once.rs 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A "once initialization" primitive
//!
//! This primitive is meant to be used to run one-time initialization. An
//! example use case would be for initializing an FFI library.

A
Alex Crichton 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
// A "once" is a relatively simple primitive, and it's also typically provided
// by the OS as well (see `pthread_once` or `InitOnceExecuteOnce`). The OS
// primitives, however, tend to have surprising restrictions, such as the Unix
// one doesn't allow an argument to be passed to the function.
//
// As a result, we end up implementing it ourselves in the standard library.
// This also gives us the opportunity to optimize the implementation a bit which
// should help the fast path on call sites. Consequently, let's explain how this
// primitive works now!
//
// So to recap, the guarantees of a Once are that it will call the
// initialization closure at most once, and it will never return until the one
// that's running has finished running. This means that we need some form of
// blocking here while the custom callback is running at the very least.
// Additionally, we add on the restriction of **poisoning**. Whenever an
// initialization closure panics, the Once enters a "poisoned" state which means
// that all future calls will immediately panic as well.
//
// So to implement this, one might first reach for a `StaticMutex`, but those
// unfortunately need to be deallocated (e.g. call `destroy()`) to free memory
// on all OSes (some of the BSDs allocate memory for mutexes). It also gets a
// lot harder with poisoning to figure out when the mutex needs to be
// deallocated because it's not after the closure finishes, but after the first
// successful closure finishes.
//
// All in all, this is instead implemented with atomics and lock-free
// operations! Whee! Each `Once` has one word of atomic state, and this state is
// CAS'd on to determine what to do. There are four possible state of a `Once`:
//
// * Incomplete - no initialization has run yet, and no thread is currently
//                using the Once.
// * Poisoned - some thread has previously attempted to initialize the Once, but
//              it panicked, so the Once is now poisoned. There are no other
//              threads currently accessing this Once.
// * Running - some thread is currently attempting to run initialization. It may
//             succeed, so all future threads need to wait for it to finish.
//             Note that this state is accompanied with a payload, described
//             below.
// * Complete - initialization has completed and all future calls should finish
//              immediately.
//
// With 4 states we need 2 bits to encode this, and we use the remaining bits
// in the word we have allocated as a queue of threads waiting for the thread
// responsible for entering the RUNNING state. This queue is just a linked list
// of Waiter nodes which is monotonically increasing in size. Each node is
// allocated on the stack, and whenever the running closure finishes it will
// consume the entire queue and notify all waiters they should try again.
//
// You'll find a few more details in the implementation, but that's the gist of
// it!

use marker;
68
use ptr;
A
Alex Crichton 已提交
69 70
use sync::atomic::{AtomicUsize, AtomicBool, Ordering};
use thread::{self, Thread};
71

72 73 74 75
/// A synchronization primitive which can be used to run a one-time global
/// initialization. Useful for one-time initialization for FFI or related
/// functionality. This type can only be constructed with the `ONCE_INIT`
/// value.
76
///
S
Steve Klabnik 已提交
77
/// # Examples
78
///
79
/// ```
A
Alex Crichton 已提交
80
/// use std::sync::{Once, ONCE_INIT};
81
///
A
Alex Crichton 已提交
82
/// static START: Once = ONCE_INIT;
83
///
84
/// START.call_once(|| {
A
Alex Crichton 已提交
85 86
///     // run initialization here
/// });
87
/// ```
B
Brian Anderson 已提交
88
#[stable(feature = "rust1", since = "1.0.0")]
89
pub struct Once {
A
Alex Crichton 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    // This `state` word is actually an encoded version of just a pointer to a
    // `Waiter`, so we add the `PhantomData` appropriately.
    state: AtomicUsize,
    _marker: marker::PhantomData<*mut Waiter>,
}

// The `PhantomData` of a raw pointer removes these two auto traits, but we
// enforce both below in the implementation so this should be safe to add.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl Sync for Once {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl Send for Once {}

/// State yielded to the `call_once_force` method which can be used to query
/// whether the `Once` was previously poisoned or not.
105
#[unstable(feature = "once_poison", issue = "33577")]
A
Alex Crichton 已提交
106 107
pub struct OnceState {
    poisoned: bool,
108 109 110
}

