primitive_docs.rs 49.4 KB
Newer Older
1 2 3
// `library/{std,core}/src/primitive_docs.rs` should have the same contents.
// These are different files so that relative links work properly without
// having to have `CARGO_PKG_NAME` set, but conceptually they should always be the same.
4
#[doc(primitive = "bool")]
G
Guillaume Gomez 已提交
5 6
#[doc(alias = "true")]
#[doc(alias = "false")]
7 8
/// The boolean type.
///
9 10
/// The `bool` represents a value, which could only be either [`true`] or [`false`]. If you cast
/// a `bool` into an integer, [`true`] will be 1 and [`false`] will be 0.
11 12 13 14 15 16
///
/// # Basic usage
///
/// `bool` implements various traits, such as [`BitAnd`], [`BitOr`], [`Not`], etc.,
/// which allow us to perform boolean operations using `&`, `|` and `!`.
///
17 18
/// [`if`] requires a `bool` value as its conditional. [`assert!`], which is an
/// important macro in testing, checks whether an expression is [`true`] and panics
C
Camelid 已提交
19
/// if it isn't.
20 21 22 23 24 25
///
/// ```
/// let bool_val = true & false | false;
/// assert!(!bool_val);
/// ```
///
26 27
/// [`true`]: ../std/keyword.true.html
/// [`false`]: ../std/keyword.false.html
28 29 30
/// [`BitAnd`]: ops::BitAnd
/// [`BitOr`]: ops::BitOr
/// [`Not`]: ops::Not
31
/// [`if`]: ../std/keyword.if.html
32 33 34
///
/// # Examples
///
C
Camelid 已提交
35
/// A trivial example of the usage of `bool`:
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
///
/// ```
/// let praise_the_borrow_checker = true;
///
/// // using the `if` conditional
/// if praise_the_borrow_checker {
///     println!("oh, yeah!");
/// } else {
///     println!("what?!!");
/// }
///
/// // ... or, a match pattern
/// match praise_the_borrow_checker {
///     true => println!("keep praising!"),
///     false => println!("you should praise!"),
/// }
/// ```
///
54
/// Also, since `bool` implements the [`Copy`] trait, we don't
55
/// have to worry about the move semantics (just like the integer and float primitives).
56 57 58 59 60 61 62
///
/// Now an example of `bool` cast to integer type:
///
/// ```
/// assert_eq!(true as i32, 1);
/// assert_eq!(false as i32, 0);
/// ```
63
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
64
mod prim_bool {}
65

A
Andrew Cann 已提交
66
#[doc(primitive = "never")]
G
Guillaume Gomez 已提交
67
#[doc(alias = "!")]
A
Andrew Cann 已提交
68 69 70 71 72 73 74 75
//
/// The `!` type, also called "never".
///
/// `!` represents the type of computations which never resolve to any value at all. For example,
/// the [`exit`] function `fn exit(code: i32) -> !` exits the process without ever returning, and
/// so returns `!`.
///
/// `break`, `continue` and `return` expressions also have type `!`. For example we are allowed to
A
Andrew Cann 已提交
76
/// write:
A
Andrew Cann 已提交
77 78
///
/// ```
79
/// #![feature(never_type)]
A
Andrew Cann 已提交
80
/// # fn foo() -> u32 {
A
Andrew Cann 已提交
81
/// let x: ! = {
A
Andrew Cann 已提交
82
///     return 123
A
Andrew Cann 已提交
83
/// };
A
Andrew Cann 已提交
84
/// # }
A
Andrew Cann 已提交
85 86 87 88 89 90 91 92 93 94
/// ```
///
/// Although the `let` is pointless here, it illustrates the meaning of `!`. Since `x` is never
/// assigned a value (because `return` returns from the entire function), `x` can be given type
/// `!`. We could also replace `return 123` with a `panic!` or a never-ending `loop` and this code
/// would still be valid.
///
/// A more realistic usage of `!` is in this code:
///
/// ```
A
Andrew Cann 已提交
95 96
/// # fn get_a_number() -> Option<u32> { None }
/// # loop {
A
Andrew Cann 已提交
97 98 99
/// let num: u32 = match get_a_number() {
///     Some(num) => num,
///     None => break,
A
Andrew Cann 已提交
100 101
/// };
/// # }
A
Andrew Cann 已提交
102 103
/// ```
///
A
Andrew Cann 已提交
104 105
/// Both match arms must produce values of type [`u32`], but since `break` never produces a value
/// at all we know it can never produce a value which isn't a [`u32`]. This illustrates another
A
Andrew Cann 已提交
106 107
/// behaviour of the `!` type - expressions with type `!` will coerce into any other type.
///
108
/// [`u32`]: prim@u32
109
#[doc = concat!("[`exit`]: ", include_str!("../primitive_docs/process_exit.md"))]
A
Andrew Cann 已提交
110 111 112
///
/// # `!` and generics
///
C
Clar Charr 已提交
113
/// ## Infallible errors
C
Clar Charr 已提交
114
///
A
Andrew Cann 已提交
115 116 117 118
/// The main place you'll see `!` used explicitly is in generic code. Consider the [`FromStr`]
/// trait:
///
/// ```
A
Andrew Cann 已提交
119 120 121
/// trait FromStr: Sized {
///     type Err;
///     fn from_str(s: &str) -> Result<Self, Self::Err>;
A
Andrew Cann 已提交
122 123 124
/// }
/// ```
///
A
Andrew Cann 已提交
125
/// When implementing this trait for [`String`] we need to pick a type for [`Err`]. And since
A
Andrew Cann 已提交
126
/// converting a string into a string will never result in an error, the appropriate type is `!`.
A
Andrew Cann 已提交
127
/// (Currently the type actually used is an enum with no variants, though this is only because `!`
F
Typo  
Felix Rabe 已提交
128
/// was added to Rust at a later date and it may change in the future.) With an [`Err`] type of
A
Andrew Cann 已提交
129 130
/// `!`, if we have to call [`String::from_str`] for some reason the result will be a
/// [`Result<String, !>`] which we can unpack like this:
A
Andrew Cann 已提交
131
///
C
Camelid 已提交
132 133 134
/// ```
/// #![feature(exhaustive_patterns)]
/// use std::str::FromStr;
A
Andrew Cann 已提交
135 136 137
/// let Ok(s) = String::from_str("hello");
/// ```
///
A
Andrew Cann 已提交
138 139 140 141
/// Since the [`Err`] variant contains a `!`, it can never occur. If the `exhaustive_patterns`
/// feature is present this means we can exhaustively match on [`Result<T, !>`] by just taking the
/// [`Ok`] variant. This illustrates another behaviour of `!` - it can be used to "delete" certain
/// enum variants from generic types like `Result`.
A
Andrew Cann 已提交
142
///
C
Clar Charr 已提交
143 144
/// ## Infinite loops
///
C
Clar Charr 已提交
145
/// While [`Result<T, !>`] is very useful for removing errors, `!` can also be used to remove
C
Clar Charr 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/// successes as well. If we think of [`Result<T, !>`] as "if this function returns, it has not
/// errored," we get a very intuitive idea of [`Result<!, E>`] as well: if the function returns, it
/// *has* errored.
///
/// For example, consider the case of a simple web server, which can be simplified to:
///
/// ```ignore (hypothetical-example)
/// loop {
///     let (client, request) = get_request().expect("disconnected");
///     let response = request.process();
///     response.send(client);
/// }
/// ```
///
/// Currently, this isn't ideal, because we simply panic whenever we fail to get a new connection.
/// Instead, we'd like to keep track of this error, like this:
///
/// ```ignore (hypothetical-example)
/// loop {
///     match get_request() {
///         Err(err) => break err,
///         Ok((client, request)) => {
///             let response = request.process();
///             response.send(client);
///         },
///     }
/// }
/// ```
///
/// Now, when the server disconnects, we exit the loop with an error instead of panicking. While it
C
Clar Charr 已提交
176
/// might be intuitive to simply return the error, we might want to wrap it in a [`Result<!, E>`]
C
Clar Charr 已提交
177 178 179 180
/// instead:
///
/// ```ignore (hypothetical-example)
/// fn server_loop() -> Result<!, ConnectionError> {
C
Clar Charr 已提交
181
///     loop {
C
Clar Charr 已提交
182 183 184
///         let (client, request) = get_request()?;
///         let response = request.process();
///         response.send(client);
C
Clar Charr 已提交
185
///     }
C
Clar Charr 已提交
186 187 188 189
/// }
/// ```
///
/// Now, we can use `?` instead of `match`, and the return type makes a lot more sense: if the loop
C
Clar Charr 已提交
190 191
/// ever stops, it means that an error occurred. We don't even have to wrap the loop in an `Ok`
/// because `!` coerces to `Result<!, ConnectionError>` automatically.
C
Clar Charr 已提交
192
///
193
/// [`String::from_str`]: str::FromStr::from_str
194
#[doc = concat!("[`String`]: ", include_str!("../primitive_docs/string_string.md"))]
195
/// [`FromStr`]: str::FromStr
A
Andrew Cann 已提交
196 197 198 199
///
/// # `!` and traits
///
/// When writing your own traits, `!` should have an `impl` whenever there is an obvious `impl`
200 201 202
/// which doesn't `panic!`. The reason is that functions returning an `impl Trait` where `!`
/// does not have an `impl` of `Trait` cannot diverge as their only possible code path. In other
/// words, they can't return `!` from every code path. As an example, this code doesn't compile:
C
Camelid 已提交
203 204
///
/// ```compile_fail
205
/// use std::ops::Add;
C
Camelid 已提交
206 207 208 209 210 211
///
/// fn foo() -> impl Add<u32> {
///     unimplemented!()
/// }
/// ```
///
212
/// But this code does:
C
Camelid 已提交
213 214
///
/// ```
215
/// use std::ops::Add;
C
Camelid 已提交
216 217 218 219 220 221 222 223 224 225
///
/// fn foo() -> impl Add<u32> {
///     if true {
///         unimplemented!()
///     } else {
///         0
///     }
/// }
/// ```
///
226
/// The reason is that, in the first example, there are many possible types that `!` could coerce
C
Camelid 已提交
227
/// to, because many types implement `Add<u32>`. However, in the second example,
C
Camelid 已提交
228
/// the `else` branch returns a `0`, which the compiler infers from the return type to be of type
C
Camelid 已提交
229 230
/// `u32`. Since `u32` is a concrete type, `!` can and will be coerced to it. See issue [#36375]
/// for more information on this quirk of `!`.
C
Camelid 已提交
231 232 233 234
///
/// [#36375]: https://github.com/rust-lang/rust/issues/36375
///
/// As it turns out, though, most traits can have an `impl` for `!`. Take [`Debug`]
A
Andrew Cann 已提交
235 236 237
/// for example:
///
/// ```
238
/// #![feature(never_type)]
239 240 241 242
/// # use std::fmt;
/// # trait Debug {
/// #     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result;
/// # }
A
Andrew Cann 已提交
243
/// impl Debug for ! {
244
///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
A
Andrew Cann 已提交
245 246 247 248 249
///         *self
///     }
/// }
/// ```
///
A
Andrew Cann 已提交
250 251 252 253
/// Once again we're using `!`'s ability to coerce into any other type, in this case
/// [`fmt::Result`]. Since this method takes a `&!` as an argument we know that it can never be
/// called (because there is no value of type `!` for it to be called with). Writing `*self`
/// essentially tells the compiler "We know that this code can never be run, so just treat the
G
gardrek 已提交
254
/// entire function body as having type [`fmt::Result`]". This pattern can be used a lot when
A
Andrew Cann 已提交
255
/// implementing traits for `!`. Generally, any trait which only has methods which take a `self`
G
gardrek 已提交
256
/// parameter should have such an impl.
A
Andrew Cann 已提交
257 258 259 260 261 262 263 264 265 266 267
///
/// On the other hand, one trait which would not be appropriate to implement is [`Default`]:
///
/// ```
/// trait Default {
///     fn default() -> Self;
/// }
/// ```
///
/// Since `!` has no values, it has no default value either. It's true that we could write an
/// `impl` for this which simply panics, but the same is true for any type (we could `impl
A
Andrew Cann 已提交
268
/// Default` for (eg.) [`File`] by just making [`default()`] panic.)
A
Andrew Cann 已提交
269
///
270
#[doc = concat!("[`File`]: ", include_str!("../primitive_docs/fs_file.md"))]
271 272
/// [`Debug`]: fmt::Debug
/// [`default()`]: Default::default
A
Andrew Cann 已提交
273
///
274
#[unstable(feature = "never_type", issue = "35121")]
M
Mark Rousskov 已提交
275
mod prim_never {}
A
Andrew Cann 已提交
276

