operand.rs 22.0 KB
Newer Older
R
Ralf Jung 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
//! Functions concerning immediate values and operands, and reading from operands.
//! All high-level functions to read from memory work on operands as sources.

use std::convert::TryInto;

use rustc::mir;
use rustc::ty::layout::{self, Align, LayoutOf, TyLayout, HasDataLayout, IntegerExt};
use rustc_data_structures::indexed_vec::Idx;

use rustc::mir::interpret::{
    GlobalId, ConstValue, Scalar, EvalResult, Pointer, ScalarMaybeUndef, EvalErrorKind
};
use super::{EvalContext, Machine, MemPlace, MPlaceTy, PlaceExtra, MemoryKind};

/// A `Value` represents a single immediate self-contained Rust value.
///
/// For optimization of a few very common cases, there is also a representation for a pair of
/// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
/// operations and fat pointers. This idea was taken from rustc's codegen.
/// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
/// defined on `Value`, and do not have to work with a `Place`.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Value {
    Scalar(ScalarMaybeUndef),
    ScalarPair(ScalarMaybeUndef, ScalarMaybeUndef),
}

impl<'tcx> Value {
    pub fn new_slice(
        val: Scalar,
        len: u64,
        cx: impl HasDataLayout
    ) -> Self {
        Value::ScalarPair(val.into(), Scalar::Bits {
            bits: len as u128,
            size: cx.data_layout().pointer_size.bytes() as u8,
        }.into())
    }

    pub fn new_dyn_trait(val: Scalar, vtable: Pointer) -> Self {
        Value::ScalarPair(val.into(), Scalar::Ptr(vtable).into())
    }

44
    #[inline]
R
Ralf Jung 已提交
45 46 47 48 49 50 51
    pub fn to_scalar_or_undef(self) -> ScalarMaybeUndef {
        match self {
            Value::Scalar(val) => val,
            Value::ScalarPair(..) => bug!("Got a fat pointer where a scalar was expected"),
        }
    }

52
    #[inline]
R
Ralf Jung 已提交
53 54 55 56 57
    pub fn to_scalar(self) -> EvalResult<'tcx, Scalar> {
        self.to_scalar_or_undef().not_undef()
    }

    /// Convert the value into a pointer (or a pointer-sized integer).
58 59
    /// Throws away the second half of a ScalarPair!
    #[inline]
R
Ralf Jung 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    pub fn to_scalar_ptr(self) -> EvalResult<'tcx, Scalar> {
        match self {
            Value::Scalar(ptr) |
            Value::ScalarPair(ptr, _) => ptr.not_undef(),
        }
    }

    pub fn to_scalar_dyn_trait(self) -> EvalResult<'tcx, (Scalar, Pointer)> {
        match self {
            Value::ScalarPair(ptr, vtable) =>
                Ok((ptr.not_undef()?, vtable.to_ptr()?)),
            _ => bug!("expected ptr and vtable, got {:?}", self),
        }
    }

    pub fn to_scalar_slice(self, cx: impl HasDataLayout) -> EvalResult<'tcx, (Scalar, u64)> {
        match self {
            Value::ScalarPair(ptr, val) => {
                let len = val.to_bits(cx.data_layout().pointer_size)?;
                Ok((ptr.not_undef()?, len as u64))
            }
            _ => bug!("expected ptr and length, got {:?}", self),
        }
    }
}

// ScalarPair needs a type to interpret, so we often have a value and a type together
// as input for binary and cast operations.
#[derive(Copy, Clone, Debug)]
pub struct ValTy<'tcx> {
    pub value: Value,
    pub layout: TyLayout<'tcx>,
}

impl<'tcx> ::std::ops::Deref for ValTy<'tcx> {
    type Target = Value;
96
    #[inline(always)]
R
Ralf Jung 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    fn deref(&self) -> &Value {
        &self.value
    }
}

/// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
/// or still in memory.  The latter is an optimization, to delay reading that chunk of
/// memory and to avoid having to store arbitrary-sized data here.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Operand {
    Immediate(Value),
    Indirect(MemPlace),
}

impl Operand {
    #[inline]
    pub fn from_ptr(ptr: Pointer, align: Align) -> Self {
        Operand::Indirect(MemPlace::from_ptr(ptr, align))
    }

