)
)

signed_impl!(int i8 i16 i32 i64)

macro_rules! signed_float_impl(
    ($t:ty, $nan:expr, $inf:expr, $neg_inf:expr, $fabs:path, $fcopysign:path, $fdim:ident) => {
        impl Signed for $t {
            /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
            #[inline]
            fn abs(&self) -> $t {
                unsafe { $fabs(*self) }
            }

            /// The positive difference of two numbers. Returns `0.0` if the number is
            /// less than or equal to `other`, otherwise the difference between`self`
            /// and `other` is returned.
            #[inline]
            fn abs_sub(&self, other: &$t) -> $t {
                extern { fn $fdim(a: $t, b: $t) -> $t; }
                unsafe { $fdim(*self, *other) }
            }

            /// # Returns
            ///
            /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
            /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
            /// - `NAN` if the number is NaN
            #[inline]
            fn signum(&self) -> $t {
                if self != self { $nan } else {
                    unsafe { $fcopysign(1.0, *self) }
                }
            }

            /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
            #[inline]
            fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }

            /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
            #[inline]
            fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
        }
    }
)

signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY,
                   intrinsics::fabsf32, intrinsics::copysignf32, fdimf)
signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY,
                   intrinsics::fabsf64, intrinsics::copysignf64, fdim)

274 275
/// Computes the absolute value.
///
276
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
277 278
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
279 280 281 282 283 284 285
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
    value.abs()
}

/// The positive difference of two numbers.
///
286 287
/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
/// between `x` and `y` is returned.
288 289 290 291 292 293 294
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
    x.abs_sub(&y)
}

/// Returns the sign of the number.
///
295 296 297 298 299
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
300
///
301
/// For signed integers:
302 303 304 305
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
306 307 308 309 310
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }

/// A trait for values which cannot be negative
pub trait Unsigned: Num {}

311 312
trait_impl!(Unsigned for uint u8 u16 u32 u64)

313 314 315 316 317 318 319
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use std::num;
///
320
/// assert_eq!(num::pow(2i, 4), 16);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/// ```
#[inline]
pub fn pow<T: One + Mul<T, T>>(mut base: T, mut exp: uint) -> T {
    if exp == 1 { base }
    else {
        let mut acc = one::<T>();
        while exp > 0 {
            if (exp & 1) == 1 {
                acc = acc * base;
            }
            base = base * base;
            exp = exp >> 1;
        }
        acc
    }
}

/// Numbers which have upper and lower bounds
pub trait Bounded {
    // FIXME (#5527): These should be associated constants
    /// returns the smallest finite number this type can represent
    fn min_value() -> Self;
    /// returns the largest finite number this type can represent
    fn max_value() -> Self;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
macro_rules! bounded_impl(
    ($t:ty, $min:expr, $max:expr) => {
        impl Bounded for $t {
            #[inline]
            fn min_value() -> $t { $min }

            #[inline]
            fn max_value() -> $t { $max }
        }
    }
)

bounded_impl!(uint, uint::MIN, uint::MAX)
bounded_impl!(u8, u8::MIN, u8::MAX)
bounded_impl!(u16, u16::MIN, u16::MAX)
bounded_impl!(u32, u32::MIN, u32::MAX)
bounded_impl!(u64, u64::MIN, u64::MAX)

bounded_impl!(int, int::MIN, int::MAX)
bounded_impl!(i8, i8::MIN, i8::MAX)
bounded_impl!(i16, i16::MIN, i16::MAX)
bounded_impl!(i32, i32::MIN, i32::MAX)
bounded_impl!(i64, i64::MIN, i64::MAX)

bounded_impl!(f32, f32::MIN_VALUE, f32::MAX_VALUE)
bounded_impl!(f64, f64::MIN_VALUE, f64::MAX_VALUE)

374 375 376 377 378 379 380 381 382 383 384 385
/// Specifies the available operations common to all of Rust's core numeric primitives.
/// These may not always make sense from a purely mathematical point of view, but
/// may be useful for systems programming.
pub trait Primitive: Copy
                   + Clone
                   + Num
                   + NumCast
                   + PartialOrd
                   + Bounded {}

trait_impl!(Primitive for uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)

386 387
/// A primitive signed or unsigned integer equipped with various bitwise
/// operators, bit counting methods, and endian conversion functions.
388
pub trait Int: Primitive
J
Josh Haberman 已提交
389
             + Ord
390 391 392 393 394 395 396 397 398
             + CheckedAdd
             + CheckedSub
             + CheckedMul
             + CheckedDiv
             + Bounded
             + Not<Self>
             + BitAnd<Self,Self>
             + BitOr<Self,Self>
             + BitXor<Self,Self>
399 400
             + Shl<uint,Self>
             + Shr<uint,Self> {
401
    /// Returns the number of ones in the binary representation of the integer.
402 403 404 405 406
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0b01001100u8;
407
    ///
408 409
    /// assert_eq!(n.count_ones(), 3);
    /// ```
410
    fn count_ones(self) -> uint;
411

412
    /// Returns the number of zeros in the binary representation of the integer.
413 414 415 416 417
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0b01001100u8;
418
    ///
419 420 421
    /// assert_eq!(n.count_zeros(), 5);
    /// ```
    #[inline]
422
    fn count_zeros(self) -> uint {
423
        (!self).count_ones()
424 425
    }

