sty.rs 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This module contains TypeVariants and its major components

13
use hir::def_id::DefId;
14

15
use middle::region;
16
use ty::subst::Substs;
17
use ty::{self, AdtDef, TypeFlags, Ty, TyCtxt, TypeFoldable};
18
use ty::{Slice, TyS};
19
use ty::subst::Kind;
20 21

use std::fmt;
22 23
use std::iter;
use std::cmp::Ordering;
24
use syntax::abi;
A
Andrew Cann 已提交
25
use syntax::ast::{self, Name};
26
use syntax::symbol::{keywords, InternedString};
27
use util::nodemap::FxHashMap;
28

29
use serialize;
30

31
use hir;
32 33 34 35

use self::InferTy::*;
use self::TypeVariants::*;

36
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
37 38 39 40 41 42 43 44 45
pub struct TypeAndMut<'tcx> {
    pub ty: Ty<'tcx>,
    pub mutbl: hir::Mutability,
}

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
         RustcEncodable, RustcDecodable, Copy)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
46 47 48 49
///
/// If `fr.scope` is None, then this is in some context (e.g., an
/// impl) where lifetimes are more abstract and the notion of the
/// caller/callee stack frames are not applicable.
50
pub struct FreeRegion {
51
    pub scope: Option<region::CodeExtent>,
T
Tshepang Lekhonkhobe 已提交
52
    pub bound_region: BoundRegion,
53 54 55 56 57 58 59 60 61 62 63 64
}

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
         RustcEncodable, RustcDecodable, Copy)]
pub enum BoundRegion {
    /// An anonymous region parameter for a given fn (&T)
    BrAnon(u32),

    /// Named region parameters for functions (a in &'a T)
    ///
    /// The def-id is needed to distinguish free regions in
    /// the event of shadowing.
65
    BrNamed(DefId, Name),
66 67 68 69 70 71

    /// Fresh bound identifiers created during GLB computations.
    BrFresh(u32),

    // Anonymous region for the implicit env pointer parameter
    // to a closure
T
Tshepang Lekhonkhobe 已提交
72
    BrEnv,
73 74
}

75 76 77
/// When a region changed from late-bound to early-bound when #32330
/// was fixed, its `RegionParameterDef` will have one of these
/// structures that we can use to give nicer errors.
78 79
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Ord, Hash,
         RustcEncodable, RustcDecodable)]
80 81 82 83 84 85 86
pub struct Issue32330 {
    /// fn where is region declared
    pub fn_def_id: DefId,

    /// name of region; duplicates the info in BrNamed but convenient
    /// to have it here, and this code is only temporary
    pub region_name: ast::Name,
87 88
}

89 90
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
91
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
92 93 94 95 96 97 98 99 100
pub enum TypeVariants<'tcx> {
    /// The primitive boolean type. Written as `bool`.
    TyBool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point).  Written as `char`.
    TyChar,

    /// A primitive signed integer type. For example, `i32`.
101
    TyInt(ast::IntTy),
102 103

    /// A primitive unsigned integer type. For example, `u32`.
104
    TyUint(ast::UintTy),
105 106

    /// A primitive floating-point type. For example, `f64`.
107
    TyFloat(ast::FloatTy),
108

109
    /// Structures, enumerations and unions.
110 111 112
    ///
    /// Substs here, possibly against intuition, *may* contain `TyParam`s.
    /// That is, even after substitution it is possible that there are type
113 114
    /// variables. This happens when the `TyAdt` corresponds to an ADT
    /// definition and not a concrete use of it.
115
    TyAdt(&'tcx AdtDef, &'tcx Substs<'tcx>),
V
Vadim Petrochenkov 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129
    /// The pointee of a string slice. Written as `str`.
    TyStr,

    /// An array with the given length. Written as `[T; n]`.
    TyArray(Ty<'tcx>, usize),

    /// The pointee of an array slice.  Written as `[T]`.
    TySlice(Ty<'tcx>),

    /// A raw pointer. Written as `*mut T` or `*const T`
    TyRawPtr(TypeAndMut<'tcx>),

    /// A reference; a pointer with an associated lifetime. Written as
130
    /// `&'a mut T` or `&'a T`.
131 132
    TyRef(&'tcx Region, TypeAndMut<'tcx>),

133 134
    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type.
135
    TyFnDef(DefId, &'tcx Substs<'tcx>, PolyFnSig<'tcx>),
136 137 138 139

    /// A pointer to a function.  Written as `fn() -> i32`.
    /// FIXME: This is currently also used to represent the callee of a method;
    /// see ty::MethodCallee etc.
140
    TyFnPtr(PolyFnSig<'tcx>),
141 142

    /// A trait, defined with `trait`.
143
    TyDynamic(Binder<&'tcx Slice<ExistentialPredicate<'tcx>>>, &'tcx ty::Region),
144 145 146

    /// The anonymous type of a closure. Used to represent the type of
    /// `|a| a`.
147
    TyClosure(DefId, ClosureSubsts<'tcx>),
148

A
Andrew Cann 已提交
149 150
    /// The never type `!`
    TyNever,
151

152
    /// A tuple type.  For example, `(i32, bool)`.
A
Andrew Cann 已提交
153 154 155 156 157
    /// The bool indicates whether this is a unit tuple and was created by
    /// defaulting a diverging type variable with feature(never_type) disabled.
    /// It's only purpose is for raising future-compatibility warnings for when
    /// diverging type variables start defaulting to ! instead of ().
    TyTuple(&'tcx Slice<Ty<'tcx>>, bool),
158 159 160 161 162