277
#[doc(primitive = "char")]
G
George Bateman 已提交
278
#[allow(rustdoc::invalid_rust_codeblocks)]
S
Steve Klabnik 已提交
279
/// A character type.
280
///
S
Steve Klabnik 已提交
281 282
/// The `char` type represents a single character. More specifically, since
/// 'character' isn't a well-defined concept in Unicode, `char` is a '[Unicode
G
George Bateman 已提交
283
/// scalar value]'.
284
///
S
Steve Klabnik 已提交
285 286 287
/// This documentation describes a number of methods and trait implementations on the
/// `char` type. For technical reasons, there is additional, separate
/// documentation in [the `std::char` module](char/index.html) as well.
288
///
G
George Bateman 已提交
289 290 291 292
/// # Validity
///
/// A `char` is a '[Unicode scalar value]', which is any '[Unicode code point]'
/// other than a [surrogate code point]. This has a fixed numerical definition:
293 294
/// code points are in the range 0 to 0x10FFFF, inclusive.
/// Surrogate code points, used by UTF-16, are in the range 0xD800 to 0xDFFF.
G
George Bateman 已提交
295 296 297 298
///
/// No `char` may be constructed, whether as a literal or at runtime, that is not a
/// Unicode scalar value:
///
G
George Bateman 已提交
299
/// ```compile_fail
300 301 302
/// // Each of these is a compiler error
/// ['\u{D800}', '\u{DFFF}', '\u{110000}'];
/// ```
G
George Bateman 已提交
303
///
304 305 306 307
/// ```should_panic
/// // Panics; from_u32 returns None.
/// char::from_u32(0xDE01).unwrap();
/// ```
G
George Bateman 已提交
308
///
G
George Bateman 已提交
309
/// ```no_run
310 311
/// // Undefined behaviour
/// unsafe { char::from_u32_unchecked(0x110000) };
G
George Bateman 已提交
312 313
/// ```
///
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/// USVs are also the exact set of values that may be encoded in UTF-8. Because
/// `char` values are USVs and `str` values are valid UTF-8, it is safe to store
/// any `char` in a `str` or read any character from a `str` as a `char`.
///
/// The gap in valid `char` values is understood by the compiler, so in the
/// below example the two ranges are understood to cover the whole range of
/// possible `char` values and there is no error for a [non-exhaustive match].
///
/// ```
/// let c: char = 'a';
/// match c {
///     '\0' ..= '\u{D7FF}' => false,
///     '\u{E000}' ..= '\u{10FFFF}' => true,
/// };
/// ```
///
/// All USVs are valid `char` values, but not all of them represent a real
/// character. Many USVs are not currently assigned to a character, but may be
/// in the future ("reserved"); some will never be a character
/// ("noncharacters"); and some may be given different meanings by different
/// users ("private use").
G
George Bateman 已提交
335 336
///
/// [Unicode code point]: https://www.unicode.org/glossary/#code_point
337 338
/// [Unicode scalar value]: https://www.unicode.org/glossary/#unicode_scalar_value
/// [non-exhaustive match]: ../book/ch06-02-match.html#matches-are-exhaustive
G
George Bateman 已提交
339 340
/// [surrogate code point]: https://www.unicode.org/glossary/#surrogate_code_point
///
S
Steve Klabnik 已提交
341 342 343
/// # Representation
///
/// `char` is always four bytes in size. This is a different representation than
344
/// a given character would have as part of a [`String`]. For example:
S
Steve Klabnik 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357
///
/// ```
/// let v = vec!['h', 'e', 'l', 'l', 'o'];
///
/// // five elements times four bytes for each element
/// assert_eq!(20, v.len() * std::mem::size_of::<char>());
///
/// let s = String::from("hello");
///
/// // five elements times one byte per element
/// assert_eq!(5, s.len() * std::mem::size_of::<u8>());
/// ```
///
358
#[doc = concat!("[`String`]: ", include_str!("../primitive_docs/string_string.md"))]
S
Steve Klabnik 已提交
359
///
360
/// As always, remember that a human intuition for 'character' might not map to
361
/// Unicode's definitions. For example, despite looking similar, the 'é'
362
/// character is one Unicode code point while 'é' is two Unicode code points:
S
Steve Klabnik 已提交
363 364
///
/// ```
365 366 367 368 369 370 371 372 373 374 375
/// let mut chars = "é".chars();
/// // U+00e9: 'latin small letter e with acute'
/// assert_eq!(Some('\u{00e9}'), chars.next());
/// assert_eq!(None, chars.next());
///
/// let mut chars = "é".chars();
/// // U+0065: 'latin small letter e'
/// assert_eq!(Some('\u{0065}'), chars.next());
/// // U+0301: 'combining acute accent'
/// assert_eq!(Some('\u{0301}'), chars.next());
/// assert_eq!(None, chars.next());
S
Steve Klabnik 已提交
376 377
/// ```
///
378 379 380
/// This means that the contents of the first string above _will_ fit into a
/// `char` while the contents of the second string _will not_. Trying to create
/// a `char` literal with the contents of the second string gives an error:
S
Steve Klabnik 已提交
381 382
///
/// ```text
383 384
/// error: character literal may only contain one codepoint: 'é'
/// let c = 'é';
E
Esteban Küber 已提交
385
///         ^^^
S
Steve Klabnik 已提交
386 387
/// ```
///
388 389
/// Another implication of the 4-byte fixed size of a `char` is that
/// per-`char` processing can end up using a lot more memory:
S
Steve Klabnik 已提交
390 391 392 393 394
///
/// ```
/// let s = String::from("love: ❤️");
/// let v: Vec<char> = s.chars().collect();
///
P
Peter Hall 已提交
395 396
/// assert_eq!(12, std::mem::size_of_val(&s[..]));
/// assert_eq!(32, std::mem::size_of_val(&v[..]));
S
Steve Klabnik 已提交
397
/// ```
398
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
399
mod prim_char {}
400 401