426
    /// Returns the number of leading zeros in the binary representation
427
    /// of the integer.
428 429 430 431 432
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0b0101000u16;
433
    ///
434 435
    /// assert_eq!(n.leading_zeros(), 10);
    /// ```
436
    fn leading_zeros(self) -> uint;
437

438
    /// Returns the number of trailing zeros in the binary representation
439
    /// of the integer.
440 441 442 443 444
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0b0101000u16;
445
    ///
446 447
    /// assert_eq!(n.trailing_zeros(), 3);
    /// ```
448
    fn trailing_zeros(self) -> uint;
449

450 451
    /// Shifts the bits to the left by a specified amount amount, `n`, wrapping
    /// the truncated bits to the end of the resulting integer.
452 453 454 455 456 457
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0x3456789ABCDEF012u64;
458
    ///
459 460
    /// assert_eq!(n.rotate_left(12), m);
    /// ```
461
    fn rotate_left(self, n: uint) -> Self;
462

463 464
    /// Shifts the bits to the right by a specified amount amount, `n`, wrapping
    /// the truncated bits to the beginning of the resulting integer.
465 466 467 468 469 470
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0xDEF0123456789ABCu64;
471
    ///
472 473
    /// assert_eq!(n.rotate_right(12), m);
    /// ```
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    fn rotate_right(self, n: uint) -> Self;

    /// Reverses the byte order of the integer.
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0xEFCDAB8967452301u64;
    ///
    /// assert_eq!(n.swap_bytes(), m);
    /// ```
    fn swap_bytes(self) -> Self;

    /// Convert a integer from big endian to the target's endianness.
    ///
    /// On big endian this is a no-op. On little endian the bytes are swapped.
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "big") {
498
    ///     assert_eq!(Int::from_be(n), n)
499
    /// } else {
500
    ///     assert_eq!(Int::from_be(n), n.swap_bytes())
501 502 503
    /// }
    /// ```
    #[inline]
504
    fn from_be(x: Self) -> Self {
505 506 507 508 509 510 511 512 513 514 515 516 517
        if cfg!(target_endian = "big") { x } else { x.swap_bytes() }
    }

    /// Convert a integer from little endian to the target's endianness.
    ///
    /// On little endian this is a no-op. On big endian the bytes are swapped.
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "little") {
518
    ///     assert_eq!(Int::from_le(n), n)
519
    /// } else {
520
    ///     assert_eq!(Int::from_le(n), n.swap_bytes())
521 522 523
    /// }
    /// ```
    #[inline]
524
    fn from_le(x: Self) -> Self {
525 526 527 528 529 530 531 532 533 534 535 536 537
        if cfg!(target_endian = "little") { x } else { x.swap_bytes() }
    }

    /// Convert the integer to big endian from the target's endianness.
    ///
    /// On big endian this is a no-op. On little endian the bytes are swapped.
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "big") {
538
    ///     assert_eq!(n.to_be(), n)
539
    /// } else {
540
    ///     assert_eq!(n.to_be(), n.swap_bytes())
541 542 543
    /// }
    /// ```
    #[inline]
544
    fn to_be(self) -> Self { // or not to be?
545 546 547 548 549 550 551 552 553 554 555 556 557
        if cfg!(target_endian = "big") { self } else { self.swap_bytes() }
    }

    /// Convert the integer to little endian from the target's endianness.
    ///
    /// On little endian this is a no-op. On big endian the bytes are swapped.
    ///
    /// # Example
    ///
    /// ```rust
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "little") {
558
    ///     assert_eq!(n.to_le(), n)
559
    /// } else {
560
    ///     assert_eq!(n.to_le(), n.swap_bytes())
561 562 563
    /// }
    /// ```
    #[inline]
564
    fn to_le(self) -> Self {
565 566
        if cfg!(target_endian = "little") { self } else { self.swap_bytes() }
    }
567 568
}

569 570 571
macro_rules! int_impl {
    ($T:ty, $BITS:expr, $ctpop:path, $ctlz:path, $cttz:path, $bswap:path) => {
        impl Int for $T {
572
            #[inline]
573
            fn count_ones(self) -> uint { unsafe { $ctpop(self) as uint } }
574 575

            #[inline]
576
            fn leading_zeros(self) -> uint { unsafe { $ctlz(self) as uint } }
577 578

            #[inline]
579
            fn trailing_zeros(self) -> uint { unsafe { $cttz(self) as uint } }
580 581

            #[inline]
582 583 584
            fn rotate_left(self, n: uint) -> $T {
                // Protect against undefined behaviour for over-long bit shifts
                let n = n % $BITS;
585
                (self << n) | (self >> (($BITS - n) % $BITS))
586 587 588
            }

            #[inline]
589 590 591
            fn rotate_right(self, n: uint) -> $T {
                // Protect against undefined behaviour for over-long bit shifts
                let n = n % $BITS;
592
                (self >> n) | (self << (($BITS - n) % $BITS))
593
            }
594 595 596

            #[inline]
            fn swap_bytes(self) -> $T { unsafe { $bswap(self) } }
597 598
        }
    }
599
}
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
/// Swapping a single byte is a no-op. This is marked as `unsafe` for
/// consistency with the other `bswap` intrinsics.
unsafe fn bswap8(x: u8) -> u8 { x }

int_impl!(u8, 8,
    intrinsics::ctpop8,
    intrinsics::ctlz8,
    intrinsics::cttz8,
    bswap8)

int_impl!(u16, 16,
    intrinsics::ctpop16,
    intrinsics::ctlz16,
    intrinsics::cttz16,
    intrinsics::bswap16)

int_impl!(u32, 32,
    intrinsics::ctpop32,
    intrinsics::ctlz32,
    intrinsics::cttz32,
    intrinsics::bswap32)

int_impl!(u64, 64,
    intrinsics::ctpop64,
    intrinsics::ctlz64,
    intrinsics::cttz64,
    intrinsics::bswap64)

macro_rules! int_cast_impl {
    ($T:ty, $U:ty) => {
        impl Int for $T {
632
            #[inline]
633
            fn count_ones(self) -> uint { (self as $U).count_ones() }
634 635