    #[inline]
    pub fn from_scalar_value(val: Scalar) -> Self {
        Operand::Immediate(Value::Scalar(val.into()))
    }

    #[inline]
    pub fn to_mem_place(self) -> MemPlace {
        match self {
            Operand::Indirect(mplace) => mplace,
            _ => bug!("to_mem_place: expected Operand::Indirect, got {:?}", self),

        }
    }

    #[inline]
    pub fn to_immediate(self) -> Value {
        match self {
            Operand::Immediate(val) => val,
            _ => bug!("to_immediate: expected Operand::Immediate, got {:?}", self),

        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct OpTy<'tcx> {
    pub op: Operand,
    pub layout: TyLayout<'tcx>,
}

impl<'tcx> ::std::ops::Deref for OpTy<'tcx> {
    type Target = Operand;
149
    #[inline(always)]
R
Ralf Jung 已提交
150 151 152 153 154 155
    fn deref(&self) -> &Operand {
        &self.op
    }
}

impl<'tcx> From<MPlaceTy<'tcx>> for OpTy<'tcx> {
156
    #[inline(always)]
R
Ralf Jung 已提交
157 158 159 160 161 162 163 164 165
    fn from(mplace: MPlaceTy<'tcx>) -> Self {
        OpTy {
            op: Operand::Indirect(*mplace),
            layout: mplace.layout
        }
    }
}

impl<'tcx> From<ValTy<'tcx>> for OpTy<'tcx> {
166
    #[inline(always)]
R
Ralf Jung 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    fn from(val: ValTy<'tcx>) -> Self {
        OpTy {
            op: Operand::Immediate(val.value),
            layout: val.layout
        }
    }
}

impl<'tcx> OpTy<'tcx> {
    #[inline]
    pub fn from_ptr(ptr: Pointer, align: Align, layout: TyLayout<'tcx>) -> Self {
        OpTy { op: Operand::from_ptr(ptr, align), layout }
    }

    #[inline]
    pub fn from_aligned_ptr(ptr: Pointer, layout: TyLayout<'tcx>) -> Self {
        OpTy { op: Operand::from_ptr(ptr, layout.align), layout }
    }

    #[inline]
    pub fn from_scalar_value(val: Scalar, layout: TyLayout<'tcx>) -> Self {
        OpTy { op: Operand::Immediate(Value::Scalar(val.into())), layout }
    }
}

192 193 194 195 196 197 198 199 200 201
// Use the existing layout if given (but sanity check in debug mode),
// or compute the layout.
#[inline(always)]
fn from_known_layout<'tcx>(
    layout: Option<TyLayout<'tcx>>,
    compute: impl FnOnce() -> EvalResult<'tcx, TyLayout<'tcx>>
) -> EvalResult<'tcx, TyLayout<'tcx>> {
    match layout {
        None => compute(),
        Some(layout) => {
R
Ralf Jung 已提交
202 203 204 205 206 207
            if cfg!(debug_assertions) {
                let layout2 = compute()?;
                assert_eq!(layout.details, layout2.details,
                    "Mismatch in layout of supposedly equal-layout types {:?} and {:?}",
                    layout.ty, layout2.ty);
            }
208 209 210 211 212
            Ok(layout)
        }
    }
}

R
Ralf Jung 已提交
213 214 215
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
    /// Try reading a value in memory; this is interesting particularily for ScalarPair.
    /// Return None if the layout does not permit loading this as a value.
216
    pub(super) fn try_read_value_from_mplace(
R
Ralf Jung 已提交
217
        &self,
218
        mplace: MPlaceTy<'tcx>,
R
Ralf Jung 已提交
219
    ) -> EvalResult<'tcx, Option<Value>> {
220 221 222 223
        if mplace.extra != PlaceExtra::None {
            return Ok(None);
        }
        let (ptr, ptr_align) = mplace.to_scalar_ptr_align();
R
Ralf Jung 已提交
224