/// Initialization value for static `Once` values.
B
Brian Anderson 已提交
111
#[stable(feature = "rust1", since = "1.0.0")]
112
pub const ONCE_INIT: Once = Once::new();
113

A
Alex Crichton 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Four states that a Once can be in, encoded into the lower bits of `state` in
// the Once structure.
const INCOMPLETE: usize = 0x0;
const POISONED: usize = 0x1;
const RUNNING: usize = 0x2;
const COMPLETE: usize = 0x3;

// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;

// Representation of a node in the linked list of waiters in the RUNNING state.
struct Waiter {
    thread: Option<Thread>,
    signaled: AtomicBool,
    next: *mut Waiter,
}

// Helper struct used to clean up after a closure call with a `Drop`
// implementation to also run on panic.
struct Finish {
    panicked: bool,
    me: &'static Once,
}

139
impl Once {
140
    /// Creates a new `Once` value.
141
    #[stable(feature = "once_new", since = "1.2.0")]
142 143
    pub const fn new() -> Once {
        Once {
A
Alex Crichton 已提交
144 145
            state: AtomicUsize::new(INCOMPLETE),
            _marker: marker::PhantomData,
146 147 148
        }
    }

149
    /// Performs an initialization routine once and only once. The given closure
150 151
    /// will be executed if this is the first time `call_once` has been called,
    /// and otherwise the routine will *not* be invoked.
152
    ///
153
    /// This method will block the calling thread if another initialization
154 155 156
    /// routine is currently running.
    ///
    /// When this function returns, it is guaranteed that some initialization
157 158
    /// has run and completed (it may not be the closure specified). It is also
    /// guaranteed that any memory writes performed by the executed closure can
159
    /// be reliably observed by other threads at this point (there is a
160 161
    /// happens-before relation between the closure and code executing after the
    /// return).
A
Alex Crichton 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Once, ONCE_INIT};
    ///
    /// static mut VAL: usize = 0;
    /// static INIT: Once = ONCE_INIT;
    ///
    /// // Accessing a `static mut` is unsafe much of the time, but if we do so
    /// // in a synchronized fashion (e.g. write once or read all) then we're
    /// // good to go!
    /// //
    /// // This function will only call `expensive_computation` once, and will
    /// // otherwise always return the value returned from the first invocation.
    /// fn get_cached_val() -> usize {
    ///     unsafe {
    ///         INIT.call_once(|| {
    ///             VAL = expensive_computation();
    ///         });
    ///         VAL
    ///     }
    /// }
    ///
    /// fn expensive_computation() -> usize {
    ///     // ...
    /// # 2
    /// }
    /// ```
    ///
    /// # Panics
    ///
    /// The closure `f` will only be executed once if this is called
    /// concurrently amongst many threads. If that closure panics, however, then
    /// it will *poison* this `Once` instance, causing all future invocations of
    /// `call_once` to also panic.
    ///
    /// This is similar to [poisoning with mutexes][poison].
    ///
    /// [poison]: struct.Mutex.html#poisoning
B
Brian Anderson 已提交
202
    #[stable(feature = "rust1", since = "1.0.0")]
203
    pub fn call_once<F>(&'static self, f: F) where F: FnOnce() {
A
Alex Crichton 已提交
204 205
        // Fast path, just see if we've completed initialization.
        if self.state.load(Ordering::SeqCst) == COMPLETE {
206 207 208
            return
        }

A
Alex Crichton 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221
        let mut f = Some(f);
        self.call_inner(false, &mut |_| f.take().unwrap()());
    }

    /// Performs the same function as `call_once` except ignores poisoning.
    ///
    /// If this `Once` has been poisoned (some initialization panicked) then
    /// this function will continue to attempt to call initialization functions
    /// until one of them doesn't panic.
    ///
    /// The closure `f` is yielded a structure which can be used to query the
    /// state of this `Once` (whether initialization has previously panicked or
    /// not).
222
    #[unstable(feature = "once_poison", issue = "33577")]
A
Alex Crichton 已提交
223 224 225
    pub fn call_once_force<F>(&'static self, f: F) where F: FnOnce(&OnceState) {
        // same as above, just with a different parameter to `call_inner`.
        if self.state.load(Ordering::SeqCst) == COMPLETE {
226 227 228
            return
        }