            #[inline]
636
            fn leading_zeros(self) -> uint { (self as $U).leading_zeros() }
637 638

            #[inline]
639
            fn trailing_zeros(self) -> uint { (self as $U).trailing_zeros() }
640 641

            #[inline]
642
            fn rotate_left(self, n: uint) -> $T { (self as $U).rotate_left(n) as $T }
643 644

            #[inline]
645 646 647 648
            fn rotate_right(self, n: uint) -> $T { (self as $U).rotate_right(n) as $T }

            #[inline]
            fn swap_bytes(self) -> $T { (self as $U).swap_bytes() as $T }
649 650
        }
    }
651
}
652

653 654 655 656
int_cast_impl!(i8, u8)
int_cast_impl!(i16, u16)
int_cast_impl!(i32, u32)
int_cast_impl!(i64, u64)
657

658 659 660 661
#[cfg(target_word_size = "32")] int_cast_impl!(uint, u32)
#[cfg(target_word_size = "64")] int_cast_impl!(uint, u64)
#[cfg(target_word_size = "32")] int_cast_impl!(int, u32)
#[cfg(target_word_size = "64")] int_cast_impl!(int, u64)
662

663 664 665
/// Returns the smallest power of 2 greater than or equal to `n`.
#[inline]
pub fn next_power_of_two<T: Unsigned + Int>(n: T) -> T {
666
    let halfbits = size_of::<T>() * 4;
667
    let mut tmp: T = n - one();
668
    let mut shift = 1u;
669 670
    while shift <= halfbits {
        tmp = tmp | (tmp >> shift);
671
        shift = shift << 1u;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    }
    tmp + one()
}

// Returns `true` iff `n == 2^k` for some k.
#[inline]
pub fn is_power_of_two<T: Unsigned + Int>(n: T) -> bool {
    (n - one()) & n == zero()
}

/// Returns the smallest power of 2 greater than or equal to `n`. If the next
/// power of two is greater than the type's maximum value, `None` is returned,
/// otherwise the power of 2 is wrapped in `Some`.
#[inline]
pub fn checked_next_power_of_two<T: Unsigned + Int>(n: T) -> Option<T> {
687
    let halfbits = size_of::<T>() * 4;
688
    let mut tmp: T = n - one();
689
    let mut shift = 1u;
690 691
    while shift <= halfbits {
        tmp = tmp | (tmp >> shift);
692
        shift = shift << 1u;
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    }
    tmp.checked_add(&one())
}

/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
    /// Converts the value of `self` to an `int`.
    #[inline]
    fn to_int(&self) -> Option<int> {
        self.to_i64().and_then(|x| x.to_int())
    }

    /// Converts the value of `self` to an `i8`.
    #[inline]
    fn to_i8(&self) -> Option<i8> {
        self.to_i64().and_then(|x| x.to_i8())
    }

    /// Converts the value of `self` to an `i16`.
    #[inline]
    fn to_i16(&self) -> Option<i16> {
        self.to_i64().and_then(|x| x.to_i16())
    }

    /// Converts the value of `self` to an `i32`.
    #[inline]
    fn to_i32(&self) -> Option<i32> {
        self.to_i64().and_then(|x| x.to_i32())
    }

    /// Converts the value of `self` to an `i64`.
    fn to_i64(&self) -> Option<i64>;

    /// Converts the value of `self` to an `uint`.
    #[inline]
    fn to_uint(&self) -> Option<uint> {
        self.to_u64().and_then(|x| x.to_uint())
    }

    /// Converts the value of `self` to an `u8`.
    #[inline]
    fn to_u8(&self) -> Option<u8> {
        self.to_u64().and_then(|x| x.to_u8())
    }

    /// Converts the value of `self` to an `u16`.
    #[inline]
    fn to_u16(&self) -> Option<u16> {
        self.to_u64().and_then(|x| x.to_u16())
    }

    /// Converts the value of `self` to an `u32`.
    #[inline]
    fn to_u32(&self) -> Option<u32> {
        self.to_u64().and_then(|x| x.to_u32())
    }

    /// Converts the value of `self` to an `u64`.
    #[inline]
    fn to_u64(&self) -> Option<u64>;

    /// Converts the value of `self` to an `f32`.
    #[inline]
    fn to_f32(&self) -> Option<f32> {
        self.to_f64().and_then(|x| x.to_f32())
    }