225
        if mplace.layout.size.bytes() == 0 {
226 227 228
            // Not all ZSTs have a layout we would handle below, so just short-circuit them
            // all here.
            self.memory.check_align(ptr, ptr_align)?;
R
Ralf Jung 已提交
229
            return Ok(Some(Value::Scalar(Scalar::zst().into())));
R
Ralf Jung 已提交
230 231 232
        }

        let ptr = ptr.to_ptr()?;
233
        match mplace.layout.abi {
R
Ralf Jung 已提交
234
            layout::Abi::Scalar(..) => {
235
                let scalar = self.memory.read_scalar(ptr, ptr_align, mplace.layout.size)?;
R
Ralf Jung 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
                Ok(Some(Value::Scalar(scalar)))
            }
            layout::Abi::ScalarPair(ref a, ref b) => {
                let (a, b) = (&a.value, &b.value);
                let (a_size, b_size) = (a.size(self), b.size(self));
                let a_ptr = ptr;
                let b_offset = a_size.abi_align(b.align(self));
                assert!(b_offset.bytes() > 0); // we later use the offset to test which field to use
                let b_ptr = ptr.offset(b_offset, self)?.into();
                let a_val = self.memory.read_scalar(a_ptr, ptr_align, a_size)?;
                let b_val = self.memory.read_scalar(b_ptr, ptr_align, b_size)?;
                Ok(Some(Value::ScalarPair(a_val, b_val)))
            }
            _ => Ok(None),
        }
    }

    /// Try returning an immediate value for the operand.
    /// If the layout does not permit loading this as a value, return where in memory
    /// we can find the data.
    /// Note that for a given layout, this operation will either always fail or always
    /// succeed!  Whether it succeeds depends on whether the layout can be represented
    /// in a `Value`, not on which data is stored there currently.
    pub(super) fn try_read_value(
        &self,
R
Ralf Jung 已提交
261
        src: OpTy<'tcx>,
R
Ralf Jung 已提交
262
    ) -> EvalResult<'tcx, Result<Value, MemPlace>> {
263 264 265 266 267 268
        Ok(match src.try_as_mplace() {
            Ok(mplace) => {
                if let Some(val) = self.try_read_value_from_mplace(mplace)? {
                    Ok(val)
                } else {
                    Err(*mplace)
R
Ralf Jung 已提交
269 270
                }
            },
271 272
            Err(val) => Ok(val),
        })
R
Ralf Jung 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285
    }

    /// Read a value from a place, asserting that that is possible with the given layout.
    #[inline(always)]
    pub fn read_value(&self, op: OpTy<'tcx>) -> EvalResult<'tcx, ValTy<'tcx>> {
        if let Ok(value) = self.try_read_value(op)? {
            Ok(ValTy { value, layout: op.layout })
        } else {
            bug!("primitive read failed for type: {:?}", op.layout.ty);
        }
    }

    /// Read a scalar from a place
R
Ralf Jung 已提交
286
    pub fn read_scalar(&self, op: OpTy<'tcx>) -> EvalResult<'tcx, ScalarMaybeUndef> {
R
Ralf Jung 已提交
287 288 289 290 291 292 293 294 295
        match *self.read_value(op)? {
            Value::ScalarPair(..) => bug!("got ScalarPair for type: {:?}", op.layout.ty),
            Value::Scalar(val) => Ok(val),
        }
    }

    pub fn uninit_operand(&mut self, layout: TyLayout<'tcx>) -> EvalResult<'tcx, Operand> {
        // This decides which types we will use the Immediate optimization for, and hence should
        // match what `try_read_value` and `eval_place_to_op` support.
R
Ralf Jung 已提交
296
        if layout.is_zst() {
297
            return Ok(Operand::Immediate(Value::Scalar(Scalar::zst().into())));
R
Ralf Jung 已提交
298 299
        }