    /// The projection of an associated type.  For example,
    /// `<T as Trait<..>>::N`.
    TyProjection(ProjectionTy<'tcx>),

163 164 165
    /// Anonymized (`impl Trait`) type found in a return type.
    /// The DefId comes from the `impl Trait` ast::Ty node, and the
    /// substitutions are for the generics of the function in question.
166
    /// After typeck, the concrete type can be found in the `types` map.
167 168
    TyAnon(DefId, &'tcx Substs<'tcx>),

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
    TyParam(ParamTy),

    /// A type variable used during type-checking.
    TyInfer(InferTy),

    /// A placeholder for a type which could not be computed; this is
    /// propagated to avoid useless error messages.
    TyError,
}

/// A closure can be modeled as a struct that looks like:
///
///     struct Closure<'l0...'li, T0...Tj, U0...Uk> {
///         upvar0: U0,
///         ...
///         upvark: Uk
///     }
///
/// where 'l0...'li and T0...Tj are the lifetime and type parameters
/// in scope on the function that defined the closure, and U0...Uk are
/// type parameters representing the types of its upvars (borrowed, if
/// appropriate).
///
/// So, for example, given this function:
///
///     fn foo<'a, T>(data: &'a mut T) {
///          do(|| data.count += 1)
///     }
///
/// the type of the closure would be something like:
///
///     struct Closure<'a, T, U0> {
///         data: U0
///     }
///
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
///
///     impl<'b, 'a, T> FnMut() for Closure<'a, T, &'b mut &'a mut T> {
///         ...
///     }
///
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// as extra type parameters? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the extent of the closure itself; this is some
/// subset of `foo`, probably just the extent of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that trans may need them
/// when monomorphizing, and they may not appear in the upvars.  A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
254
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
255
pub struct ClosureSubsts<'tcx> {
256 257 258
    /// Lifetime and type parameters from the enclosing function,
    /// concatenated with the types of the upvars.
    ///
259 260
    /// These are separated out because trans wants to pass them around
    /// when monomorphizing.
261 262
    pub substs: &'tcx Substs<'tcx>,
}
263

264 265 266 267 268
impl<'a, 'gcx, 'acx, 'tcx> ClosureSubsts<'tcx> {
    #[inline]
    pub fn upvar_tys(self, def_id: DefId, tcx: TyCtxt<'a, 'gcx, 'acx>) ->
        impl Iterator<Item=Ty<'tcx>> + 'tcx
    {
269
        let generics = tcx.generics_of(def_id);
270 271 272
        self.substs[self.substs.len()-generics.own_count()..].iter().map(
            |t| t.as_type().expect("unexpected region in upvars"))
    }
273 274
}

275 276 277 278 279 280 281 282
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum ExistentialPredicate<'tcx> {
    // e.g. Iterator
    Trait(ExistentialTraitRef<'tcx>),
    // e.g. Iterator::Item = T
    Projection(ExistentialProjection<'tcx>),
    // e.g. Send
    AutoTrait(DefId),
283 284
}

285 286 287 288 289 290 291
impl<'a, 'gcx, 'tcx> ExistentialPredicate<'tcx> {
    pub fn cmp(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, other: &Self) -> Ordering {
        use self::ExistentialPredicate::*;
        match (*self, *other) {
            (Trait(_), Trait(_)) => Ordering::Equal,
            (Projection(ref a), Projection(ref b)) => a.sort_key(tcx).cmp(&b.sort_key(tcx)),
            (AutoTrait(ref a), AutoTrait(ref b)) =>
292
                tcx.trait_def(*a).def_path_hash.cmp(&tcx.trait_def(*b).def_path_hash),
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
            (Trait(_), _) => Ordering::Less,
            (Projection(_), Trait(_)) => Ordering::Greater,
            (Projection(_), _) => Ordering::Less,
            (AutoTrait(_), _) => Ordering::Greater,
        }
    }

}

impl<'a, 'gcx, 'tcx> Binder<ExistentialPredicate<'tcx>> {
    pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, self_ty: Ty<'tcx>)
        -> ty::Predicate<'tcx> {
        use ty::ToPredicate;
        match *self.skip_binder() {
            ExistentialPredicate::Trait(tr) => Binder(tr).with_self_ty(tcx, self_ty).to_predicate(),
            ExistentialPredicate::Projection(p) =>
                ty::Predicate::Projection(Binder(p.with_self_ty(tcx, self_ty))),
            ExistentialPredicate::AutoTrait(did) => {
                let trait_ref = Binder(ty::TraitRef {
                    def_id: did,
                    substs: tcx.mk_substs_trait(self_ty, &[]),
                });
                trait_ref.to_predicate()
            }
        }
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<ExistentialPredicate<'tcx>> {}

impl<'tcx> Slice<ExistentialPredicate<'tcx>> {
    pub fn principal(&self) -> Option<ExistentialTraitRef<'tcx>> {
        match self.get(0) {
            Some(&ExistentialPredicate::Trait(tr)) => Some(tr),
T
Tshepang Lekhonkhobe 已提交
327
            _ => None,
328 329 330
        }
    }

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    #[inline]
    pub fn projection_bounds<'a>(&'a self) ->
        impl Iterator<Item=ExistentialProjection<'tcx>> + 'a {
        self.iter().filter_map(|predicate| {
            match *predicate {
                ExistentialPredicate::Projection(p) => Some(p),
                _ => None,
            }
        })
    }

