object_safety.rs 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! "Object safety" refers to the ability for a trait to be converted
//! to an object. In general, traits may only be converted to an
//! object if all of their methods meet certain criteria. In particular,
//! they must:
//!
//!   - have a suitable receiver from which we can extract a vtable;
//!   - not reference the erased type `Self` except for in this receiver;
//!   - not have generic type parameters

use super::supertraits;
use super::elaborate_predicates;

23
use middle::subst::{self, SelfSpace, TypeSpace};
24
use middle::traits;
25
use middle::ty::{self, ToPolyTraitRef, Ty};
26 27 28 29 30 31 32 33
use std::rc::Rc;
use syntax::ast;
use util::ppaux::Repr;

pub enum ObjectSafetyViolation<'tcx> {
    /// Self : Sized declared on the trait
    SizedSelf,

34 35 36 37
    /// Supertrait reference references `Self` an in illegal location
    /// (e.g. `trait Foo : Bar<Self>`)
    SupertraitSelf,

J
Joseph Crail 已提交
38
    /// Method has something illegal
39 40 41 42
    Method(Rc<ty::Method<'tcx>>, MethodViolationCode),
}

/// Reasons a method might not be object-safe.
J
Jorge Aparicio 已提交
43
#[derive(Copy,Clone,Debug)]
44
pub enum MethodViolationCode {
N
Niko Matsakis 已提交
45
    /// e.g., `fn foo()`
46 47
    StaticMethod,

N
Niko Matsakis 已提交
48
    /// e.g., `fn foo(&self, x: Self)` or `fn foo(&self) -> Self`
49 50
    ReferencesSelf,

N
Niko Matsakis 已提交
51
    /// e.g., `fn foo<A>()`
52 53 54 55
    Generic,
}

pub fn is_object_safe<'tcx>(tcx: &ty::ctxt<'tcx>,
56
                            trait_def_id: ast::DefId)
57 58 59
                            -> bool
{
    // Because we query yes/no results frequently, we keep a cache:
60
    let def = ty::lookup_trait_def(tcx, trait_def_id);
61

62 63
    let result = def.object_safety().unwrap_or_else(|| {
        let result = object_safety_violations(tcx, trait_def_id).is_empty();
64

65 66 67 68
        // Record just a yes/no result in the cache; this is what is
        // queried most frequently. Note that this may overwrite a
        // previous result, but always with the same thing.
        def.set_object_safety(result);
69

70 71
        result
    });
72

73
    debug!("is_object_safe({}) = {}", trait_def_id.repr(tcx), result);
74 75 76 77 78

    result
}

pub fn object_safety_violations<'tcx>(tcx: &ty::ctxt<'tcx>,
79
                                      trait_def_id: ast::DefId)
80 81
                                      -> Vec<ObjectSafetyViolation<'tcx>>
{
82 83
    traits::supertrait_def_ids(tcx, trait_def_id)
        .flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id).into_iter())
84 85 86 87 88 89 90 91 92 93 94 95 96
        .collect()
}

fn object_safety_violations_for_trait<'tcx>(tcx: &ty::ctxt<'tcx>,
                                            trait_def_id: ast::DefId)
                                            -> Vec<ObjectSafetyViolation<'tcx>>
{
    // Check methods for violations.
    let mut violations: Vec<_> =
        ty::trait_items(tcx, trait_def_id).iter()
        .flat_map(|item| {
            match *item {
                ty::MethodTraitItem(ref m) => {
97
                    object_safety_violation_for_method(tcx, trait_def_id, &**m)
98 99 100
                        .map(|code| ObjectSafetyViolation::Method(m.clone(), code))
                        .into_iter()
                }
101
                _ => None.into_iter(),
102 103 104 105 106 107 108 109
            }
        })
        .collect();

    // Check the trait itself.
    if trait_has_sized_self(tcx, trait_def_id) {
        violations.push(ObjectSafetyViolation::SizedSelf);
    }
110 111 112
    if supertraits_reference_self(tcx, trait_def_id) {
        violations.push(ObjectSafetyViolation::SupertraitSelf);
    }
113 114 115 116 117 118 119 120

    debug!("object_safety_violations_for_trait(trait_def_id={}) = {}",
           trait_def_id.repr(tcx),
           violations.repr(tcx));