R
Ralf Jung 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        Ok(match layout.abi {
            layout::Abi::Scalar(..) =>
                Operand::Immediate(Value::Scalar(ScalarMaybeUndef::Undef)),
            layout::Abi::ScalarPair(..) =>
                Operand::Immediate(Value::ScalarPair(
                    ScalarMaybeUndef::Undef,
                    ScalarMaybeUndef::Undef,
                )),
            _ => {
                trace!("Forcing allocation for local of type {:?}", layout.ty);
                Operand::Indirect(
                    *self.allocate(layout, MemoryKind::Stack)?
                )
            }
        })
    }

    /// Projection functions
    pub fn operand_field(
        &self,
        op: OpTy<'tcx>,
        field: u64,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        let base = match op.try_as_mplace() {
            Ok(mplace) => {
                // The easy case
                let field = self.mplace_field(mplace, field)?;
                return Ok(field.into());
            },
            Err(value) => value
        };

        let field = field.try_into().unwrap();
        let field_layout = op.layout.field(self, field)?;
        if field_layout.size.bytes() == 0 {
            let val = Value::Scalar(Scalar::zst().into());
            return Ok(OpTy { op: Operand::Immediate(val), layout: field_layout });
        }
        let offset = op.layout.fields.offset(field);
        let value = match base {
            // the field covers the entire type
            _ if offset.bytes() == 0 && field_layout.size == op.layout.size => base,
            // extract fields from types with `ScalarPair` ABI
            Value::ScalarPair(a, b) => {
                let val = if offset.bytes() == 0 { a } else { b };
                Value::Scalar(val)
            },
            Value::Scalar(val) =>
                bug!("field access on non aggregate {:#?}, {:#?}", val, op.layout),
        };
        Ok(OpTy { op: Operand::Immediate(value), layout: field_layout })
    }

    pub(super) fn operand_downcast(
        &self,
        op: OpTy<'tcx>,
        variant: usize,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        // Downcasts only change the layout
        Ok(match op.try_as_mplace() {
            Ok(mplace) => {
                self.mplace_downcast(mplace, variant)?.into()
            },
            Err(..) => {
                let layout = op.layout.for_variant(self, variant);
                OpTy { layout, ..op }
            }
        })
    }

    // Take an operand, representing a pointer, and dereference it -- that
    // will always be a MemPlace.
    pub(super) fn deref_operand(
        &self,
        src: OpTy<'tcx>,
    ) -> EvalResult<'tcx, MPlaceTy<'tcx>> {
        let val = self.read_value(src)?;
        trace!("deref to {} on {:?}", val.layout.ty, val);
        Ok(self.ref_to_mplace(val)?)
    }

    pub fn operand_projection(
        &self,
        base: OpTy<'tcx>,
        proj_elem: &mir::PlaceElem<'tcx>,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        use rustc::mir::ProjectionElem::*;
        Ok(match *proj_elem {
            Field(field, _) => self.operand_field(base, field.index() as u64)?,
            Downcast(_, variant) => self.operand_downcast(base, variant)?,
            Deref => self.deref_operand(base)?.into(),
            // The rest should only occur as mplace, we do not use Immediates for types
            // allowing such operations.  This matches place_projection forcing an allocation.
            Subslice { .. } | ConstantIndex { .. } | Index(_) => {
                let mplace = base.to_mem_place();
                self.mplace_projection(mplace, proj_elem)?.into()
            }
        })
    }

    // Evaluate a place with the goal of reading from it.  This lets us sometimes
401 402
    // avoid allocations.  If you already know the layout, you can pass it in
    // to avoid looking it up again.
R
Ralf Jung 已提交
403 404 405
    fn eval_place_to_op(
        &mut self,
        mir_place: &mir::Place<'tcx>,
406
        layout: Option<TyLayout<'tcx>>,
R
Ralf Jung 已提交
407 408 409 410 411 412
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        use rustc::mir::Place::*;
        Ok(match *mir_place {
            Local(mir::RETURN_PLACE) => return err!(ReadFromReturnPointer),
            Local(local) => {
                let op = *self.frame().locals[local].access()?;
413 414 415
                let layout = from_known_layout(layout,
                    || self.layout_of_local(self.cur_frame(), local))?;
                OpTy { op, layout }
R
Ralf Jung 已提交
416 417 418
            },