    #[inline]
    pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item=DefId> + 'a {
        self.iter().filter_map(|predicate| {
            match *predicate {
                ExistentialPredicate::AutoTrait(d) => Some(d),
                _ => None
            }
        })
    }
}

impl<'tcx> Binder<&'tcx Slice<ExistentialPredicate<'tcx>>> {
354
    pub fn principal(&self) -> Option<PolyExistentialTraitRef<'tcx>> {
355 356 357 358 359 360 361
        self.skip_binder().principal().map(Binder)
    }

    #[inline]
    pub fn projection_bounds<'a>(&'a self) ->
        impl Iterator<Item=PolyExistentialProjection<'tcx>> + 'a {
        self.skip_binder().projection_bounds().map(Binder)
362
    }
363

364
    #[inline]
365
    pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item=DefId> + 'a {
366 367 368 369 370 371
        self.skip_binder().auto_traits()
    }

    pub fn iter<'a>(&'a self)
        -> impl DoubleEndedIterator<Item=Binder<ExistentialPredicate<'tcx>>> + 'tcx {
        self.skip_binder().iter().cloned().map(Binder)
372
    }
373 374
}

375 376 377 378 379 380
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where clause:
///
///     T : Foo<U>
///
/// This would be represented by a trait-reference where the def-id is the
381 382
/// def-id for the trait `Foo` and the substs define `T` as parameter 0,
/// and `U` as parameter 1.
383 384 385 386 387 388 389
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
///
/// Note that a `TraitRef` introduces a level of region binding, to
/// account for higher-ranked trait bounds like `T : for<'a> Foo<&'a
/// U>` or higher-ranked object types.
390
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
391 392 393 394 395
pub struct TraitRef<'tcx> {
    pub def_id: DefId,
    pub substs: &'tcx Substs<'tcx>,
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
impl<'tcx> TraitRef<'tcx> {
    pub fn new(def_id: DefId, substs: &'tcx Substs<'tcx>) -> TraitRef<'tcx> {
        TraitRef { def_id: def_id, substs: substs }
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.substs.type_at(0)
    }

    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
        // Select only the "input types" from a trait-reference. For
        // now this is all the types that appear in the
        // trait-reference, but it should eventually exclude
        // associated types.
        self.substs.types()
    }
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;

impl<'tcx> PolyTraitRef<'tcx> {
    pub fn self_ty(&self) -> Ty<'tcx> {
        self.0.self_ty()
    }

    pub fn def_id(&self) -> DefId {
        self.0.def_id
    }

    pub fn substs(&self) -> &'tcx Substs<'tcx> {
        // FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
        self.0.substs
    }

430
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
431 432 433 434 435 436 437 438 439 440
        // FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
        self.0.input_types()
    }

    pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
        // Note that we preserve binding levels
        Binder(ty::TraitPredicate { trait_ref: self.0.clone() })
    }
}

441 442 443 444 445 446 447
/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
///
///     exists T. T: Trait<'a, 'b, X, Y>
///
/// The substitutions don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
448
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
449 450 451 452 453
pub struct ExistentialTraitRef<'tcx> {
    pub def_id: DefId,
    pub substs: &'tcx Substs<'tcx>,
}

454 455
impl<'a, 'gcx, 'tcx> ExistentialTraitRef<'tcx> {
    pub fn input_types<'b>(&'b self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'b {
456 457 458 459
        // Select only the "input types" from a trait-reference. For
        // now this is all the types that appear in the
        // trait-reference, but it should eventually exclude
        // associated types.
460
        self.substs.types()
461
    }
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

    /// Object types don't have a self-type specified. Therefore, when
    /// we convert the principal trait-ref into a normal trait-ref,
    /// you must give *some* self-type. A common choice is `mk_err()`
    /// or some skolemized type.
    pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, self_ty: Ty<'tcx>)
        -> ty::TraitRef<'tcx>  {
        // otherwise the escaping regions would be captured by the binder
        assert!(!self_ty.has_escaping_regions());

        ty::TraitRef {
            def_id: self.def_id,
            substs: tcx.mk_substs(
                iter::once(Kind::from(self_ty)).chain(self.substs.iter().cloned()))
        }
    }
478 479 480 481
}

pub type PolyExistentialTraitRef<'tcx> = Binder<ExistentialTraitRef<'tcx>>;

482
impl<'tcx> PolyExistentialTraitRef<'tcx> {
483 484 485 486
    pub fn def_id(&self) -> DefId {
        self.0.def_id
    }

487
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
488 489 490 491 492
        // FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
        self.0.input_types()
    }
}

493 494 495 496 497 498 499
/// Binder is a binder for higher-ranked lifetimes. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<TraitRef>`). Note that when we skolemize, instantiate,
/// erase, or otherwise "discharge" these bound regions, we change the
/// type from `Binder<T>` to just `T` (see
/// e.g. `liberate_late_bound_regions`).
500
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
pub struct Binder<T>(pub T);

impl<T> Binder<T> {
    /// Skips the binder and returns the "bound" value. This is a
    /// risky thing to do because it's easy to get confused about
    /// debruijn indices and the like. It is usually better to
    /// discharge the binder using `no_late_bound_regions` or
    /// `replace_late_bound_regions` or something like
    /// that. `skip_binder` is only valid when you are either
    /// extracting data that has nothing to do with bound regions, you
    /// are doing some sort of test that does not involve bound
    /// regions, or you are being very careful about your depth
    /// accounting.
    ///
    /// Some examples where `skip_binder` is reasonable:
    /// - extracting the def-id from a PolyTraitRef;
    /// - comparing the self type of a PolyTraitRef to see if it is equal to
    ///   a type parameter `X`, since the type `X`  does not reference any regions
    pub fn skip_binder(&self) -> &T {
        &self.0
    }

    pub fn as_ref(&self) -> Binder<&T> {
        ty::Binder(&self.0)
    }

T
Tshepang Lekhonkhobe 已提交
527
    pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
528 529 530 531 532
        where F: FnOnce(&T) -> U
    {
        self.as_ref().map_bound(f)
    }