#[doc(primitive = "unit")]
R
r00ster 已提交
402 403 404
#[doc(alias = "(")]
#[doc(alias = ")")]
#[doc(alias = "()")]
405
//
406
/// The `()` type, also called "unit".
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
///
/// The `()` type has exactly one value `()`, and is used when there
/// is no other meaningful value that could be returned. `()` is most
/// commonly seen implicitly: functions without a `-> ...` implicitly
/// have return type `()`, that is, these are equivalent:
///
/// ```rust
/// fn long() -> () {}
///
/// fn short() {}
/// ```
///
/// The semicolon `;` can be used to discard the result of an
/// expression at the end of a block, making the expression (and thus
/// the block) evaluate to `()`. For example,
///
/// ```rust
/// fn returns_i64() -> i64 {
///     1i64
/// }
/// fn returns_unit() {
///     1i64;
/// }
///
/// let is_i64 = {
///     returns_i64()
/// };
/// let is_unit = {
///     returns_i64();
/// };
/// ```
///
439
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
440
mod prim_unit {}
441

442
// Required to make auto trait impls render.
443
// See src/librustdoc/passes/collect_trait_impls.rs:collect_trait_impls
444 445 446
#[doc(hidden)]
impl () {}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
// Fake impl that's only really used for docs.
#[cfg(doc)]
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for () {
    fn clone(&self) -> Self {
        loop {}
    }
}

// Fake impl that's only really used for docs.
#[cfg(doc)]
#[stable(feature = "rust1", since = "1.0.0")]
impl Copy for () {
    // empty
}

463
#[doc(primitive = "pointer")]
464
#[doc(alias = "ptr")]
F
Frank Steffahn 已提交
465 466 467
#[doc(alias = "*")]
#[doc(alias = "*const")]
#[doc(alias = "*mut")]
468
//
B
Brian Anderson 已提交
469
/// Raw, unsafe pointers, `*const T`, and `*mut T`.
470
///
C
Camelid 已提交
471
/// *[See also the `std::ptr` module](ptr).*
M
Michael Lamparski 已提交
472
///
473
/// Working with raw pointers in Rust is uncommon, typically limited to a few patterns.
R
Ralf Jung 已提交
474
/// Raw pointers can be unaligned or [`null`]. However, when a raw pointer is
475
/// dereferenced (using the `*` operator), it must be non-null and aligned.
R
Ralf Jung 已提交
476
///
R
Ralf Jung 已提交
477
/// Storing through a raw pointer using `*ptr = data` calls `drop` on the old value, so
R
Ralf Jung 已提交
478
/// [`write`] must be used if the type has drop glue and memory is not already
R
Ralf Jung 已提交
479
/// initialized - otherwise `drop` would be called on the uninitialized memory.
480
///
481 482 483 484
/// Use the [`null`] and [`null_mut`] functions to create null pointers, and the
/// [`is_null`] method of the `*const T` and `*mut T` types to check for null.
/// The `*const T` and `*mut T` types also define the [`offset`] method, for
/// pointer math.
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
///
/// # Common ways to create raw pointers
///
/// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`).
///
/// ```
/// let my_num: i32 = 10;
/// let my_num_ptr: *const i32 = &my_num;
/// let mut my_speed: i32 = 88;
/// let my_speed_ptr: *mut i32 = &mut my_speed;
/// ```
///
/// To get a pointer to a boxed value, dereference the box:
///
/// ```
/// let my_num: Box<i32> = Box::new(10);
/// let my_num_ptr: *const i32 = &*my_num;
/// let mut my_speed: Box<i32> = Box::new(88);
/// let my_speed_ptr: *mut i32 = &mut *my_speed;
/// ```
///
/// This does not take ownership of the original allocation
/// and requires no resource management later,
/// but you must not use the pointer after its lifetime.
///
/// ## 2. Consume a box (`Box<T>`).
///
G
Guillaume Gomez 已提交
512
/// The [`into_raw`] function consumes a box and returns
513 514 515 516 517 518 519 520 521 522 523 524 525
/// the raw pointer. It doesn't destroy `T` or deallocate any memory.
///
/// ```
/// let my_speed: Box<i32> = Box::new(88);
/// let my_speed: *mut i32 = Box::into_raw(my_speed);
///
/// // By taking ownership of the original `Box<T>` though
/// // we are obligated to put it together later to be destroyed.
/// unsafe {
///     drop(Box::from_raw(my_speed));
/// }
/// ```
///
G
Guillaume Gomez 已提交
526
/// Note that here the call to [`drop`] is for clarity - it indicates
527 528
/// that we are done with the given value and it should be destroyed.
///
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/// ## 3. Create it using `ptr::addr_of!`
///
/// Instead of coercing a reference to a raw pointer, you can use the macros
/// [`ptr::addr_of!`] (for `*const T`) and [`ptr::addr_of_mut!`] (for `*mut T`).
/// These macros allow you to create raw pointers to fields to which you cannot
/// create a reference (without causing undefined behaviour), such as an
/// unaligned field. This might be necessary if packed structs or uninitialized
/// memory is involved.
///
/// ```
/// #[derive(Debug, Default, Copy, Clone)]
/// #[repr(C, packed)]
/// struct S {
///     aligned: u8,
///     unaligned: u32,
/// }
/// let s = S::default();
/// let p = std::ptr::addr_of!(s.unaligned); // not allowed with coercion
/// ```
///
/// ## 4. Get it from C.
550 551
///
/// ```
552
/// # #![feature(rustc_private)]
553 554 555 556
/// extern crate libc;
///
/// use std::mem;
///
557 558 559 560
/// unsafe {
///     let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>()) as *mut i32;
///     if my_num.is_null() {
///         panic!("failed to allocate memory");
561
///     }
562
///     libc::free(my_num as *mut libc::c_void);
563 564 565 566 567 568 569
/// }
/// ```
///
/// Usually you wouldn't literally use `malloc` and `free` from Rust,
/// but C APIs hand out a lot of pointers generally, so are a common source
/// of raw pointers in Rust.
///
570 571
/// [`null`]: ptr::null
/// [`null_mut`]: ptr::null_mut
572 573
/// [`is_null`]: pointer::is_null
/// [`offset`]: pointer::offset
574
#[doc = concat!("[`into_raw`]: ", include_str!("../primitive_docs/box_into_raw.md"))]
575 576
/// [`drop`]: mem::drop
/// [`write`]: ptr::write
577
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
578
mod prim_pointer {}
579