    violations
}

121 122 123 124 125 126
fn supertraits_reference_self<'tcx>(tcx: &ty::ctxt<'tcx>,
                                    trait_def_id: ast::DefId)
                                    -> bool
{
    let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
    let trait_ref = trait_def.trait_ref.clone();
127 128
    let trait_ref = trait_ref.to_poly_trait_ref();
    let predicates = ty::lookup_super_predicates(tcx, trait_def_id);
129
    predicates
130
        .predicates
131
        .into_iter()
132
        .map(|predicate| predicate.subst_supertrait(tcx, &trait_ref))
133 134 135 136
        .any(|predicate| {
            match predicate {
                ty::Predicate::Trait(ref data) => {
                    // In the case of a trait predicate, we can skip the "self" type.
137 138 139 140
                    data.0.trait_ref.substs.types.get_slice(TypeSpace)
                                                 .iter()
                                                 .cloned()
                                                 .any(is_self)
141 142 143 144 145 146 147 148 149 150 151
                }
                ty::Predicate::Projection(..) |
                ty::Predicate::TypeOutlives(..) |
                ty::Predicate::RegionOutlives(..) |
                ty::Predicate::Equate(..) => {
                    false
                }
            }
        })
}

152 153 154
fn trait_has_sized_self<'tcx>(tcx: &ty::ctxt<'tcx>,
                              trait_def_id: ast::DefId)
                              -> bool
155 156 157 158 159 160 161 162 163 164
{
    let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
    let trait_predicates = ty::lookup_predicates(tcx, trait_def_id);
    generics_require_sized_self(tcx, &trait_def.generics, &trait_predicates)
}

fn generics_require_sized_self<'tcx>(tcx: &ty::ctxt<'tcx>,
                                     generics: &ty::Generics<'tcx>,
                                     predicates: &ty::GenericPredicates<'tcx>)
                                     -> bool
165 166 167 168 169 170 171
{
    let sized_def_id = match tcx.lang_items.sized_trait() {
        Some(def_id) => def_id,
        None => { return false; /* No Sized trait, can't require it! */ }
    };

    // Search for a predicate like `Self : Sized` amongst the trait bounds.
172 173
    let free_substs = ty::construct_free_substs(tcx, generics, ast::DUMMY_NODE_ID);
    let predicates = predicates.instantiate(tcx, &free_substs).predicates.into_vec();
174 175 176 177
    elaborate_predicates(tcx, predicates)
        .any(|predicate| {
            match predicate {
                ty::Predicate::Trait(ref trait_pred) if trait_pred.def_id() == sized_def_id => {
178
                    is_self(trait_pred.0.self_ty())
179 180 181 182 183 184 185 186 187 188 189 190
                }
                ty::Predicate::Projection(..) |
                ty::Predicate::Trait(..) |
                ty::Predicate::Equate(..) |
                ty::Predicate::RegionOutlives(..) |
                ty::Predicate::TypeOutlives(..) => {
                    false
                }
            }
        })
}

191 192 193 194 195
/// Returns `Some(_)` if this method makes the containing trait not object safe.
fn object_safety_violation_for_method<'tcx>(tcx: &ty::ctxt<'tcx>,
                                            trait_def_id: ast::DefId,
                                            method: &ty::Method<'tcx>)
                                            -> Option<MethodViolationCode>
196
{
197 198 199 200 201 202
    // Any method that has a `Self : Sized` requisite is otherwise
    // exempt from the regulations.
    if generics_require_sized_self(tcx, &method.generics, &method.predicates) {
        return None;
    }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    virtual_call_violation_for_method(tcx, trait_def_id, method)
}

/// We say a method is *vtable safe* if it can be invoked on a trait
/// object.  Note that object-safe traits can have some
/// non-vtable-safe methods, so long as they require `Self:Sized` or
/// otherwise ensure that they cannot be used when `Self=Trait`.
pub fn is_vtable_safe_method<'tcx>(tcx: &ty::ctxt<'tcx>,
                                   trait_def_id: ast::DefId,
                                   method: &ty::Method<'tcx>)
                                   -> bool
{
    virtual_call_violation_for_method(tcx, trait_def_id, method).is_none()
}

/// Returns `Some(_)` if this method cannot be called on a trait
/// object; this does not necessarily imply that the enclosing trait
/// is not object safe, because the method might have a where clause
/// `Self:Sized`.
fn virtual_call_violation_for_method<'tcx>(tcx: &ty::ctxt<'tcx>,
                                           trait_def_id: ast::DefId,
                                           method: &ty::Method<'tcx>)
                                           -> Option<MethodViolationCode>
{
227 228 229
    // The method's first parameter must be something that derefs (or
    // autorefs) to `&self`. For now, we only accept `self`, `&self`
    // and `Box<Self>`.
230 231 232 233 234
    match method.explicit_self {
        ty::StaticExplicitSelfCategory => {
            return Some(MethodViolationCode::StaticMethod);
        }

235
        ty::ByValueExplicitSelfCategory |
236 237 238 239 240 241 242 243
        ty::ByReferenceExplicitSelfCategory(..) |
        ty::ByBoxExplicitSelfCategory => {
        }
    }