T
Tshepang Lekhonkhobe 已提交
533
    pub fn map_bound<F, U>(self, f: F) -> Binder<U>
534 535 536 537 538 539 540 541
        where F: FnOnce(T) -> U
    {
        ty::Binder(f(self.0))
    }
}

impl fmt::Debug for TypeFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
542
        write!(f, "{:x}", self.bits)
543 544 545 546 547
    }
}

/// Represents the projection of an associated type. In explicit UFCS
/// form this would be written `<T as Trait<..>>::N`.
548
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
549 550 551 552 553 554 555 556 557 558 559 560 561
pub struct ProjectionTy<'tcx> {
    /// The trait reference `T as Trait<..>`.
    pub trait_ref: ty::TraitRef<'tcx>,

    /// The name `N` of the associated type.
    pub item_name: Name,
}
/// Signature of a function type, which I have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs` is the list of arguments and their modes.
/// - `output` is the return type.
/// - `variadic` indicates whether this is a variadic function. (only true for foreign fns)
562
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
563
pub struct FnSig<'tcx> {
564
    pub inputs_and_output: &'tcx Slice<Ty<'tcx>>,
565 566 567
    pub variadic: bool,
    pub unsafety: hir::Unsafety,
    pub abi: abi::Abi,
568 569 570
}

impl<'tcx> FnSig<'tcx> {
571
    pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
572
        &self.inputs_and_output[..self.inputs_and_output.len() - 1]
573 574 575
    }

    pub fn output(&self) -> Ty<'tcx> {
576
        self.inputs_and_output[self.inputs_and_output.len() - 1]
577
    }
578 579 580 581 582
}

pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;

impl<'tcx> PolyFnSig<'tcx> {
583
    pub fn inputs(&self) -> Binder<&'tcx [Ty<'tcx>]> {
584
        Binder(self.skip_binder().inputs())
585 586
    }
    pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
587
        self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
588
    }
589
    pub fn output(&self) -> ty::Binder<Ty<'tcx>> {
590
        self.map_bound_ref(|fn_sig| fn_sig.output().clone())
591 592 593 594
    }
    pub fn variadic(&self) -> bool {
        self.skip_binder().variadic
    }
595 596 597 598 599 600
    pub fn unsafety(&self) -> hir::Unsafety {
        self.skip_binder().unsafety
    }
    pub fn abi(&self) -> abi::Abi {
        self.skip_binder().abi
    }
601 602
}

603
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
604 605 606 607 608
pub struct ParamTy {
    pub idx: u32,
    pub name: Name,
}

609
impl<'a, 'gcx, 'tcx> ParamTy {
610 611
    pub fn new(index: u32, name: Name) -> ParamTy {
        ParamTy { idx: index, name: name }
612 613 614
    }

    pub fn for_self() -> ParamTy {
615
        ParamTy::new(0, keywords::SelfType.name())
616 617 618
    }

    pub fn for_def(def: &ty::TypeParameterDef) -> ParamTy {
619
        ParamTy::new(def.index, def.name)
620 621
    }

622
    pub fn to_ty(self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
623
        tcx.mk_param(self.idx, self.name)
624 625 626
    }

    pub fn is_self(&self) -> bool {
627 628 629 630 631 632
        if self.name == keywords::SelfType.name() {
            assert_eq!(self.idx, 0);
            true
        } else {
            false
        }
633 634 635
    }
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
///     for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
///     ^          ^            |        |         |
///     |          |            |        |         |
///     |          +------------+ 1      |         |
///     |                                |         |
///     +--------------------------------+ 2       |
///     |                                          |
///     +------------------------------------------+ 1
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 1, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 2, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 1, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
#[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug, Copy)]
pub struct DebruijnIndex {
    // We maintain the invariant that this is never 0. So 1 indicates
    // the innermost binder. To ensure this, create with `DebruijnIndex::new`.
    pub depth: u32,
}

/// Representation of regions.
///
/// Unlike types, most region variants are "fictitious", not concrete,
/// regions. Among these, `ReStatic`, `ReEmpty` and `ReScope` are the only
/// ones representing concrete regions.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are 2 kind of
692
/// bound regions: early-bound, which are bound in an item's Generics,
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
/// and are substituted by a Substs,  and late-bound, which are part of
/// higher-ranked types (e.g. `for<'a> fn(&'a ())`) and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike TyParam-s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g. in types passed to type inference, and
/// should first be substituted (by skolemized regions, free regions,
/// or region variables).
///
/// ## Skolemized and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// The process of doing that is called "skolemization". The bound regions
/// are replaced by skolemized markers, which don't satisfy any relation
/// not explicity provided.
///
/// There are 2 kinds of skolemized regions in rustc: `ReFree` and
/// `ReSkolemized`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
720
/// aren't checked when you `make_subregion` (or `eq_types`), only by
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `ReSkolemized` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your skolemized region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a skolemized region `'%a`, the variable `'_` would just be
/// instantiated to the skolemized region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the skolemized region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by infer/higher_ranked/README.md.
///
/// [1] http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2] http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
738
#[derive(Clone, PartialEq, Eq, Hash, Copy, RustcEncodable, RustcDecodable)]
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
pub enum Region {
    // Region bound in a type or fn declaration which will be
    // substituted 'early' -- that is, at the same time when type
    // parameters are substituted.
    ReEarlyBound(EarlyBoundRegion),