    /// Converts the value of `self` to an `f64`.
    #[inline]
    fn to_f64(&self) -> Option<f64> {
        self.to_i64().and_then(|x| x.to_f64())
    }
}

macro_rules! impl_to_primitive_int_to_int(
J
John Clements 已提交
768
    ($SrcT:ty, $DstT:ty, $slf:expr) => (
769 770
        {
            if size_of::<$SrcT>() <= size_of::<$DstT>() {
J
John Clements 已提交
771
                Some($slf as $DstT)
772
            } else {
J
John Clements 已提交
773
                let n = $slf as i64;
774 775 776
                let min_value: $DstT = Bounded::min_value();
                let max_value: $DstT = Bounded::max_value();
                if min_value as i64 <= n && n <= max_value as i64 {
J
John Clements 已提交
777
                    Some($slf as $DstT)
778 779 780 781 782 783 784 785 786
                } else {
                    None
                }
            }
        }
    )
)

macro_rules! impl_to_primitive_int_to_uint(
J
John Clements 已提交
787
    ($SrcT:ty, $DstT:ty, $slf:expr) => (
788 789 790
        {
            let zero: $SrcT = Zero::zero();
            let max_value: $DstT = Bounded::max_value();
J
John Clements 已提交
791 792
            if zero <= $slf && $slf as u64 <= max_value as u64 {
                Some($slf as $DstT)
793 794 795 796 797 798 799 800 801 802 803
            } else {
                None
            }
        }
    )
)

macro_rules! impl_to_primitive_int(
    ($T:ty) => (
        impl ToPrimitive for $T {
            #[inline]
J
John Clements 已提交
804
            fn to_int(&self) -> Option<int> { impl_to_primitive_int_to_int!($T, int, *self) }
805
            #[inline]
J
John Clements 已提交
806
            fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
807
            #[inline]
J
John Clements 已提交
808
            fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
809
            #[inline]
J
John Clements 已提交
810
            fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
811
            #[inline]
J
John Clements 已提交
812
            fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
813 814

            #[inline]
J
John Clements 已提交
815
            fn to_uint(&self) -> Option<uint> { impl_to_primitive_int_to_uint!($T, uint, *self) }
816
            #[inline]
J
John Clements 已提交
817
            fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
818
            #[inline]
J
John Clements 已提交
819
            fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
820
            #[inline]
J
John Clements 已提交
821
            fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
822
            #[inline]
J
John Clements 已提交
823
            fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

            #[inline]
            fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
            #[inline]
            fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
        }
    )
)

impl_to_primitive_int!(int)
impl_to_primitive_int!(i8)
impl_to_primitive_int!(i16)
impl_to_primitive_int!(i32)
impl_to_primitive_int!(i64)

macro_rules! impl_to_primitive_uint_to_int(
J
John Clements 已提交
840
    ($DstT:ty, $slf:expr) => (
841 842
        {
            let max_value: $DstT = Bounded::max_value();
J
John Clements 已提交
843 844
            if $slf as u64 <= max_value as u64 {
                Some($slf as $DstT)
845 846 847 848 849 850 851 852
            } else {
                None
            }
        }
    )
)

macro_rules! impl_to_primitive_uint_to_uint(
J
John Clements 已提交
853
    ($SrcT:ty, $DstT:ty, $slf:expr) => (
854 855
        {
            if size_of::<$SrcT>() <= size_of::<$DstT>() {
J
John Clements 已提交
856
                Some($slf as $DstT)
857 858 859
            } else {
                let zero: $SrcT = Zero::zero();
                let max_value: $DstT = Bounded::max_value();
J
John Clements 已提交
860 861
                if zero <= $slf && $slf as u64 <= max_value as u64 {
                    Some($slf as $DstT)
862 863 864 865 866 867 868 869 870 871 872 873
                } else {
                    None
                }
            }
        }
    )
)

macro_rules! impl_to_primitive_uint(
    ($T:ty) => (
        impl ToPrimitive for $T {
            #[inline]
J
John Clements 已提交
874
            fn to_int(&self) -> Option<int> { impl_to_primitive_uint_to_int!(int, *self) }
875
            #[inline]
J
John Clements 已提交
876
            fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
877
            #[inline]
J
John Clements 已提交
878
            fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
879
            #[inline]
J
John Clements 已提交
880
            fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
881
            #[inline]
J
John Clements 已提交
882
            fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
883 884

            #[inline]
J
John Clements 已提交
885
            fn to_uint(&self) -> Option<uint> { impl_to_primitive_uint_to_uint!($T, uint, *self) }
886
            #[inline]
J
John Clements 已提交
887
            fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
888
            #[inline]
J
John Clements 已提交
889
            fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
890
            #[inline]
J
John Clements 已提交
891
            fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
892
            #[inline]
J
John Clements 已提交
893
            fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

            #[inline]
            fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
            #[inline]
            fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
        }
    )
)

impl_to_primitive_uint!(uint)
impl_to_primitive_uint!(u8)
impl_to_primitive_uint!(u16)
impl_to_primitive_uint!(u32)
impl_to_primitive_uint!(u64)

macro_rules! impl_to_primitive_float_to_float(
J
John Clements 已提交
910
    ($SrcT:ty, $DstT:ty, $slf:expr) => (
911
        if size_of::<$SrcT>() <= size_of::<$DstT>() {
J
John Clements 已提交
912
            Some($slf as $DstT)
913
        } else {
J
John Clements 已提交
914
            let n = $slf as f64;
915 916
            let max_value: $SrcT = Bounded::max_value();
            if -max_value as f64 <= n && n <= max_value as f64 {
J
John Clements 已提交
917
                Some($slf as $DstT)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
            } else {
                None
            }
        }
    )
)

macro_rules! impl_to_primitive_float(
    ($T:ty) => (
        impl ToPrimitive for $T {
            #[inline]
            fn to_int(&self) -> Option<int> { Some(*self as int) }
            #[inline]
            fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
            #[inline]
            fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
            #[inline]
            fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
            #[inline]
            fn to_i64(&self) -> Option<i64> { Some(*self as i64) }