    // The `Self` type is erased, so it should not appear in list of
    // arguments or return type apart from the receiver.
    let ref sig = method.fty.sig;
244
    for &input_ty in &sig.0.inputs[1..] {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        if contains_illegal_self_type_reference(tcx, trait_def_id, input_ty) {
            return Some(MethodViolationCode::ReferencesSelf);
        }
    }
    if let ty::FnConverging(result_type) = sig.0.output {
        if contains_illegal_self_type_reference(tcx, trait_def_id, result_type) {
            return Some(MethodViolationCode::ReferencesSelf);
        }
    }

    // We can't monomorphize things like `fn foo<A>(...)`.
    if !method.generics.types.is_empty_in(subst::FnSpace) {
        return Some(MethodViolationCode::Generic);
    }

    None
}

fn contains_illegal_self_type_reference<'tcx>(tcx: &ty::ctxt<'tcx>,
                                              trait_def_id: ast::DefId,
                                              ty: Ty<'tcx>)
                                              -> bool
{
    // This is somewhat subtle. In general, we want to forbid
    // references to `Self` in the argument and return types,
    // since the value of `Self` is erased. However, there is one
    // exception: it is ok to reference `Self` in order to access
    // an associated type of the current trait, since we retain
    // the value of those associated types in the object type
    // itself.
    //
    // ```rust
    // trait SuperTrait {
    //     type X;
    // }
    //
    // trait Trait : SuperTrait {
    //     type Y;
    //     fn foo(&self, x: Self) // bad
    //     fn foo(&self) -> Self // bad
    //     fn foo(&self) -> Option<Self> // bad
    //     fn foo(&self) -> Self::Y // OK, desugars to next example
    //     fn foo(&self) -> <Self as Trait>::Y // OK
    //     fn foo(&self) -> Self::X // OK, desugars to next example
    //     fn foo(&self) -> <Self as SuperTrait>::X // OK
    // }
    // ```
    //
    // However, it is not as simple as allowing `Self` in a projected
    // type, because there are illegal ways to use `Self` as well:
    //
    // ```rust
    // trait Trait : SuperTrait {
    //     ...
    //     fn foo(&self) -> <Self as SomeOtherTrait>::X;
    // }
    // ```
    //
    // Here we will not have the type of `X` recorded in the
    // object type, and we cannot resolve `Self as SomeOtherTrait`
    // without knowing what `Self` is.

    let mut supertraits: Option<Vec<ty::PolyTraitRef<'tcx>>> = None;
    let mut error = false;
    ty::maybe_walk_ty(ty, |ty| {
        match ty.sty {
            ty::ty_param(ref param_ty) => {
                if param_ty.space == SelfSpace {
                    error = true;
                }

                false // no contained types to walk
            }

            ty::ty_projection(ref data) => {
                // This is a projected type `<Foo as SomeTrait>::X`.

J
Joseph Crail 已提交
322
                // Compute supertraits of current trait lazily.
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
                if supertraits.is_none() {
                    let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
                    let trait_ref = ty::Binder(trait_def.trait_ref.clone());
                    supertraits = Some(traits::supertraits(tcx, trait_ref).collect());
                }

                // Determine whether the trait reference `Foo as
                // SomeTrait` is in fact a supertrait of the
                // current trait. In that case, this type is
                // legal, because the type `X` will be specified
                // in the object type.  Note that we can just use
                // direct equality here because all of these types
                // are part of the formal parameter listing, and
                // hence there should be no inference variables.
                let projection_trait_ref = ty::Binder(data.trait_ref.clone());
                let is_supertrait_of_current_trait =
                    supertraits.as_ref().unwrap().contains(&projection_trait_ref);

                if is_supertrait_of_current_trait {
                    false // do not walk contained types, do not report error, do collect $200
                } else {
                    true // DO walk contained types, POSSIBLY reporting an error
                }
            }

            _ => true, // walk contained types, if any
        }
    });

    error
}

impl<'tcx> Repr<'tcx> for ObjectSafetyViolation<'tcx> {
    fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
        match *self {
            ObjectSafetyViolation::SizedSelf =>
                format!("SizedSelf"),
360 361
            ObjectSafetyViolation::SupertraitSelf =>
                format!("SupertraitSelf"),
362
            ObjectSafetyViolation::Method(ref m, code) =>
363
                format!("Method({},{:?})", m.repr(tcx), code),
364 365 366
        }
    }
}
367 368 369 370 371 372 373

fn is_self<'tcx>(ty: Ty<'tcx>) -> bool {
    match ty.sty {
        ty::ty_param(ref data) => data.space == subst::SelfSpace,
        _ => false,
    }
}