    // Region bound in a function scope, which will be substituted when the
    // function is called.
    ReLateBound(DebruijnIndex, BoundRegion),

    /// When checking a function body, the types of all arguments and so forth
    /// that refer to bound region parameters are modified to refer to free
    /// region parameters.
    ReFree(FreeRegion),

    /// A concrete region naming some statically determined extent
    /// (e.g. an expression or sequence of statements) within the
    /// current function.
    ReScope(region::CodeExtent),

    /// Static data that has an "infinite" lifetime. Top in the region lattice.
    ReStatic,

    /// A region variable.  Should not exist after typeck.
    ReVar(RegionVid),

    /// A skolemized region - basically the higher-ranked version of ReFree.
    /// Should not exist after typeck.
    ReSkolemized(SkolemizedRegionVid, BoundRegion),

    /// Empty lifetime is for data that is never accessed.
    /// Bottom in the region lattice. We treat ReEmpty somewhat
    /// specially; at least right now, we do not generate instances of
    /// it during the GLB computations, but rather
    /// generate an error instead. This is to improve error messages.
    /// The only way to get an instance of ReEmpty is to have a region
    /// variable with no constraints.
    ReEmpty,
777 778 779

    /// Erased region, used by trait selection, in MIR and during trans.
    ReErased,
780 781
}

782
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Region {}
783

784 785 786 787 788 789
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
pub struct EarlyBoundRegion {
    pub index: u32,
    pub name: Name,
}

790
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
791
pub struct TyVid {
N
Niko Matsakis 已提交
792
    pub index: u32,
793 794
}

795
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
796
pub struct IntVid {
T
Tshepang Lekhonkhobe 已提交
797
    pub index: u32,
798 799
}

800
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
801
pub struct FloatVid {
T
Tshepang Lekhonkhobe 已提交
802
    pub index: u32,
803 804 805 806
}

#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct RegionVid {
T
Tshepang Lekhonkhobe 已提交
807
    pub index: u32,
808 809
}

810
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
811
pub struct SkolemizedRegionVid {
T
Tshepang Lekhonkhobe 已提交
812
    pub index: u32,
813 814
}

815
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
816 817 818 819 820 821 822
pub enum InferTy {
    TyVar(TyVid),
    IntVar(IntVid),
    FloatVar(FloatVid),

    /// A `FreshTy` is one that is generated as a replacement for an
    /// unbound type variable. This is convenient for caching etc. See
823
    /// `infer::freshen` for more details.
824 825
    FreshTy(u32),
    FreshIntTy(u32),
T
Tshepang Lekhonkhobe 已提交
826
    FreshFloatTy(u32),
827 828
}

829
/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
830
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
831 832 833
pub struct ExistentialProjection<'tcx> {
    pub trait_ref: ExistentialTraitRef<'tcx>,
    pub item_name: Name,
T
Tshepang Lekhonkhobe 已提交
834
    pub ty: Ty<'tcx>,
835 836
}

837 838
pub type PolyExistentialProjection<'tcx> = Binder<ExistentialProjection<'tcx>>;

839
impl<'a, 'tcx, 'gcx> ExistentialProjection<'tcx> {
840
    pub fn item_name(&self) -> Name {
841
        self.item_name // safe to skip the binder to access a name
842 843
    }

844 845 846 847
    pub fn sort_key(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> (u64, InternedString) {
        // We want something here that is stable across crate boundaries.
        // The DefId isn't but the `deterministic_hash` of the corresponding
        // DefPath is.
848
        let trait_def = tcx.trait_def(self.trait_ref.def_id);
849 850 851 852
        let def_path_hash = trait_def.def_path_hash;

        // An `ast::Name` is also not stable (it's just an index into an
        // interning table), so map to the corresponding `InternedString`.
853
        let item_name = self.item_name.as_str();
854
        (def_path_hash, item_name)
855 856 857 858
    }

    pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        self_ty: Ty<'tcx>)
859
                        -> ty::ProjectionPredicate<'tcx>
860 861 862 863
    {
        // otherwise the escaping regions would be captured by the binders
        assert!(!self_ty.has_escaping_regions());

864
        ty::ProjectionPredicate {
865
            projection_ty: ty::ProjectionTy {
866
                trait_ref: self.trait_ref.with_self_ty(tcx, self_ty),
T
Tshepang Lekhonkhobe 已提交
867
                item_name: self.item_name,
868
            },
T
Tshepang Lekhonkhobe 已提交
869
            ty: self.ty,
870
        }
871 872 873
    }
}

874 875 876 877 878 879 880 881 882 883 884 885
impl<'a, 'tcx, 'gcx> PolyExistentialProjection<'tcx> {
    pub fn item_name(&self) -> Name {
        self.skip_binder().item_name()
    }

    pub fn sort_key(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> (u64, InternedString) {
        self.skip_binder().sort_key(tcx)
    }

    pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, self_ty: Ty<'tcx>)
        -> ty::PolyProjectionPredicate<'tcx> {
        self.map_bound(|p| p.with_self_ty(tcx, self_ty))
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    }
}

impl DebruijnIndex {
    pub fn new(depth: u32) -> DebruijnIndex {
        assert!(depth > 0);
        DebruijnIndex { depth: depth }
    }

    pub fn shifted(&self, amount: u32) -> DebruijnIndex {
        DebruijnIndex { depth: self.depth + amount }
    }
}