580
#[doc(primitive = "array")]
J
Joshua Nelson 已提交
581 582 583
#[doc(alias = "[]")]
#[doc(alias = "[T;N]")] // unfortunately, rustdoc doesn't have fuzzy search for aliases
#[doc(alias = "[T; N]")]
584
/// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and the
K
Keegan McAllister 已提交
585
/// non-negative compile-time constant size, `N`.
586
///
K
Keegan McAllister 已提交
587
/// There are two syntactic forms for creating an array:
588
///
589
/// * A list with each element, i.e., `[x, y, z]`.
K
Keegan McAllister 已提交
590
/// * A repeat expression `[x; N]`, which produces an array with `N` copies of `x`.
591
///   The type of `x` must be [`Copy`].
592
///
W
William Woodruff 已提交
593 594 595
/// Note that `[expr; 0]` is allowed, and produces an empty array.
/// This will still evaluate `expr`, however, and immediately drop the resulting value, so
/// be mindful of side effects.
596
///
597
/// Arrays of *any* size implement the following traits if the element type allows it:
598
///
599 600
/// - [`Copy`]
/// - [`Clone`]
601
/// - [`Debug`]
602
/// - [`IntoIterator`] (implemented for `[T; N]`, `&[T; N]` and `&mut [T; N]`)
603 604 605 606
/// - [`PartialEq`], [`PartialOrd`], [`Eq`], [`Ord`]
/// - [`Hash`]
/// - [`AsRef`], [`AsMut`]
/// - [`Borrow`], [`BorrowMut`]
K
Keegan McAllister 已提交
607
///
608
/// Arrays of sizes from 0 to 32 (inclusive) implement the [`Default`] trait
609
/// if the element type allows it. As a stopgap, trait implementations are
K
Keegan McAllister 已提交
610
/// statically generated up to size 32.
611
///
K
Keegan McAllister 已提交
612 613 614 615
/// Arrays coerce to [slices (`[T]`)][slice], so a slice method may be called on
/// an array. Indeed, this provides most of the API for working with arrays.
/// Slices have a dynamic size and do not coerce to arrays.
///
L
Lzu Tao 已提交
616
/// You can move elements out of an array with a [slice pattern]. If you want
617
/// one element, see [`mem::replace`].
618 619 620
///
/// # Examples
///
P
Pietro Albini 已提交
621
/// ```
622 623 624 625 626 627 628 629
/// let mut array: [i32; 3] = [0; 3];
///
/// array[1] = 1;
/// array[2] = 2;
///
/// assert_eq!([1, 2], &array[1..]);
///
/// // This loop prints: 0 1 2
630
/// for x in array {
631
///     print!("{x} ");
632
/// }
K
Keegan McAllister 已提交
633 634
/// ```
///
635
/// You can also iterate over reference to the array's elements:
K
Keegan McAllister 已提交
636 637
///
/// ```
638
/// let array: [i32; 3] = [0; 3];
K
Keegan McAllister 已提交
639 640
///
/// for x in &array { }
641 642
/// ```
///
L
Lzu Tao 已提交
643
/// You can use a [slice pattern] to move elements out of an array:
Y
Yuki Okushi 已提交
644 645 646 647 648 649 650 651 652
///
/// ```
/// fn move_away(_: String) { /* Do interesting things. */ }
///
/// let [john, roa] = ["John".to_string(), "Roa".to_string()];
/// move_away(john);
/// move_away(roa);
/// ```
///
653 654
/// # Editions
///
655
/// Prior to Rust 1.53, arrays did not implement [`IntoIterator`] by value, so the method call
656 657 658
/// `array.into_iter()` auto-referenced into a [slice iterator](slice::iter). Right now, the old
/// behavior is preserved in the 2015 and 2018 editions of Rust for compatibility, ignoring
/// [`IntoIterator`] by value. In the future, the behavior on the 2015 and 2018 edition
659
/// might be made consistent to the behavior of later editions.
660
///
P
Pietro Albini 已提交
661
/// ```rust,edition2018
M
Mara Bos 已提交
662 663
/// // Rust 2015 and 2018:
///
664 665 666 667 668 669
/// # #![allow(array_into_iter)] // override our `deny(warnings)`
/// let array: [i32; 3] = [0; 3];
///
/// // This creates a slice iterator, producing references to each value.
/// for item in array.into_iter().enumerate() {
///     let (i, x): (usize, &i32) = item;
670
///     println!("array[{i}] = {x}");
671 672 673 674 675
/// }
///
/// // The `array_into_iter` lint suggests this change for future compatibility:
/// for item in array.iter().enumerate() {
///     let (i, x): (usize, &i32) = item;
676
///     println!("array[{i}] = {x}");
677 678
/// }
///
M
Mara Bos 已提交
679
/// // You can explicitly iterate an array by value using `IntoIterator::into_iter`
680 681
/// for item in IntoIterator::into_iter(array).enumerate() {
///     let (i, x): (usize, i32) = item;
682
///     println!("array[{i}] = {x}");
683 684 685
/// }
/// ```
///
M
Mara Bos 已提交
686
/// Starting in the 2021 edition, `array.into_iter()` uses `IntoIterator` normally to iterate
687 688
/// by value, and `iter()` should be used to iterate by reference like previous editions.
///
M
Mark Rousskov 已提交
689
/// ```rust,edition2021
M
Mara Bos 已提交
690 691
/// // Rust 2021:
///
692 693 694 695 696
/// let array: [i32; 3] = [0; 3];
///
/// // This iterates by reference:
/// for item in array.iter().enumerate() {
///     let (i, x): (usize, &i32) = item;
697
///     println!("array[{i}] = {x}");
698 699 700 701 702
/// }
///
/// // This iterates by value:
/// for item in array.into_iter().enumerate() {
///     let (i, x): (usize, i32) = item;
703
///     println!("array[{i}] = {x}");
704 705 706
/// }
/// ```
///
707 708 709 710 711 712 713
/// Future language versions might start treating the `array.into_iter()`
/// syntax on editions 2015 and 2018 the same as on edition 2021. So code using
/// those older editions should still be written with this change in mind, to
/// prevent breakage in the future. The safest way to accomplish this is to
/// avoid the `into_iter` syntax on those editions. If an edition update is not
/// viable/desired, there are multiple alternatives:
/// * use `iter`, equivalent to the old behavior, creating references
M
Mara Bos 已提交
714
/// * use [`IntoIterator::into_iter`], equivalent to the post-2021 behavior (Rust 1.53+)
715 716 717
/// * replace `for ... in array.into_iter() {` with `for ... in array {`,
///   equivalent to the post-2021 behavior (Rust 1.53+)
///
P
Pietro Albini 已提交
718
/// ```rust,edition2018
M
Mara Bos 已提交
719
/// // Rust 2015 and 2018:
720 721 722 723 724 725
///
/// let array: [i32; 3] = [0; 3];
///
/// // This iterates by reference:
/// for item in array.iter() {
///     let x: &i32 = item;
726
///     println!("{x}");
727 728 729
/// }
///
/// // This iterates by value:
M
Mara Bos 已提交
730
/// for item in IntoIterator::into_iter(array) {
731
///     let x: i32 = item;
732
///     println!("{x}");
733 734 735 736 737
/// }
///
/// // This iterates by value:
/// for item in array {
///     let x: i32 = item;
738
///     println!("{x}");
739 740 741 742
/// }
///
/// // IntoIter can also start a chain.
/// // This iterates by value:
M
Mara Bos 已提交
743
/// for item in IntoIterator::into_iter(array).enumerate() {
744
///     let (i, x): (usize, i32) = item;
745
///     println!("array[{i}] = {x}");
746 747 748
/// }
/// ```
///
749
/// [slice]: prim@slice
750 751 752 753
/// [`Debug`]: fmt::Debug
/// [`Hash`]: hash::Hash
/// [`Borrow`]: borrow::Borrow
/// [`BorrowMut`]: borrow::BorrowMut
L
Lzu Tao 已提交
754
/// [slice pattern]: ../reference/patterns.html#slice-patterns
755
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
756
mod prim_array {}
757 758