A
Alex Crichton 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        let mut f = Some(f);
        self.call_inner(true, &mut |p| {
            f.take().unwrap()(&OnceState { poisoned: p })
        });
    }

    // This is a non-generic function to reduce the monomorphization cost of
    // using `call_once` (this isn't exactly a trivial or small implementation).
    //
    // Additionally, this is tagged with `#[cold]` as it should indeed be cold
    // and it helps let LLVM know that calls to this function should be off the
    // fast path. Essentially, this should help generate more straight line code
    // in LLVM.
    //
    // Finally, this takes an `FnMut` instead of a `FnOnce` because there's
    // currently no way to take an `FnOnce` and call it via virtual dispatch
    // without some allocation overhead.
    #[cold]
    fn call_inner(&'static self,
                  ignore_poisoning: bool,
                  mut init: &mut FnMut(bool)) {
        let mut state = self.state.load(Ordering::SeqCst);

        'outer: loop {
            match state {
                // If we're complete, then there's nothing to do, we just
                // jettison out as we shouldn't run the closure.
                COMPLETE => return,

                // If we're poisoned and we're not in a mode to ignore
                // poisoning, then we panic here to propagate the poison.
                POISONED if !ignore_poisoning => {
                    panic!("Once instance has previously been poisoned");
                }

                // Otherwise if we see a poisoned or otherwise incomplete state
                // we will attempt to move ourselves into the RUNNING state. If
                // we succeed, then the queue of waiters starts at null (all 0
                // bits).
                POISONED |
                INCOMPLETE => {
                    let old = self.state.compare_and_swap(state, RUNNING,
                                                          Ordering::SeqCst);
                    if old != state {
                        state = old;
                        continue
                    }

                    // Run the initialization routine, letting it know if we're
                    // poisoned or not. The `Finish` struct is then dropped, and
                    // the `Drop` implementation here is responsible for waking
                    // up other waiters both in the normal return and panicking
                    // case.
                    let mut complete = Finish {
                        panicked: true,
                        me: self,
                    };
                    init(state == POISONED);
                    complete.panicked = false;
                    return
                }

                // All other values we find should correspond to the RUNNING
                // state with an encoded waiter list in the more significant
                // bits. We attempt to enqueue ourselves by moving us to the
                // head of the list and bail out if we ever see a state that's
                // not RUNNING.
                _ => {
                    assert!(state & STATE_MASK == RUNNING);
                    let mut node = Waiter {
                        thread: Some(thread::current()),
                        signaled: AtomicBool::new(false),
301
                        next: ptr::null_mut(),
A
Alex Crichton 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
                    };
                    let me = &mut node as *mut Waiter as usize;
                    assert!(me & STATE_MASK == 0);

                    while state & STATE_MASK == RUNNING {
                        node.next = (state & !STATE_MASK) as *mut Waiter;
                        let old = self.state.compare_and_swap(state,
                                                              me | RUNNING,
                                                              Ordering::SeqCst);
                        if old != state {
                            state = old;
                            continue
                        }

                        // Once we've enqueued ourselves, wait in a loop.
                        // Aftewards reload the state and continue with what we
                        // were doing from before.
                        while !node.signaled.load(Ordering::SeqCst) {
                            thread::park();
                        }
                        state = self.state.load(Ordering::SeqCst);
                        continue 'outer
                    }
                }
            }
327
        }
A
Alex Crichton 已提交
328 329
    }
}
330

A
Alex Crichton 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
impl Drop for Finish {
    fn drop(&mut self) {
        // Swap out our state with however we finished. We should only ever see
        // an old state which was RUNNING.
        let queue = if self.panicked {
            self.me.state.swap(POISONED, Ordering::SeqCst)
        } else {
            self.me.state.swap(COMPLETE, Ordering::SeqCst)
        };
        assert_eq!(queue & STATE_MASK, RUNNING);