            #[inline]
            fn to_uint(&self) -> Option<uint> { Some(*self as uint) }
            #[inline]
            fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
            #[inline]
            fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
            #[inline]
            fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
            #[inline]
            fn to_u64(&self) -> Option<u64> { Some(*self as u64) }

            #[inline]
J
John Clements 已提交
951
            fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
952
            #[inline]
J
John Clements 已提交
953
            fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        }
    )
)

impl_to_primitive_float!(f32)
impl_to_primitive_float!(f64)

/// A generic trait for converting a number to a value.
pub trait FromPrimitive {
    /// Convert an `int` to return an optional value of this type. If the
    /// value cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_int(n: int) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i8` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_i8(n: i8) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i16` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_i16(n: i16) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i32` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_i32(n: i32) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i64` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    fn from_i64(n: i64) -> Option<Self>;

    /// Convert an `uint` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_uint(n: uint) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u8` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_u8(n: u8) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u16` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_u16(n: u16) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u32` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_u32(n: u32) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u64` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    fn from_u64(n: u64) -> Option<Self>;

    /// Convert a `f32` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_f32(n: f32) -> Option<Self> {
        FromPrimitive::from_f64(n as f64)
    }

    /// Convert a `f64` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_f64(n: f64) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }
}

/// A utility function that just calls `FromPrimitive::from_int`.
pub fn from_int<A: FromPrimitive>(n: int) -> Option<A> {
    FromPrimitive::from_int(n)
}

/// A utility function that just calls `FromPrimitive::from_i8`.
pub fn from_i8<A: FromPrimitive>(n: i8) -> Option<A> {
    FromPrimitive::from_i8(n)
}

/// A utility function that just calls `FromPrimitive::from_i16`.
pub fn from_i16<A: FromPrimitive>(n: i16) -> Option<A> {
    FromPrimitive::from_i16(n)
}

/// A utility function that just calls `FromPrimitive::from_i32`.
pub fn from_i32<A: FromPrimitive>(n: i32) -> Option<A> {
    FromPrimitive::from_i32(n)
}

/// A utility function that just calls `FromPrimitive::from_i64`.
pub fn from_i64<A: FromPrimitive>(n: i64) -> Option<A> {
    FromPrimitive::from_i64(n)
}

/// A utility function that just calls `FromPrimitive::from_uint`.
pub fn from_uint<A: FromPrimitive>(n: uint) -> Option<A> {
    FromPrimitive::from_uint(n)
}

/// A utility function that just calls `FromPrimitive::from_u8`.
pub fn from_u8<A: FromPrimitive>(n: u8) -> Option<A> {
    FromPrimitive::from_u8(n)
}

/// A utility function that just calls `FromPrimitive::from_u16`.
pub fn from_u16<A: FromPrimitive>(n: u16) -> Option<A> {
    FromPrimitive::from_u16(n)
}

/// A utility function that just calls `FromPrimitive::from_u32`.
pub fn from_u32<A: FromPrimitive>(n: u32) -> Option<A> {
    FromPrimitive::from_u32(n)
}

/// A utility function that just calls `FromPrimitive::from_u64`.
pub fn from_u64<A: FromPrimitive>(n: u64) -> Option<A> {
    FromPrimitive::from_u64(n)
}

/// A utility function that just calls `FromPrimitive::from_f32`.
pub fn from_f32<A: FromPrimitive>(n: f32) -> Option<A> {
    FromPrimitive::from_f32(n)
}

/// A utility function that just calls `FromPrimitive::from_f64`.
pub fn from_f64<A: FromPrimitive>(n: f64) -> Option<A> {
    FromPrimitive::from_f64(n)
}

macro_rules! impl_from_primitive(
J
John Clements 已提交
1103
    ($T:ty, $to_ty:ident) => (
1104
        impl FromPrimitive for $T {
J
John Clements 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            #[inline] fn from_int(n: int) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }

            #[inline] fn from_uint(n: uint) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }

            #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
1119 1120 1121 1122
        }
    )
)

J
John Clements 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
impl_from_primitive!(int, to_int)
impl_from_primitive!(i8, to_i8)
impl_from_primitive!(i16, to_i16)
impl_from_primitive!(i32, to_i32)
impl_from_primitive!(i64, to_i64)
impl_from_primitive!(uint, to_uint)
impl_from_primitive!(u8, to_u8)
impl_from_primitive!(u16, to_u16)
impl_from_primitive!(u32, to_u32)
impl_from_primitive!(u64, to_u64)
impl_from_primitive!(f32, to_f32)
impl_from_primitive!(f64, to_f64)
1135 1136 1137 1138 1139 1140 1141 1142

/// Cast from one machine scalar to another.
///
/// # Example
///
/// ```
/// use std::num;
///
1143
/// let twenty: f32 = num::cast(0x14i).unwrap();
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
pub fn cast<T: NumCast,U: NumCast>(n: T) -> Option<U> {
    NumCast::from(n)
}