#[doc(primitive = "slice")]
G
Guillaume Gomez 已提交
759 760 761
#[doc(alias = "[")]
#[doc(alias = "]")]
#[doc(alias = "[]")]
762
/// A dynamically-sized view into a contiguous sequence, `[T]`. Contiguous here
A
Andre Bogus 已提交
763
/// means that elements are laid out so that every element is the same
764
/// distance from its neighbors.
765
///
C
Camelid 已提交
766
/// *[See also the `std::slice` module](crate::slice).*
M
Michael Lamparski 已提交
767
///
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/// Slices are a view into a block of memory represented as a pointer and a
/// length.
///
/// ```
/// // slicing a Vec
/// let vec = vec![1, 2, 3];
/// let int_slice = &vec[..];
/// // coercing an array to a slice
/// let str_slice: &[&str] = &["one", "two", "three"];
/// ```
///
/// Slices are either mutable or shared. The shared slice type is `&[T]`,
/// while the mutable slice type is `&mut [T]`, where `T` represents the element
/// type. For example, you can mutate the block of memory that a mutable slice
/// points to:
///
/// ```
785 786
/// let mut x = [1, 2, 3];
/// let x = &mut x[..]; // Take a full slice of `x`.
787 788 789
/// x[1] = 7;
/// assert_eq!(x, &[1, 7, 3]);
/// ```
790 791 792 793
///
/// As slices store the length of the sequence they refer to, they have twice
/// the size of pointers to [`Sized`](marker/trait.Sized.html) types.
/// Also see the reference on
L
Leon Matthes 已提交
794
/// [dynamically sized types](../reference/dynamically-sized-types.html).
795 796
///
/// ```
L
Leon Matthes 已提交
797
/// # use std::rc::Rc;
798 799 800 801 802 803
/// let pointer_size = std::mem::size_of::<&u8>();
/// assert_eq!(2 * pointer_size, std::mem::size_of::<&[u8]>());
/// assert_eq!(2 * pointer_size, std::mem::size_of::<*const [u8]>());
/// assert_eq!(2 * pointer_size, std::mem::size_of::<Box<[u8]>>());
/// assert_eq!(2 * pointer_size, std::mem::size_of::<Rc<[u8]>>());
/// ```
804
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
805
mod prim_slice {}
806 807 808

#[doc(primitive = "str")]
//
S
Steve Klabnik 已提交
809
/// String slices.
810
///
C
Camelid 已提交
811
/// *[See also the `std::str` module](crate::str).*
812
///
S
Steve Klabnik 已提交
813 814 815 816
/// The `str` type, also called a 'string slice', is the most primitive string
/// type. It is usually seen in its borrowed form, `&str`. It is also the type
/// of string literals, `&'static str`.
///
817
/// String slices are always valid UTF-8.
818 819 820
///
/// # Examples
///
S
Steve Klabnik 已提交
821
/// String literals are string slices:
822 823
///
/// ```
S
Steve Klabnik 已提交
824 825 826 827
/// let hello = "Hello, world!";
///
/// // with an explicit type annotation
/// let hello: &'static str = "Hello, world!";
828 829
/// ```
///
S
Steve Klabnik 已提交
830 831
/// They are `'static` because they're stored directly in the final binary, and
/// so will be valid for the `'static` duration.
832
///
S
Steve Klabnik 已提交
833 834 835
/// # Representation
///
/// A `&str` is made up of two components: a pointer to some bytes, and a
P
projektir 已提交
836
/// length. You can look at these with the [`as_ptr`] and [`len`] methods:
837 838
///
/// ```
S
Steve Klabnik 已提交
839 840
/// use std::slice;
/// use std::str;
841
///
S
Steve Klabnik 已提交
842 843 844 845
/// let story = "Once upon a time...";
///
/// let ptr = story.as_ptr();
/// let len = story.len();
846
///
S
Steve Klabnik 已提交
847
/// // story has nineteen bytes
S
Steve Klabnik 已提交
848
/// assert_eq!(19, len);
849
///
850
/// // We can re-build a str out of ptr and len. This is all unsafe because
S
Steve Klabnik 已提交
851 852 853 854
/// // we are responsible for making sure the two components are valid:
/// let s = unsafe {
///     // First, we build a &[u8]...
///     let slice = slice::from_raw_parts(ptr, len);
855
///
S
Steve Klabnik 已提交
856 857 858 859 860 861
///     // ... and then convert that slice into a string slice
///     str::from_utf8(slice)
/// };
///
/// assert_eq!(s, Ok(story));
/// ```
862
///
863 864
/// [`as_ptr`]: str::as_ptr
/// [`len`]: str::len
865 866
///
/// Note: This example shows the internals of `&str`. `unsafe` should not be
867
/// used to get a string slice under normal circumstances. Use `as_str`
868
/// instead.
869
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
870
mod prim_str {}
871 872