        // Decode the RUNNING to a list of waiters, then walk that entire list
        // and wake them up. Note that it is crucial that after we store `true`
        // in the node it can be free'd! As a result we load the `thread` to
        // signal ahead of time and then unpark it after the store.
        unsafe {
            let mut queue = (queue & !STATE_MASK) as *mut Waiter;
            while !queue.is_null() {
                let next = (*queue).next;
                let thread = (*queue).thread.take().unwrap();
                (*queue).signaled.store(true, Ordering::SeqCst);
                thread.unpark();
                queue = next;
            }
355 356 357 358
        }
    }
}

A
Alex Crichton 已提交
359 360 361 362 363
impl OnceState {
    /// Returns whether the associated `Once` has been poisoned.
    ///
    /// Once an initalization routine for a `Once` has panicked it will forever
    /// indicate to future forced initialization routines that it is poisoned.
364
    #[unstable(feature = "once_poison", issue = "33577")]
A
Alex Crichton 已提交
365 366 367 368 369
    pub fn poisoned(&self) -> bool {
        self.poisoned
    }
}

370
#[cfg(all(test, not(target_os = "emscripten")))]
371
mod tests {
A
Alex Crichton 已提交
372 373
    use panic;
    use sync::mpsc::channel;
A
Aaron Turon 已提交
374
    use thread;
375
    use super::Once;
376 377 378

    #[test]
    fn smoke_once() {
379
        static O: Once = Once::new();
T
Tobias Bucher 已提交
380
        let mut a = 0;
381
        O.call_once(|| a += 1);
382
        assert_eq!(a, 1);
383
        O.call_once(|| a += 1);
384 385 386 387 388
        assert_eq!(a, 1);
    }

    #[test]
    fn stampede_once() {
389
        static O: Once = Once::new();
390 391
        static mut run: bool = false;

392
        let (tx, rx) = channel();
393
        for _ in 0..10 {
394
            let tx = tx.clone();
A
Aaron Turon 已提交
395
            thread::spawn(move|| {
396
                for _ in 0..4 { thread::yield_now() }
397
                unsafe {
398
                    O.call_once(|| {
399 400 401 402 403
                        assert!(!run);
                        run = true;
                    });
                    assert!(run);
                }
404
                tx.send(()).unwrap();
A
Aaron Turon 已提交
405
            });
406 407 408
        }

        unsafe {
409
            O.call_once(|| {
410 411 412 413 414 415
                assert!(!run);
                run = true;
            });
            assert!(run);
        }

416
        for _ in 0..10 {
417
            rx.recv().unwrap();
418 419
        }
    }
A
Alex Crichton 已提交
420 421 422 423 424 425

    #[test]
    fn poison_bad() {
        static O: Once = Once::new();

        // poison the once
426
        let t = panic::catch_unwind(|| {
A
Alex Crichton 已提交
427 428 429 430 431
            O.call_once(|| panic!());
        });
        assert!(t.is_err());

        // poisoning propagates
432
        let t = panic::catch_unwind(|| {
A
Alex Crichton 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            O.call_once(|| {});
        });
        assert!(t.is_err());

        // we can subvert poisoning, however
        let mut called = false;
        O.call_once_force(|p| {
            called = true;
            assert!(p.poisoned())
        });
        assert!(called);

        // once any success happens, we stop propagating the poison
        O.call_once(|| {});
    }

    #[test]
    fn wait_for_force_to_finish() {
        static O: Once = Once::new();

        // poison the once
454
        let t = panic::catch_unwind(|| {
A
Alex Crichton 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            O.call_once(|| panic!());
        });
        assert!(t.is_err());

        // make sure someone's waiting inside the once via a force
        let (tx1, rx1) = channel();
        let (tx2, rx2) = channel();
        let t1 = thread::spawn(move || {
            O.call_once_force(|p| {
                assert!(p.poisoned());
                tx1.send(()).unwrap();
                rx2.recv().unwrap();
            });
        });

        rx1.recv().unwrap();

        // put another waiter on the once
        let t2 = thread::spawn(|| {
            let mut called = false;
            O.call_once(|| {
                called = true;
            });
            assert!(!called);
        });

        tx2.send(()).unwrap();

        assert!(t1.join().is_ok());
        assert!(t2.join().is_ok());

    }
487
}