            Projection(ref proj) => {
419
                let op = self.eval_place_to_op(&proj.base, None)?;
R
Ralf Jung 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433
                self.operand_projection(op, &proj.elem)?
            }

            // Everything else is an mplace, so we just call `eval_place`.
            // Note that getting an mplace for a static aways requires `&mut`,
            // so this does not "cost" us anything in terms if mutability.
            Promoted(_) | Static(_) => {
                let place = self.eval_place(mir_place)?;
                place.to_mem_place().into()
            }
        })
    }

    /// Evaluate the operand, returning a place where you can then find the data.
434 435 436 437 438 439 440
    /// if you already know the layout, you can save two some table lookups
    /// by passing it in here.
    pub fn eval_operand(
        &mut self,
        mir_op: &mir::Operand<'tcx>,
        layout: Option<TyLayout<'tcx>>,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
R
Ralf Jung 已提交
441
        use rustc::mir::Operand::*;
R
Ralf Jung 已提交
442
        let op = match *mir_op {
R
Ralf Jung 已提交
443 444 445
            // FIXME: do some more logic on `move` to invalidate the old location
            Copy(ref place) |
            Move(ref place) =>
446
                self.eval_place_to_op(place, layout)?,
R
Ralf Jung 已提交
447 448

            Constant(ref constant) => {
449 450 451 452
                let layout = from_known_layout(layout, || {
                    let ty = self.monomorphize(mir_op.ty(self.mir(), *self.tcx), self.substs());
                    self.layout_of(ty)
                })?;
R
Ralf Jung 已提交
453
                let op = self.const_value_to_op(constant.literal.val)?;
R
Ralf Jung 已提交
454
                OpTy { op, layout }
R
Ralf Jung 已提交
455
            }
R
Ralf Jung 已提交
456 457 458
        };
        trace!("{:?}: {:?}", mir_op, *op);
        Ok(op)
R
Ralf Jung 已提交
459 460 461 462 463 464 465 466
    }

    /// Evaluate a bunch of operands at once
    pub(crate) fn eval_operands(
        &mut self,
        ops: &[mir::Operand<'tcx>],
    ) -> EvalResult<'tcx, Vec<OpTy<'tcx>>> {
        ops.into_iter()
467
            .map(|op| self.eval_operand(op, None))
R
Ralf Jung 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
            .collect()
    }

    // Also used e.g. when miri runs into a constant.
    // Unfortunately, this needs an `&mut` to be able to allocate a copy of a `ByRef`
    // constant.  This bleeds up to `eval_operand` needing `&mut`.
    pub fn const_value_to_op(
        &mut self,
        val: ConstValue<'tcx>,
    ) -> EvalResult<'tcx, Operand> {
        match val {
            ConstValue::Unevaluated(def_id, substs) => {
                let instance = self.resolve(def_id, substs)?;
                self.global_to_op(GlobalId {
                    instance,
                    promoted: None,
                })
            }
            ConstValue::ByRef(alloc, offset) => {
                // FIXME: Allocate new AllocId for all constants inside
                let id = self.memory.allocate_value(alloc.clone(), MemoryKind::Stack)?;
                Ok(Operand::from_ptr(Pointer::new(id, offset), alloc.align))
            },
            ConstValue::ScalarPair(a, b) =>
                Ok(Operand::Immediate(Value::ScalarPair(a.into(), b))),
            ConstValue::Scalar(x) =>
                Ok(Operand::Immediate(Value::Scalar(x.into()))),
        }
    }

    pub(super) fn global_to_op(&mut self, gid: GlobalId<'tcx>) -> EvalResult<'tcx, Operand> {
        let cv = self.const_eval(gid)?;
        self.const_value_to_op(cv.val)
    }