#[doc(primitive = "tuple")]
G
Guillaume Gomez 已提交
873 874 875
#[doc(alias = "(")]
#[doc(alias = ")")]
#[doc(alias = "()")]
876 877 878
//
/// A finite heterogeneous sequence, `(T, U, ..)`.
///
S
Steve Klabnik 已提交
879
/// Let's cover each of those in turn:
880
///
S
Steve Klabnik 已提交
881 882 883 884 885 886 887
/// Tuples are *finite*. In other words, a tuple has a length. Here's a tuple
/// of length `3`:
///
/// ```
/// ("hello", 5, 'c');
/// ```
///
888 889 890
/// 'Length' is also sometimes called 'arity' here; each tuple of a different
/// length is a different, distinct type.
///
S
Steve Klabnik 已提交
891 892 893
/// Tuples are *heterogeneous*. This means that each element of the tuple can
/// have a different type. In that tuple above, it has the type:
///
894 895
/// ```
/// # let _:
S
Steve Klabnik 已提交
896
/// (&'static str, i32, char)
897
/// # = ("hello", 5, 'c');
S
Steve Klabnik 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910
/// ```
///
/// Tuples are a *sequence*. This means that they can be accessed by position;
/// this is called 'tuple indexing', and it looks like this:
///
/// ```rust
/// let tuple = ("hello", 5, 'c');
///
/// assert_eq!(tuple.0, "hello");
/// assert_eq!(tuple.1, 5);
/// assert_eq!(tuple.2, 'c');
/// ```
///
911
/// The sequential nature of the tuple applies to its implementations of various
912
/// traits. For example, in [`PartialOrd`] and [`Ord`], the elements are compared
913 914
/// sequentially until the first non-equal set is found.
///
S
Steve Klabnik 已提交
915
/// For more about tuples, see [the book](../book/ch03-02-data-types.html#the-tuple-type).
S
Steve Klabnik 已提交
916
///
917 918
// Hardcoded anchor in src/librustdoc/html/format.rs
// linked to as `#trait-implementations-1`
S
Steve Klabnik 已提交
919
/// # Trait implementations
920
///
921 922 923 924
/// In this documentation the shorthand `(T₁, T₂, …, Tₙ)` is used to represent tuples of varying
/// length. When that is used, any trait bound expressed on `T` applies to each element of the
/// tuple independently. Note that this is a convenience notation to avoid repetitive
/// documentation, not valid Rust syntax.
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
///
/// Due to a temporary restriction in Rust’s type system, the following traits are only
/// implemented on tuples of arity 12 or less. In the future, this may change:
///
/// * [`PartialEq`]
/// * [`Eq`]
/// * [`PartialOrd`]
/// * [`Ord`]
/// * [`Debug`]
/// * [`Default`]
/// * [`Hash`]
///
/// [`Debug`]: fmt::Debug
/// [`Hash`]: hash::Hash
///
/// The following traits are implemented for tuples of any length. These traits have
/// implementations that are automatically generated by the compiler, so are not limited by
/// missing language features.
///
/// * [`Clone`]
/// * [`Copy`]
/// * [`Send`]
/// * [`Sync`]
/// * [`Unpin`]
/// * [`UnwindSafe`]
/// * [`RefUnwindSafe`]
///
/// [`Unpin`]: marker::Unpin
/// [`UnwindSafe`]: panic::UnwindSafe
/// [`RefUnwindSafe`]: panic::RefUnwindSafe
955
///
956 957
/// # Examples
///
S
Steve Klabnik 已提交
958
/// Basic usage:
959 960
///
/// ```
S
Steve Klabnik 已提交
961
/// let tuple = ("hello", 5, 'c');
962
///
S
Steve Klabnik 已提交
963
/// assert_eq!(tuple.0, "hello");
964 965
/// ```
///
S
Steve Klabnik 已提交
966 967
/// Tuples are often used as a return type when you want to return more than
/// one value:
968 969
///
/// ```
S
Steve Klabnik 已提交
970 971 972 973 974 975 976 977 978 979 980
/// fn calculate_point() -> (i32, i32) {
///     // Don't do a calculation, that's not the point of the example
///     (4, 5)
/// }
///
/// let point = calculate_point();
///
/// assert_eq!(point.0, 4);
/// assert_eq!(point.1, 5);
///
/// // Combining this with patterns can be nicer.
981
///
S
Steve Klabnik 已提交
982
/// let (x, y) = calculate_point();
983
///
S
Steve Klabnik 已提交
984 985
/// assert_eq!(x, 4);
/// assert_eq!(y, 5);
986 987
/// ```
///
988
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
989
mod prim_tuple {}
990

991
// Required to make auto trait impls render.
992
// See src/librustdoc/passes/collect_trait_impls.rs:collect_trait_impls
993
#[doc(hidden)]
994
impl<T> (T,) {}
995

996 997 998
// Fake impl that's only really used for docs.
#[cfg(doc)]
#[stable(feature = "rust1", since = "1.0.0")]
999
#[cfg_attr(not(bootstrap), doc(tuple_variadic))]
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/// This trait is implemented on arbitrary-length tuples.
impl<T: Clone> Clone for (T,) {
    fn clone(&self) -> Self {
        loop {}
    }
}

// Fake impl that's only really used for docs.
#[cfg(doc)]
#[stable(feature = "rust1", since = "1.0.0")]
1010
#[cfg_attr(not(bootstrap), doc(tuple_variadic))]
1011 1012 1013 1014 1015
/// This trait is implemented on arbitrary-length tuples.
impl<T: Copy> Copy for (T,) {
    // empty
}

1016
#[doc(primitive = "f32")]
1017 1018 1019 1020
/// A 32-bit floating point type (specifically, the "binary32" type defined in IEEE 754-2008).
///
/// This type can represent a wide range of decimal numbers, like `3.5`, `27`,
/// `-113.75`, `0.0078125`, `34359738368`, `0`, `-1`. So unlike integer types
1021 1022
/// (such as `i32`), floating point types can represent non-integer numbers,
/// too.
1023 1024 1025 1026 1027 1028
///
/// However, being able to represent this wide range of numbers comes at the
/// cost of precision: floats can only represent some of the real numbers and
/// calculation with floats round to a nearby representable number. For example,
/// `5.0` and `1.0` can be exactly represented as `f32`, but `1.0 / 5.0` results
/// in `0.20000000298023223876953125` since `0.2` cannot be exactly represented
C
Camelid 已提交
1029
/// as `f32`. Note, however, that printing floats with `println` and friends will
1030 1031 1032
/// often discard insignificant digits: `println!("{}", 1.0f32 / 5.0f32)` will
/// print `0.2`.
///
J
Jubilee Young 已提交
1033
/// Additionally, `f32` can represent some special values:
1034
///
1035
/// - −0.0: IEEE 754 floating point numbers have a bit that indicates their sign, so −0.0 is a
1036 1037
///   possible value. For comparison −0.0 = +0.0, but floating point operations can carry
///   the sign bit through arithmetic operations. This means −0.0 × +0.0 produces −0.0 and
1038
///   a negative number rounded to a value smaller than a float can represent also produces −0.0.
1039
/// - [∞](#associatedconstant.INFINITY) and
1040
///   [−∞](#associatedconstant.NEG_INFINITY): these result from calculations
1041 1042 1043
///   like `1.0 / 0.0`.
/// - [NaN (not a number)](#associatedconstant.NAN): this value results from
///   calculations like `(-1.0).sqrt()`. NaN has some potentially unexpected
1044
///   behavior:
1045 1046
///   - It is unequal to any float, including itself! This is the reason `f32`
///     doesn't implement the `Eq` trait.
1047
///   - It is also neither smaller nor greater than any float, making it
1048 1049
///     impossible to sort by the default comparison operation, which is the
///     reason `f32` doesn't implement the `Ord` trait.
1050 1051 1052
///   - It is also considered *infectious* as almost all calculations where one
///     of the operands is NaN will also result in NaN. The explanations on this
///     page only explicitly document behavior on NaN operands if this default
1053
///     is deviated from.
1054 1055
///   - Lastly, there are multiple bit patterns that are considered NaN.
///     Rust does not currently guarantee that the bit patterns of NaN are
1056 1057 1058
///     preserved over arithmetic operations, and they are not guaranteed to be
///     portable or even fully deterministic! This means that there may be some
///     surprising results upon inspecting the bit patterns,
1059
///     as the same calculations might produce NaNs with different bit patterns.
1060
///
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/// When the number resulting from a primitive operation (addition,
/// subtraction, multiplication, or division) on this type is not exactly
/// representable as `f32`, it is rounded according to the roundTiesToEven
/// direction defined in IEEE 754-2008. That means:
///
/// - The result is the representable value closest to the true value, if there
///   is a unique closest representable value.
/// - If the true value is exactly half-way between two representable values,
///   the result is the one with an even least-significant binary digit.
/// - If the true value's magnitude is ≥ `f32::MAX` + 2<sup>(`f32::MAX_EXP` −
///   `f32::MANTISSA_DIGITS` − 1)</sup>, the result is ∞ or −∞ (preserving the
///   true value's sign).
///
1074
/// For more information on floating point numbers, see [Wikipedia][wikipedia].
1075
///
C
Camelid 已提交
1076
/// *[See also the `std::f32::consts` module](crate::f32::consts).*
1077
///
1078
/// [wikipedia]: https://en.wikipedia.org/wiki/Single-precision_floating-point_format
1079
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1080
mod prim_f32 {}
1081 1082

#[doc(primitive = "f64")]
1083 1084
/// A 64-bit floating point type (specifically, the "binary64" type defined in IEEE 754-2008).
///
1085
/// This type is very similar to [`f32`], but has increased
1086
/// precision by using twice as many bits. Please see [the documentation for
J
Joshua Nelson 已提交
1087
/// `f32`][`f32`] or [Wikipedia on double precision
1088
/// values][wikipedia] for more information.
1089
///
C
Camelid 已提交
1090
/// *[See also the `std::f64::consts` module](crate::f64::consts).*
1091
///
1092
/// [`f32`]: prim@f32
1093
/// [wikipedia]: https://en.wikipedia.org/wiki/Double-precision_floating-point_format
1094
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1095
mod prim_f64 {}
1096 1097 1098