/// An interface for casting between machine scalars.
pub trait NumCast: ToPrimitive {
    /// Creates a number from another value that can be converted into a primitive via the
    /// `ToPrimitive` trait.
    fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}

macro_rules! impl_num_cast(
    ($T:ty, $conv:ident) => (
        impl NumCast for $T {
            #[inline]
            fn from<N: ToPrimitive>(n: N) -> Option<$T> {
                // `$conv` could be generated using `concat_idents!`, but that
                // macro seems to be broken at the moment
                n.$conv()
            }
        }
    )
)

impl_num_cast!(u8,    to_u8)
impl_num_cast!(u16,   to_u16)
impl_num_cast!(u32,   to_u32)
impl_num_cast!(u64,   to_u64)
impl_num_cast!(uint,  to_uint)
impl_num_cast!(i8,    to_i8)
impl_num_cast!(i16,   to_i16)
impl_num_cast!(i32,   to_i32)
impl_num_cast!(i64,   to_i64)
impl_num_cast!(int,   to_int)
impl_num_cast!(f32,   to_f32)
impl_num_cast!(f64,   to_f64)

/// Saturating math operations
pub trait Saturating {
    /// Saturating addition operator.
    /// Returns a+b, saturating at the numeric bounds instead of overflowing.
    fn saturating_add(self, v: Self) -> Self;

    /// Saturating subtraction operator.
    /// Returns a-b, saturating at the numeric bounds instead of overflowing.
    fn saturating_sub(self, v: Self) -> Self;
}

1196
impl<T: CheckedAdd + CheckedSub + Zero + PartialOrd + Bounded> Saturating for T {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    #[inline]
    fn saturating_add(self, v: T) -> T {
        match self.checked_add(&v) {
            Some(x) => x,
            None => if v >= Zero::zero() {
                Bounded::max_value()
            } else {
                Bounded::min_value()
            }
        }
    }

    #[inline]
    fn saturating_sub(self, v: T) -> T {
        match self.checked_sub(&v) {
            Some(x) => x,
            None => if v >= Zero::zero() {
                Bounded::min_value()
            } else {
                Bounded::max_value()
            }
        }
    }
}

/// Performs addition that returns `None` instead of wrapping around on overflow.
pub trait CheckedAdd: Add<Self, Self> {
    /// Adds two numbers, checking for overflow. If overflow happens, `None` is returned.
N
nham 已提交
1225 1226 1227 1228 1229 1230 1231 1232
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::num::CheckedAdd;
    /// assert_eq!(5u16.checked_add(&65530), Some(65535));
    /// assert_eq!(6u16.checked_add(&65530), None);
    /// ```
1233 1234 1235
    fn checked_add(&self, v: &Self) -> Option<Self>;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
macro_rules! checked_impl(
    ($trait_name:ident, $method:ident, $t:ty, $op:path) => {
        impl $trait_name for $t {
            #[inline]
            fn $method(&self, v: &$t) -> Option<$t> {
                unsafe {
                    let (x, y) = $op(*self, *v);
                    if y { None } else { Some(x) }
                }
            }
        }
    }
)
macro_rules! checked_cast_impl(
    ($trait_name:ident, $method:ident, $t:ty, $cast:ty, $op:path) => {
        impl $trait_name for $t {
            #[inline]
            fn $method(&self, v: &$t) -> Option<$t> {
                unsafe {
                    let (x, y) = $op(*self as $cast, *v as $cast);
                    if y { None } else { Some(x as $t) }
                }
            }
        }
    }
)

#[cfg(target_word_size = "32")]
checked_cast_impl!(CheckedAdd, checked_add, uint, u32, intrinsics::u32_add_with_overflow)
#[cfg(target_word_size = "64")]
checked_cast_impl!(CheckedAdd, checked_add, uint, u64, intrinsics::u64_add_with_overflow)

checked_impl!(CheckedAdd, checked_add, u8,  intrinsics::u8_add_with_overflow)
checked_impl!(CheckedAdd, checked_add, u16, intrinsics::u16_add_with_overflow)
checked_impl!(CheckedAdd, checked_add, u32, intrinsics::u32_add_with_overflow)
checked_impl!(CheckedAdd, checked_add, u64, intrinsics::u64_add_with_overflow)

#[cfg(target_word_size = "32")]
checked_cast_impl!(CheckedAdd, checked_add, int, i32, intrinsics::i32_add_with_overflow)
#[cfg(target_word_size = "64")]
checked_cast_impl!(CheckedAdd, checked_add, int, i64, intrinsics::i64_add_with_overflow)

checked_impl!(CheckedAdd, checked_add, i8,  intrinsics::i8_add_with_overflow)
checked_impl!(CheckedAdd, checked_add, i16, intrinsics::i16_add_with_overflow)
checked_impl!(CheckedAdd, checked_add, i32, intrinsics::i32_add_with_overflow)
checked_impl!(CheckedAdd, checked_add, i64, intrinsics::i64_add_with_overflow)

1283 1284 1285
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
pub trait CheckedSub: Sub<Self, Self> {
    /// Subtracts two numbers, checking for underflow. If underflow happens, `None` is returned.
N
nham 已提交
1286 1287 1288 1289 1290 1291 1292 1293
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::num::CheckedSub;
    /// assert_eq!((-127i8).checked_sub(&1), Some(-128));
    /// assert_eq!((-128i8).checked_sub(&1), None);
    /// ```
1294 1295 1296
    fn checked_sub(&self, v: &Self) -> Option<Self>;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
#[cfg(target_word_size = "32")]
checked_cast_impl!(CheckedSub, checked_sub, uint, u32, intrinsics::u32_sub_with_overflow)
#[cfg(target_word_size = "64")]
checked_cast_impl!(CheckedSub, checked_sub, uint, u64, intrinsics::u64_sub_with_overflow)

checked_impl!(CheckedSub, checked_sub, u8,  intrinsics::u8_sub_with_overflow)
checked_impl!(CheckedSub, checked_sub, u16, intrinsics::u16_sub_with_overflow)
checked_impl!(CheckedSub, checked_sub, u32, intrinsics::u32_sub_with_overflow)
checked_impl!(CheckedSub, checked_sub, u64, intrinsics::u64_sub_with_overflow)