// Region utilities
impl Region {
    pub fn is_bound(&self) -> bool {
        match *self {
            ty::ReEarlyBound(..) => true,
            ty::ReLateBound(..) => true,
T
Tshepang Lekhonkhobe 已提交
906
            _ => false,
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        }
    }

    pub fn needs_infer(&self) -> bool {
        match *self {
            ty::ReVar(..) | ty::ReSkolemized(..) => true,
            _ => false
        }
    }

    pub fn escapes_depth(&self, depth: u32) -> bool {
        match *self {
            ty::ReLateBound(debruijn, _) => debruijn.depth > depth,
            _ => false,
        }
    }

    /// Returns the depth of `self` from the (1-based) binding level `depth`
    pub fn from_depth(&self, depth: u32) -> Region {
        match *self {
            ty::ReLateBound(debruijn, r) => ty::ReLateBound(DebruijnIndex {
                depth: debruijn.depth - (depth - 1)
            }, r),
            r => r
        }
    }
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

    pub fn type_flags(&self) -> TypeFlags {
        let mut flags = TypeFlags::empty();

        match *self {
            ty::ReVar(..) => {
                flags = flags | TypeFlags::HAS_RE_INFER;
                flags = flags | TypeFlags::KEEP_IN_LOCAL_TCX;
            }
            ty::ReSkolemized(..) => {
                flags = flags | TypeFlags::HAS_RE_INFER;
                flags = flags | TypeFlags::HAS_RE_SKOL;
                flags = flags | TypeFlags::KEEP_IN_LOCAL_TCX;
            }
            ty::ReLateBound(..) => { }
            ty::ReEarlyBound(..) => { flags = flags | TypeFlags::HAS_RE_EARLY_BOUND; }
            ty::ReStatic | ty::ReErased => { }
            _ => { flags = flags | TypeFlags::HAS_FREE_REGIONS; }
        }

        match *self {
            ty::ReStatic | ty::ReEmpty | ty::ReErased => (),
            _ => flags = flags | TypeFlags::HAS_LOCAL_NAMES,
        }

        debug!("type_flags({:?}) = {:?}", self, flags);

        flags
    }
962 963 964
}

// Type utilities
965
impl<'a, 'gcx, 'tcx> TyS<'tcx> {
966 967 968 969 970 971 972
    pub fn as_opt_param_ty(&self) -> Option<ty::ParamTy> {
        match self.sty {
            ty::TyParam(ref d) => Some(d.clone()),
            _ => None,
        }
    }

973 974
    pub fn is_nil(&self) -> bool {
        match self.sty {
A
Andrew Cann 已提交
975
            TyTuple(ref tys, _) => tys.is_empty(),
T
Tshepang Lekhonkhobe 已提交
976
            _ => false,
977 978 979
        }
    }

A
Andrew Cann 已提交
980 981 982 983 984 985 986
    pub fn is_never(&self) -> bool {
        match self.sty {
            TyNever => true,
            _ => false,
        }
    }

987 988 989 990 991 992 993 994 995
    // Test whether this is a `()` which was produced by defaulting a
    // diverging type variable with feature(never_type) disabled.
    pub fn is_defaulted_unit(&self) -> bool {
        match self.sty {
            TyTuple(_, true) => true,
            _ => false,
        }
    }

A
Andrew Cann 已提交
996
    /// Checks whether a type is visibly uninhabited from a particular module.
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    /// # Example
    /// ```rust
    /// enum Void {}
    /// mod a {
    ///     pub mod b {
    ///         pub struct SecretlyUninhabited {
    ///             _priv: !,
    ///         }
    ///     }
    /// }
    ///
    /// mod c {
    ///     pub struct AlsoSecretlyUninhabited {
    ///         _priv: Void,
    ///     }
    ///     mod d {
    ///     }
    /// }
    ///
    /// struct Foo {
    ///     x: a::b::SecretlyUninhabited,
    ///     y: c::AlsoSecretlyUninhabited,
    /// }
    /// ```
    /// In this code, the type `Foo` will only be visibly uninhabited inside the
    /// modules b, c and d. This effects pattern-matching on `Foo` or types that
    /// contain `Foo`.
A
Andrew Cann 已提交
1024
    ///
1025 1026 1027 1028 1029 1030 1031
    /// # Example
    /// ```rust
    /// let foo_result: Result<T, Foo> = ... ;
    /// let Ok(t) = foo_result;
    /// ```
    /// This code should only compile in modules where the uninhabitedness of Foo is
    /// visible.
A
Andrew Cann 已提交
1032
    pub fn is_uninhabited_from(&self, module: DefId, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
1033 1034
        let mut visited = FxHashMap::default();
        let forest = self.uninhabited_from(&mut visited, tcx);
1035

1036 1037 1038 1039 1040 1041
        // To check whether this type is uninhabited at all (not just from the
        // given node) you could check whether the forest is empty.
        // ```
        // forest.is_empty()
        // ```
        forest.contains(tcx, module)
1042 1043
    }

1044 1045 1046 1047 1048 1049 1050
    pub fn is_primitive(&self) -> bool {
        match self.sty {
            TyBool | TyChar | TyInt(_) | TyUint(_) | TyFloat(_) => true,
            _ => false,
        }
    }

1051 1052 1053
    pub fn is_ty_var(&self) -> bool {
        match self.sty {
            TyInfer(TyVar(_)) => true,
T
Tshepang Lekhonkhobe 已提交
1054
            _ => false,
1055 1056 1057
        }
    }

1058
    pub fn is_phantom_data(&self) -> bool {
1059
        if let TyAdt(def, _) = self.sty {
1060 1061 1062 1063 1064 1065
            def.is_phantom_data()
        } else {
            false
        }
    }