#[doc(primitive = "i8")]
//
B
Brian Anderson 已提交
1099
/// The 8-bit signed integer type.
1100
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1101
mod prim_i8 {}
1102 1103 1104

#[doc(primitive = "i16")]
//
B
Brian Anderson 已提交
1105
/// The 16-bit signed integer type.
1106
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1107
mod prim_i16 {}
1108 1109 1110

#[doc(primitive = "i32")]
//
B
Brian Anderson 已提交
1111
/// The 32-bit signed integer type.
1112
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1113
mod prim_i32 {}
1114 1115 1116

#[doc(primitive = "i64")]
//
B
Brian Anderson 已提交
1117
/// The 64-bit signed integer type.
1118
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1119
mod prim_i64 {}
1120

1121 1122 1123
#[doc(primitive = "i128")]
//
/// The 128-bit signed integer type.
M
Mark Rousskov 已提交
1124 1125
#[stable(feature = "i128", since = "1.26.0")]
mod prim_i128 {}
1126

1127 1128
#[doc(primitive = "u8")]
//
B
Brian Anderson 已提交
1129
/// The 8-bit unsigned integer type.
1130
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1131
mod prim_u8 {}
1132 1133 1134

#[doc(primitive = "u16")]
//
B
Brian Anderson 已提交
1135
/// The 16-bit unsigned integer type.
1136
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1137
mod prim_u16 {}
1138 1139 1140

#[doc(primitive = "u32")]
//
B
Brian Anderson 已提交
1141
/// The 32-bit unsigned integer type.
1142
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1143
mod prim_u32 {}
1144 1145 1146

#[doc(primitive = "u64")]
//
B
Brian Anderson 已提交
1147
/// The 64-bit unsigned integer type.
1148
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1149
mod prim_u64 {}
1150

1151 1152 1153
#[doc(primitive = "u128")]
//
/// The 128-bit unsigned integer type.
M
Mark Rousskov 已提交
1154 1155
#[stable(feature = "i128", since = "1.26.0")]
mod prim_u128 {}
1156

1157 1158
#[doc(primitive = "isize")]
//
B
Brian Anderson 已提交
1159
/// The pointer-sized signed integer type.
1160
///
1161 1162 1163
/// The size of this primitive is how many bytes it takes to reference any
/// location in memory. For example, on a 32 bit target, this is 4 bytes
/// and on a 64 bit target, this is 8 bytes.
1164
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1165
mod prim_isize {}
1166 1167 1168

#[doc(primitive = "usize")]
//
1169
/// The pointer-sized unsigned integer type.
1170
///
1171 1172 1173
/// The size of this primitive is how many bytes it takes to reference any
/// location in memory. For example, on a 32 bit target, this is 4 bytes
/// and on a 64 bit target, this is 8 bytes.
1174
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1175
mod prim_usize {}
1176 1177

#[doc(primitive = "reference")]
G
Guillaume Gomez 已提交
1178
#[doc(alias = "&")]
1179
#[doc(alias = "&mut")]
1180 1181 1182 1183
//
/// References, both shared and mutable.
///
/// A reference represents a borrow of some owned value. You can get one by using the `&` or `&mut`
1184 1185
/// operators on a value, or by using a [`ref`](../std/keyword.ref.html) or
/// <code>[ref](../std/keyword.ref.html) [mut](../std/keyword.mut.html)</code> pattern.
1186
///
1187
/// For those familiar with pointers, a reference is just a pointer that is assumed to be
R
Ralf Jung 已提交
1188
/// aligned, not null, and pointing to memory containing a valid value of `T` - for example,
1189
/// <code>&[bool]</code> can only point to an allocation containing the integer values `1`
1190 1191 1192
/// ([`true`](../std/keyword.true.html)) or `0` ([`false`](../std/keyword.false.html)), but
/// creating a <code>&[bool]</code> that points to an allocation containing
/// the value `3` causes undefined behaviour.
1193
/// In fact, <code>[Option]\<&T></code> has the same memory representation as a
1194
/// nullable but aligned pointer, and can be passed across FFI boundaries as such.
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
///
/// In most cases, references can be used much like the original value. Field access, method
/// calling, and indexing work the same (save for mutability rules, of course). In addition, the
/// comparison operators transparently defer to the referent's implementation, allowing references
/// to be compared the same as owned values.
///
/// References have a lifetime attached to them, which represents the scope for which the borrow is
/// valid. A lifetime is said to "outlive" another one if its representative scope is as long or
/// longer than the other. The `'static` lifetime is the longest lifetime, which represents the
/// total life of the program. For example, string literals have a `'static` lifetime because the
/// text data is embedded into the binary of the program, rather than in an allocation that needs
/// to be dynamically managed.
///
/// `&mut T` references can be freely coerced into `&T` references with the same referent type, and
/// references with longer lifetimes can be freely coerced into references with shorter ones.
///
1211
/// Reference equality by address, instead of comparing the values pointed to, is accomplished via
L
Lucas Lois 已提交
1212
/// implicit reference-pointer coercion and raw pointer equality via [`ptr::eq`], while
1213
/// [`PartialEq`] compares values.
L
Lucas Lois 已提交
1214
///
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/// ```
/// use std::ptr;
///
/// let five = 5;
/// let other_five = 5;
/// let five_ref = &five;
/// let same_five_ref = &five;
/// let other_five_ref = &other_five;
///
/// assert!(five_ref == same_five_ref);
/// assert!(five_ref == other_five_ref);
///
/// assert!(ptr::eq(five_ref, same_five_ref));
/// assert!(!ptr::eq(five_ref, other_five_ref));
/// ```
L
Lucas Lois 已提交
1230
///
1231 1232 1233
/// For more information on how to use references, see [the book's section on "References and
/// Borrowing"][book-refs].
///
1234
/// [book-refs]: ../book/ch04-02-references-and-borrowing.html
1235
///
1236
/// # Trait implementations
L
Lucas Lois 已提交
1237
///
1238 1239 1240 1241 1242 1243
/// The following traits are implemented for all `&T`, regardless of the type of its referent:
///
/// * [`Copy`]
/// * [`Clone`] \(Note that this will not defer to `T`'s `Clone` implementation if it exists!)
/// * [`Deref`]
/// * [`Borrow`]
1244
/// * [`fmt::Pointer`]
1245
///
1246 1247
/// [`Deref`]: ops::Deref
/// [`Borrow`]: borrow::Borrow
1248 1249 1250 1251 1252 1253 1254 1255
///
/// `&mut T` references get all of the above except `Copy` and `Clone` (to prevent creating
/// multiple simultaneous mutable borrows), plus the following, regardless of the type of its
/// referent:
///
/// * [`DerefMut`]
/// * [`BorrowMut`]
///
1256 1257
/// [`DerefMut`]: ops::DerefMut
/// [`BorrowMut`]: borrow::BorrowMut
1258
/// [bool]: prim@bool
1259 1260 1261 1262
///
/// The following traits are implemented on `&T` references if the underlying `T` also implements
/// that trait:
///
1263
/// * All the traits in [`std::fmt`] except [`fmt::Pointer`] (which is implemented regardless of the type of its referent) and [`fmt::Write`]
1264 1265 1266 1267 1268 1269 1270 1271
/// * [`PartialOrd`]
/// * [`Ord`]
/// * [`PartialEq`]
/// * [`Eq`]
/// * [`AsRef`]
/// * [`Fn`] \(in addition, `&T` references get [`FnMut`] and [`FnOnce`] if `T: Fn`)
/// * [`Hash`]
/// * [`ToSocketAddrs`]
1272
/// * [`Send`] \(`&T` references also require <code>T: [Sync]</code>)
1273
///
1274 1275
/// [`std::fmt`]: fmt
/// [`Hash`]: hash::Hash
1276
#[doc = concat!("[`ToSocketAddrs`]: ", include_str!("../primitive_docs/net_tosocketaddrs.md"))]
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
///
/// `&mut T` references get all of the above except `ToSocketAddrs`, plus the following, if `T`
/// implements that trait:
///
/// * [`AsMut`]
/// * [`FnMut`] \(in addition, `&mut T` references get [`FnOnce`] if `T: FnMut`)
/// * [`fmt::Write`]
/// * [`Iterator`]
/// * [`DoubleEndedIterator`]
/// * [`ExactSizeIterator`]
/// * [`FusedIterator`]
/// * [`TrustedLen`]
/// * [`io::Write`]
/// * [`Read`]
/// * [`Seek`]
/// * [`BufRead`]
///
1294 1295
/// [`FusedIterator`]: iter::FusedIterator
/// [`TrustedLen`]: iter::TrustedLen
1296 1297 1298 1299
#[doc = concat!("[`Seek`]: ", include_str!("../primitive_docs/io_seek.md"))]
#[doc = concat!("[`BufRead`]: ", include_str!("../primitive_docs/io_bufread.md"))]
#[doc = concat!("[`Read`]: ", include_str!("../primitive_docs/io_read.md"))]
#[doc = concat!("[`io::Write`]: ", include_str!("../primitive_docs/io_write.md"))]
1300 1301 1302 1303 1304 1305
///
/// Note that due to method call deref coercion, simply calling a trait method will act like they
/// work on references as well as they do on owned values! The implementations described here are
/// meant for generic contexts, where the final type `T` is a type parameter or otherwise not
/// locally known.
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1306
mod prim_ref {}
1307 1308 1309 1310 1311 1312 1313