#[cfg(target_word_size = "32")]
checked_cast_impl!(CheckedSub, checked_sub, int, i32, intrinsics::i32_sub_with_overflow)
#[cfg(target_word_size = "64")]
checked_cast_impl!(CheckedSub, checked_sub, int, i64, intrinsics::i64_sub_with_overflow)

checked_impl!(CheckedSub, checked_sub, i8,  intrinsics::i8_sub_with_overflow)
checked_impl!(CheckedSub, checked_sub, i16, intrinsics::i16_sub_with_overflow)
checked_impl!(CheckedSub, checked_sub, i32, intrinsics::i32_sub_with_overflow)
checked_impl!(CheckedSub, checked_sub, i64, intrinsics::i64_sub_with_overflow)

1317 1318 1319 1320 1321
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
/// overflow.
pub trait CheckedMul: Mul<Self, Self> {
    /// Multiplies two numbers, checking for underflow or overflow. If underflow or overflow
    /// happens, `None` is returned.
N
nham 已提交
1322 1323 1324 1325 1326 1327 1328 1329
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::num::CheckedMul;
    /// assert_eq!(5u8.checked_mul(&51), Some(255));
    /// assert_eq!(5u8.checked_mul(&52), None);
    /// ```
1330 1331 1332
    fn checked_mul(&self, v: &Self) -> Option<Self>;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
#[cfg(target_word_size = "32")]
checked_cast_impl!(CheckedMul, checked_mul, uint, u32, intrinsics::u32_mul_with_overflow)
#[cfg(target_word_size = "64")]
checked_cast_impl!(CheckedMul, checked_mul, uint, u64, intrinsics::u64_mul_with_overflow)

checked_impl!(CheckedMul, checked_mul, u8,  intrinsics::u8_mul_with_overflow)
checked_impl!(CheckedMul, checked_mul, u16, intrinsics::u16_mul_with_overflow)
checked_impl!(CheckedMul, checked_mul, u32, intrinsics::u32_mul_with_overflow)
checked_impl!(CheckedMul, checked_mul, u64, intrinsics::u64_mul_with_overflow)

#[cfg(target_word_size = "32")]
checked_cast_impl!(CheckedMul, checked_mul, int, i32, intrinsics::i32_mul_with_overflow)
#[cfg(target_word_size = "64")]
checked_cast_impl!(CheckedMul, checked_mul, int, i64, intrinsics::i64_mul_with_overflow)

checked_impl!(CheckedMul, checked_mul, i8,  intrinsics::i8_mul_with_overflow)
checked_impl!(CheckedMul, checked_mul, i16, intrinsics::i16_mul_with_overflow)
checked_impl!(CheckedMul, checked_mul, i32, intrinsics::i32_mul_with_overflow)
checked_impl!(CheckedMul, checked_mul, i64, intrinsics::i64_mul_with_overflow)

S
Steve Klabnik 已提交
1353
/// Performs division that returns `None` instead of panicking on division by zero and instead of
1354
/// wrapping around on underflow and overflow.
1355
pub trait CheckedDiv: Div<Self, Self> {
1356
    /// Divides two numbers, checking for underflow, overflow and division by zero. If any of that
1357
    /// happens, `None` is returned.
N
nham 已提交
1358 1359 1360 1361 1362 1363 1364
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::num::CheckedDiv;
    /// assert_eq!((-127i8).checked_div(&-1), Some(127));
    /// assert_eq!((-128i8).checked_div(&-1), None);
1365
    /// assert_eq!((1i8).checked_div(&0), None);
N
nham 已提交
1366
    /// ```
1367 1368
    fn checked_div(&self, v: &Self) -> Option<Self>;
}
A
Alex Crichton 已提交
1369

1370 1371 1372 1373 1374 1375 1376 1377
macro_rules! checkeddiv_int_impl(
    ($t:ty, $min:expr) => {
        impl CheckedDiv for $t {
            #[inline]
            fn checked_div(&self, v: &$t) -> Option<$t> {
                if *v == 0 || (*self == $min && *v == -1) {
                    None
                } else {
1378
                    Some(*self / *v)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                }
            }
        }
    }
)

checkeddiv_int_impl!(int, int::MIN)
checkeddiv_int_impl!(i8, i8::MIN)
checkeddiv_int_impl!(i16, i16::MIN)
checkeddiv_int_impl!(i32, i32::MIN)
checkeddiv_int_impl!(i64, i64::MIN)

macro_rules! checkeddiv_uint_impl(
    ($($t:ty)*) => ($(
        impl CheckedDiv for $t {
            #[inline]
            fn checked_div(&self, v: &$t) -> Option<$t> {
                if *v == 0 {
                    None
                } else {
1399
                    Some(*self / *v)
1400 1401 1402 1403 1404 1405 1406 1407
                }
            }
        }
    )*)
)

checkeddiv_uint_impl!(uint u8 u16 u32 u64)

1408
/// Used for representing the classification of floating point numbers
1409
#[deriving(PartialEq, Show)]
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
pub enum FPCategory {
    /// "Not a Number", often obtained by dividing by zero
    FPNaN,
    /// Positive or negative infinity
    FPInfinite ,
    /// Positive or negative zero
    FPZero,
    /// De-normalized floating point representation (less precise than `FPNormal`)
    FPSubnormal,
    /// A regular floating point number
    FPNormal,
}