1066 1067
    pub fn is_bool(&self) -> bool { self.sty == TyBool }

1068
    pub fn is_param(&self, index: u32) -> bool {
1069
        match self.sty {
1070
            ty::TyParam(ref data) => data.idx == index,
1071 1072 1073 1074
            _ => false,
        }
    }

1075 1076
    pub fn is_self(&self) -> bool {
        match self.sty {
1077
            TyParam(ref p) => p.is_self(),
T
Tshepang Lekhonkhobe 已提交
1078
            _ => false,
1079 1080 1081
        }
    }

1082
    pub fn is_slice(&self) -> bool {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        match self.sty {
            TyRawPtr(mt) | TyRef(_, mt) => match mt.ty.sty {
                TySlice(_) | TyStr => true,
                _ => false,
            },
            _ => false
        }
    }

    pub fn is_structural(&self) -> bool {
        match self.sty {
1094
            TyAdt(..) | TyTuple(..) | TyArray(..) | TyClosure(..) => true,
T
Tshepang Lekhonkhobe 已提交
1095
            _ => self.is_slice() | self.is_trait(),
1096 1097 1098 1099 1100 1101
        }
    }

    #[inline]
    pub fn is_simd(&self) -> bool {
        match self.sty {
1102
            TyAdt(def, _) => def.repr.simd(),
T
Tshepang Lekhonkhobe 已提交
1103
            _ => false,
1104 1105 1106
        }
    }

1107
    pub fn sequence_element_type(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
1108 1109
        match self.sty {
            TyArray(ty, _) | TySlice(ty) => ty,
1110
            TyStr => tcx.mk_mach_uint(ast::UintTy::U8),
1111
            _ => bug!("sequence_element_type called on non-sequence value: {}", self),
1112 1113 1114
        }
    }

1115
    pub fn simd_type(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
1116
        match self.sty {
1117
            TyAdt(def, substs) => {
1118
                def.struct_variant().fields[0].ty(tcx, substs)
1119
            }
1120
            _ => bug!("simd_type called on invalid type")
1121 1122 1123
        }
    }

1124
    pub fn simd_size(&self, _cx: TyCtxt) -> usize {
1125
        match self.sty {
1126
            TyAdt(def, _) => def.struct_variant().fields.len(),
1127
            _ => bug!("simd_size called on invalid type")
1128 1129 1130 1131 1132 1133
        }
    }

    pub fn is_region_ptr(&self) -> bool {
        match self.sty {
            TyRef(..) => true,
T
Tshepang Lekhonkhobe 已提交
1134
            _ => false,
1135 1136 1137
        }
    }

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    pub fn is_mutable_pointer(&self) -> bool {
        match self.sty {
            TyRawPtr(tnm) | TyRef(_, tnm) => if let hir::Mutability::MutMutable = tnm.mutbl {
                true
            } else {
                false
            },
            _ => false
        }
    }

1149 1150 1151
    pub fn is_unsafe_ptr(&self) -> bool {
        match self.sty {
            TyRawPtr(_) => return true,
T
Tshepang Lekhonkhobe 已提交
1152
            _ => return false,
1153 1154 1155
        }
    }

1156
    pub fn is_box(&self) -> bool {
1157
        match self.sty {
1158 1159 1160 1161 1162 1163 1164
            TyAdt(def, _) => def.is_box(),
            _ => false,
        }
    }

    pub fn boxed_ty(&self) -> Ty<'tcx> {
        match self.sty {
V
Vadim Petrochenkov 已提交
1165
            TyAdt(def, substs) if def.is_box() => substs.type_at(0),
1166
            _ => bug!("`boxed_ty` is called on non-box type {:?}", self),
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        }
    }

    /*
     A scalar type is one that denotes an atomic datum, with no sub-components.
     (A TyRawPtr is scalar because it represents a non-managed pointer, so its
     contents are abstract to rustc.)
    */
    pub fn is_scalar(&self) -> bool {
        match self.sty {
            TyBool | TyChar | TyInt(_) | TyFloat(_) | TyUint(_) |
            TyInfer(IntVar(_)) | TyInfer(FloatVar(_)) |
1179
            TyFnDef(..) | TyFnPtr(_) | TyRawPtr(_) => true,
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
            _ => false
        }
    }

    /// Returns true if this type is a floating point type and false otherwise.
    pub fn is_floating_point(&self) -> bool {
        match self.sty {
            TyFloat(_) |
            TyInfer(FloatVar(_)) => true,
            _ => false,
        }
    }

    pub fn is_trait(&self) -> bool {
        match self.sty {
1195
            TyDynamic(..) => true,
T
Tshepang Lekhonkhobe 已提交
1196
            _ => false,
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        }
    }

    pub fn is_integral(&self) -> bool {
        match self.sty {
            TyInfer(IntVar(_)) | TyInt(_) | TyUint(_) => true,
            _ => false
        }
    }

    pub fn is_fresh(&self) -> bool {
        match self.sty {
            TyInfer(FreshTy(_)) => true,
            TyInfer(FreshIntTy(_)) => true,
            TyInfer(FreshFloatTy(_)) => true,
T
Tshepang Lekhonkhobe 已提交
1212
            _ => false,
1213 1214 1215 1216 1217
        }
    }

    pub fn is_uint(&self) -> bool {
        match self.sty {
1218
            TyInfer(IntVar(_)) | TyUint(ast::UintTy::Us) => true,
1219 1220 1221 1222 1223 1224 1225
            _ => false
        }
    }

    pub fn is_char(&self) -> bool {
        match self.sty {
            TyChar => true,
T
Tshepang Lekhonkhobe 已提交
1226
            _ => false,
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        }
    }

    pub fn is_fp(&self) -> bool {
        match self.sty {
            TyInfer(FloatVar(_)) | TyFloat(_) => true,
            _ => false
        }
    }

    pub fn is_numeric(&self) -> bool {
        self.is_integral() || self.is_fp()
    }

    pub fn is_signed(&self) -> bool {
        match self.sty {
            TyInt(_) => true,
T
Tshepang Lekhonkhobe 已提交
1244
            _ => false,
1245 1246 1247 1248 1249
        }
    }

    pub fn is_machine(&self) -> bool {
        match self.sty {
1250
            TyInt(ast::IntTy::Is) | TyUint(ast::UintTy::Us) => false,
1251
            TyInt(..) | TyUint(..) | TyFloat(..) => true,
T
Tshepang Lekhonkhobe 已提交
1252
            _ => false,
1253 1254 1255
        }
    }