    /// We cannot do self.read_value(self.eval_operand) due to eval_operand taking &mut self,
    /// so this helps avoid unnecessary let.
505 506
    #[inline]
    pub fn eval_operand_and_read_value(
R
Ralf Jung 已提交
507 508
        &mut self,
        op: &mir::Operand<'tcx>,
509
        layout: Option<TyLayout<'tcx>>,
R
Ralf Jung 已提交
510
    ) -> EvalResult<'tcx, ValTy<'tcx>> {
511
        let op = self.eval_operand(op, layout)?;
R
Ralf Jung 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        self.read_value(op)
    }

    /// reads a tag and produces the corresponding variant index
    pub fn read_discriminant_as_variant_index(
        &self,
        rval: OpTy<'tcx>,
    ) -> EvalResult<'tcx, usize> {
        match rval.layout.variants {
            layout::Variants::Single { index } => Ok(index),
            layout::Variants::Tagged { .. } => {
                let discr_val = self.read_discriminant_value(rval)?;
                rval.layout.ty
                    .ty_adt_def()
                    .expect("tagged layout for non adt")
                    .discriminants(self.tcx.tcx)
                    .position(|var| var.val == discr_val)
                    .ok_or_else(|| EvalErrorKind::InvalidDiscriminant.into())
            }
            layout::Variants::NicheFilling { .. } => {
                let discr_val = self.read_discriminant_value(rval)?;
                assert_eq!(discr_val as usize as u128, discr_val);
                Ok(discr_val as usize)
            },
        }
    }

    pub fn read_discriminant_value(
        &self,
        rval: OpTy<'tcx>,
    ) -> EvalResult<'tcx, u128> {
        trace!("read_discriminant_value {:#?}", rval.layout);
        if rval.layout.abi == layout::Abi::Uninhabited {
            return err!(Unreachable);
        }

        match rval.layout.variants {
            layout::Variants::Single { index } => {
                let discr_val = rval.layout.ty.ty_adt_def().map_or(
                    index as u128,
                    |def| def.discriminant_for_variant(*self.tcx, index).val);
                return Ok(discr_val);
            }
            layout::Variants::Tagged { .. } |
            layout::Variants::NicheFilling { .. } => {},
        }
        let discr_op = self.operand_field(rval, 0)?;
        let discr_val = self.read_value(discr_op)?;
        trace!("discr value: {:?}", discr_val);
        let raw_discr = discr_val.to_scalar()?;
        Ok(match rval.layout.variants {
            layout::Variants::Single { .. } => bug!(),
            // FIXME: We should catch invalid discriminants here!
            layout::Variants::Tagged { .. } => {
                if discr_val.layout.ty.is_signed() {
                    let i = raw_discr.to_bits(discr_val.layout.size)? as i128;
                    // going from layout tag type to typeck discriminant type
                    // requires first sign extending with the layout discriminant
                    let shift = 128 - discr_val.layout.size.bits();
                    let sexted = (i << shift) >> shift;
                    // and then zeroing with the typeck discriminant type
                    let discr_ty = rval.layout.ty
                        .ty_adt_def().expect("tagged layout corresponds to adt")
                        .repr
                        .discr_type();
                    let discr_ty = layout::Integer::from_attr(self.tcx.tcx, discr_ty);
                    let shift = 128 - discr_ty.size().bits();
                    let truncatee = sexted as u128;
                    (truncatee << shift) >> shift
                } else {
                    raw_discr.to_bits(discr_val.layout.size)?
                }
            },
            layout::Variants::NicheFilling {
                dataful_variant,
                ref niche_variants,
                niche_start,
                ..
            } => {
                let variants_start = *niche_variants.start() as u128;
                let variants_end = *niche_variants.end() as u128;
                match raw_discr {
                    Scalar::Ptr(_) => {
                        assert!(niche_start == 0);
                        assert!(variants_start == variants_end);
                        dataful_variant as u128
                    },
                    Scalar::Bits { bits: raw_discr, size } => {
                        assert_eq!(size as u64, discr_val.layout.size.bytes());
                        let discr = raw_discr.wrapping_sub(niche_start)
                            .wrapping_add(variants_start);
                        if variants_start <= discr && discr <= variants_end {
                            discr
                        } else {
                            dataful_variant as u128
                        }
                    },
                }
            }
        })
    }

}