/// Operations on primitive floating point numbers.
// FIXME(#5527): In a future version of Rust, many of these functions will
//               become constants.
//
// FIXME(#8888): Several of these functions have a parameter named
//               `unused_self`. Removing it requires #8888 to be fixed.
pub trait Float: Signed + Primitive {
    /// Returns the NaN value.
    fn nan() -> Self;
    /// Returns the infinite value.
    fn infinity() -> Self;
    /// Returns the negative infinite value.
    fn neg_infinity() -> Self;
    /// Returns -0.0.
    fn neg_zero() -> Self;

    /// Returns true if this value is NaN and false otherwise.
    fn is_nan(self) -> bool;
    /// Returns true if this value is positive infinity or negative infinity and
    /// false otherwise.
    fn is_infinite(self) -> bool;
    /// Returns true if this number is neither infinite nor NaN.
    fn is_finite(self) -> bool;
    /// Returns true if this number is neither zero, infinite, denormal, or NaN.
    fn is_normal(self) -> bool;
    /// Returns the category that this number falls into.
    fn classify(self) -> FPCategory;

    // FIXME (#5527): These should be associated constants

    /// Returns the number of binary digits of mantissa that this type supports.
    fn mantissa_digits(unused_self: Option<Self>) -> uint;
    /// Returns the number of base-10 digits of precision that this type supports.
    fn digits(unused_self: Option<Self>) -> uint;
    /// Returns the difference between 1.0 and the smallest representable number larger than 1.0.
    fn epsilon() -> Self;
    /// Returns the minimum binary exponent that this type can represent.
    fn min_exp(unused_self: Option<Self>) -> int;
    /// Returns the maximum binary exponent that this type can represent.
    fn max_exp(unused_self: Option<Self>) -> int;
    /// Returns the minimum base-10 exponent that this type can represent.
    fn min_10_exp(unused_self: Option<Self>) -> int;
    /// Returns the maximum base-10 exponent that this type can represent.
    fn max_10_exp(unused_self: Option<Self>) -> int;
    /// Returns the smallest normalized positive number that this type can represent.
    fn min_pos_value(unused_self: Option<Self>) -> Self;

    /// Returns the mantissa, exponent and sign as integers, respectively.
    fn integer_decode(self) -> (u64, i16, i8);

    /// Return the largest integer less than or equal to a number.
    fn floor(self) -> Self;
    /// Return the smallest integer greater than or equal to a number.
    fn ceil(self) -> Self;
    /// Return the nearest integer to a number. Round half-way cases away from
    /// `0.0`.
    fn round(self) -> Self;
    /// Return the integer part of a number.
    fn trunc(self) -> Self;
    /// Return the fractional part of a number.
    fn fract(self) -> Self;

    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
    /// error. This produces a more accurate result with better performance than
    /// a separate multiplication operation followed by an add.
    fn mul_add(self, a: Self, b: Self) -> Self;
    /// Take the reciprocal (inverse) of a number, `1/x`.
    fn recip(self) -> Self;

    /// Raise a number to an integer power.
    ///
    /// Using this function is generally faster than using `powf`
    fn powi(self, n: i32) -> Self;
    /// Raise a number to a floating point power.
    fn powf(self, n: Self) -> Self;

    /// sqrt(2.0).
    fn sqrt2() -> Self;
    /// 1.0 / sqrt(2.0).
    fn frac_1_sqrt2() -> Self;

    /// Take the square root of a number.
1505
    ///
1506
    /// Returns NaN if `self` is a negative number.
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    fn sqrt(self) -> Self;
    /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
    fn rsqrt(self) -> Self;

    // FIXME (#5527): These should be associated constants

    /// Archimedes' constant.
    fn pi() -> Self;
    /// 2.0 * pi.
    fn two_pi() -> Self;
    /// pi / 2.0.
    fn frac_pi_2() -> Self;
    /// pi / 3.0.
    fn frac_pi_3() -> Self;
    /// pi / 4.0.
    fn frac_pi_4() -> Self;
    /// pi / 6.0.
    fn frac_pi_6() -> Self;
    /// pi / 8.0.
    fn frac_pi_8() -> Self;
    /// 1.0 / pi.
    fn frac_1_pi() -> Self;
    /// 2.0 / pi.
    fn frac_2_pi() -> Self;
    /// 2.0 / sqrt(pi).
    fn frac_2_sqrtpi() -> Self;

    /// Euler's number.
    fn e() -> Self;
    /// log2(e).
    fn log2_e() -> Self;
    /// log10(e).
    fn log10_e() -> Self;
    /// ln(2.0).
    fn ln_2() -> Self;
    /// ln(10.0).
    fn ln_10() -> Self;

    /// Returns `e^(self)`, (the exponential function).
    fn exp(self) -> Self;
    /// Returns 2 raised to the power of the number, `2^(self)`.
    fn exp2(self) -> Self;
    /// Returns the natural logarithm of the number.
    fn ln(self) -> Self;
    /// Returns the logarithm of the number with respect to an arbitrary base.
    fn log(self, base: Self) -> Self;
    /// Returns the base 2 logarithm of the number.
    fn log2(self) -> Self;
    /// Returns the base 10 logarithm of the number.
    fn log10(self) -> Self;

    /// Convert radians to degrees.
    fn to_degrees(self) -> Self;
    /// Convert degrees to radians.
    fn to_radians(self) -> Self;
}