1256 1257 1258 1259 1260 1261 1262
    pub fn has_concrete_skeleton(&self) -> bool {
        match self.sty {
            TyParam(_) | TyInfer(_) | TyError => false,
            _ => true,
        }
    }

1263 1264 1265 1266 1267 1268 1269 1270
    // Returns the type and mutability of *ty.
    //
    // The parameter `explicit` indicates if this is an *explicit* dereference.
    // Some types---notably unsafe ptrs---can only be dereferenced explicitly.
    pub fn builtin_deref(&self, explicit: bool, pref: ty::LvaluePreference)
        -> Option<TypeAndMut<'tcx>>
    {
        match self.sty {
1271
            TyAdt(def, _) if def.is_box() => {
1272
                Some(TypeAndMut {
1273
                    ty: self.boxed_ty(),
1274 1275 1276 1277 1278 1279 1280 1281 1282
                    mutbl: if pref == ty::PreferMutLvalue {
                        hir::MutMutable
                    } else {
                        hir::MutImmutable
                    },
                })
            },
            TyRef(_, mt) => Some(mt),
            TyRawPtr(mt) if explicit => Some(mt),
T
Tshepang Lekhonkhobe 已提交
1283
            _ => None,
1284 1285 1286 1287 1288 1289 1290
        }
    }

    // Returns the type of ty[i]
    pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
        match self.sty {
            TyArray(ty, _) | TySlice(ty) => Some(ty),
T
Tshepang Lekhonkhobe 已提交
1291
            _ => None,
1292 1293 1294
        }
    }

1295
    pub fn fn_sig(&self) -> PolyFnSig<'tcx> {
1296
        match self.sty {
1297
            TyFnDef(.., f) | TyFnPtr(f) => f,
1298
            _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self)
1299 1300 1301 1302
        }
    }

    // Type accessors for substructures of types
1303
    pub fn fn_args(&self) -> ty::Binder<&'tcx [Ty<'tcx>]> {
1304
        self.fn_sig().inputs()
1305 1306
    }

1307
    pub fn fn_ret(&self) -> Binder<Ty<'tcx>> {
1308 1309 1310 1311 1312
        self.fn_sig().output()
    }

    pub fn is_fn(&self) -> bool {
        match self.sty {
1313
            TyFnDef(..) | TyFnPtr(_) => true,
T
Tshepang Lekhonkhobe 已提交
1314
            _ => false,
1315 1316 1317 1318 1319
        }
    }

    pub fn ty_to_def_id(&self) -> Option<DefId> {
        match self.sty {
1320
            TyDynamic(ref tt, ..) => tt.principal().map(|p| p.def_id()),
1321
            TyAdt(def, _) => Some(def.did),
1322
            TyClosure(id, _) => Some(id),
T
Tshepang Lekhonkhobe 已提交
1323
            _ => None,
1324 1325 1326
        }
    }

1327
    pub fn ty_adt_def(&self) -> Option<&'tcx AdtDef> {
1328
        match self.sty {
1329
            TyAdt(adt, _) => Some(adt),
T
Tshepang Lekhonkhobe 已提交
1330
            _ => None,
1331 1332
        }
    }
1333 1334 1335 1336

    /// Returns the regions directly referenced from this type (but
    /// not types reachable from this type via `walk_tys`). This
    /// ignores late-bound regions binders.
1337
    pub fn regions(&self) -> Vec<&'tcx ty::Region> {
1338 1339
        match self.sty {
            TyRef(region, _) => {
1340
                vec![region]
1341
            }
1342 1343 1344 1345 1346
            TyDynamic(ref obj, region) => {
                let mut v = vec![region];
                if let Some(p) = obj.principal() {
                    v.extend(p.skip_binder().substs.regions());
                }
1347 1348
                v
            }
1349
            TyAdt(_, substs) | TyAnon(_, substs) => {
1350
                substs.regions().collect()
1351 1352
            }
            TyClosure(_, ref substs) => {
1353
                substs.substs.regions().collect()
1354 1355
            }
            TyProjection(ref data) => {
1356
                data.trait_ref.substs.regions().collect()
1357
            }
1358 1359
            TyFnDef(..) |
            TyFnPtr(_) |
1360 1361 1362 1363 1364 1365
            TyBool |
            TyChar |
            TyInt(_) |
            TyUint(_) |
            TyFloat(_) |
            TyStr |
V
Vadim Petrochenkov 已提交
1366
            TyArray(..) |
1367 1368
            TySlice(_) |
            TyRawPtr(_) |
A
Andrew Cann 已提交
1369
            TyNever |
A
Andrew Cann 已提交
1370
            TyTuple(..) |
1371 1372 1373 1374 1375 1376 1377
            TyParam(_) |
            TyInfer(_) |
            TyError => {
                vec![]
            }
        }
    }
1378
}