#[doc(primitive = "fn")]
//
/// Function pointers, like `fn(usize) -> bool`.
///
/// *See also the traits [`Fn`], [`FnMut`], and [`FnOnce`].*
///
1314 1315 1316
/// [`Fn`]: ops::Fn
/// [`FnMut`]: ops::FnMut
/// [`FnOnce`]: ops::FnOnce
1317
///
1318
/// Function pointers are pointers that point to *code*, not data. They can be called
R
Ralf Jung 已提交
1319 1320
/// just like functions. Like references, function pointers are, among other things, assumed to
/// not be null, so if you want to pass a function pointer over FFI and be able to accommodate null
P
patrick-gu 已提交
1321 1322
/// pointers, make your type [`Option<fn()>`](core::option#options-and-pointers-nullable-pointers)
/// with your required signature.
1323
///
1324 1325
/// ### Safety
///
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/// Plain function pointers are obtained by casting either plain functions, or closures that don't
/// capture an environment:
///
/// ```
/// fn add_one(x: usize) -> usize {
///     x + 1
/// }
///
/// let ptr: fn(usize) -> usize = add_one;
/// assert_eq!(ptr(5), 6);
///
/// let clos: fn(usize) -> usize = |x| x + 5;
/// assert_eq!(clos(5), 10);
/// ```
///
/// In addition to varying based on their signature, function pointers come in two flavors: safe
/// and unsafe. Plain `fn()` function pointers can only point to safe functions,
/// while `unsafe fn()` function pointers can point to safe or unsafe functions.
///
/// ```
/// fn add_one(x: usize) -> usize {
///     x + 1
/// }
///
/// unsafe fn add_one_unsafely(x: usize) -> usize {
///     x + 1
/// }
///
/// let safe_ptr: fn(usize) -> usize = add_one;
///
/// //ERROR: mismatched types: expected normal fn, found unsafe fn
/// //let bad_ptr: fn(usize) -> usize = add_one_unsafely;
///
/// let unsafe_ptr: unsafe fn(usize) -> usize = add_one_unsafely;
/// let really_safe_ptr: unsafe fn(usize) -> usize = add_one;
/// ```
///
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/// ### ABI
///
/// On top of that, function pointers can vary based on what ABI they use. This
/// is achieved by adding the `extern` keyword before the type, followed by the
/// ABI in question. The default ABI is "Rust", i.e., `fn()` is the exact same
/// type as `extern "Rust" fn()`. A pointer to a function with C ABI would have
/// type `extern "C" fn()`.
///
/// `extern "ABI" { ... }` blocks declare functions with ABI "ABI". The default
/// here is "C", i.e., functions declared in an `extern {...}` block have "C"
/// ABI.
///
/// For more information and a list of supported ABIs, see [the nomicon's
/// section on foreign calling conventions][nomicon-abi].
1377
///
1378 1379
/// [nomicon-abi]: ../nomicon/ffi.html#foreign-calling-conventions
///
1380
/// ### Variadic functions
1381 1382
///
/// Extern function declarations with the "C" or "cdecl" ABIs can also be *variadic*, allowing them
1383
/// to be called with a variable number of arguments. Normal Rust functions, even those with an
1384 1385 1386 1387 1388
/// `extern "ABI"`, cannot be variadic. For more information, see [the nomicon's section on
/// variadic functions][nomicon-variadic].
///
/// [nomicon-variadic]: ../nomicon/ffi.html#variadic-functions
///
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
/// ### Creating function pointers
///
/// When `bar` is the name of a function, then the expression `bar` is *not* a
/// function pointer. Rather, it denotes a value of an unnameable type that
/// uniquely identifies the function `bar`. The value is zero-sized because the
/// type already identifies the function. This has the advantage that "calling"
/// the value (it implements the `Fn*` traits) does not require dynamic
/// dispatch.
///
/// This zero-sized type *coerces* to a regular function pointer. For example:
///
/// ```rust
/// use std::mem;
///
/// fn bar(x: i32) {}
///
/// let not_bar_ptr = bar; // `not_bar_ptr` is zero-sized, uniquely identifying `bar`
/// assert_eq!(mem::size_of_val(&not_bar_ptr), 0);
///
/// let bar_ptr: fn(i32) = not_bar_ptr; // force coercion to function pointer
/// assert_eq!(mem::size_of_val(&bar_ptr), mem::size_of::<usize>());
///
/// let footgun = &bar; // this is a shared reference to the zero-sized type identifying `bar`
/// ```
///
/// The last line shows that `&bar` is not a function pointer either. Rather, it
/// is a reference to the function-specific ZST. `&bar` is basically never what you
/// want when `bar` is a function.
///
R
Ralf Jung 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/// ### Casting to and from integers
///
/// You cast function pointers directly to integers:
///
/// ```rust
/// let fnptr: fn(i32) -> i32 = |x| x+2;
/// let fnptr_addr = fnptr as usize;
/// ```
///
/// However, a direct cast back is not possible. You need to use `transmute`:
///
/// ```rust
/// # let fnptr: fn(i32) -> i32 = |x| x+2;
/// # let fnptr_addr = fnptr as usize;
/// let fnptr = fnptr_addr as *const ();
/// let fnptr: fn(i32) -> i32 = unsafe { std::mem::transmute(fnptr) };
/// assert_eq!(fnptr(40), 42);
/// ```
///
/// Crucially, we `as`-cast to a raw pointer before `transmute`ing to a function pointer.
/// This avoids an integer-to-pointer `transmute`, which can be problematic.
/// Transmuting between raw pointers and function pointers (i.e., two pointer types) is fine.
///
/// Note that all of this is not portable to platforms where function pointers and data pointers
/// have different sizes.
///
1444
/// ### Traits
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
///
/// Function pointers implement the following traits:
///
/// * [`Clone`]
/// * [`PartialEq`]
/// * [`Eq`]
/// * [`PartialOrd`]
/// * [`Ord`]
/// * [`Hash`]
/// * [`Pointer`]
/// * [`Debug`]
///
1457 1458
/// [`Hash`]: hash::Hash
/// [`Pointer`]: fmt::Pointer
1459 1460 1461 1462 1463 1464 1465 1466 1467
///
/// Due to a temporary restriction in Rust's type system, these traits are only implemented on
/// functions that take 12 arguments or less, with the `"Rust"` and `"C"` ABIs. In the future, this
/// may change.
///
/// In addition, function pointers of *any* signature, ABI, or safety are [`Copy`], and all *safe*
/// function pointers implement [`Fn`], [`FnMut`], and [`FnOnce`]. This works because these traits
/// are specially known to the compiler.
#[stable(feature = "rust1", since = "1.0.0")]
M
Mark Rousskov 已提交
1468
mod prim_fn {}