mod.rs 101.1 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use middle::const_val::ConstVal;
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
J
John Kåre Alsaker 已提交
29
use mir::GeneratorLayout;
30
use session::CrateDisambiguator;
31 32
use traits;
use ty;
33
use ty::subst::{Subst, Substs};
34
use ty::util::IntTypeExt;
35
use ty::walk::TypeWalker;
A
Ariel Ben-Yehuda 已提交
36 37
use util::common::ErrorReported;
use util::nodemap::{NodeSet, DefIdMap, FxHashMap, FxHashSet};
38

39
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
40
use std::cell::RefCell;
41
use std::cmp;
42
use std::fmt;
43
use std::hash::{Hash, Hasher};
A
Ariel Ben-Yehuda 已提交
44
use std::iter::FromIterator;
45
use std::ops::Deref;
46
use rustc_data_structures::sync::Lrc;
47
use std::slice;
48
use std::vec::IntoIter;
49
use std::mem;
J
Jeffrey Seyfried 已提交
50
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
51
use syntax::attr;
J
Jeffrey Seyfried 已提交
52
use syntax::ext::hygiene::{Mark, SyntaxContext};
53
use syntax::symbol::{Symbol, InternedString};
54
use syntax_pos::{DUMMY_SP, Span};
55
use rustc_const_math::ConstInt;
56

57
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
58 59
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
60

61
use hir;
62

63
pub use self::sty::{Binder, DebruijnIndex};
J
John Kåre Alsaker 已提交
64
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
65
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
J
John Kåre Alsaker 已提交
66
pub use self::sty::{ClosureSubsts, GeneratorInterior, TypeAndMut};
67
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
68
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
69
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
70
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
71
pub use self::sty::RegionKind;
72
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
73 74
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
75
pub use self::sty::RegionKind::*;
76 77
pub use self::sty::TypeVariants::*;

78 79 80
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

81
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
82
pub use self::context::{Lift, TypeckTables};
83

84 85
pub use self::instance::{Instance, InstanceDef};

86
pub use self::trait_def::TraitDef;
87

88 89
pub use self::maps::queries;

90
pub mod adjustment;
91
pub mod binding;
92
pub mod cast;
93
#[macro_use]
94
pub mod codec;
95
pub mod error;
96
mod erase_regions;
97 98
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
99
pub mod inhabitedness;
100
pub mod item_path;
101
pub mod layout;
102
pub mod _match;
103
pub mod maps;
104 105
pub mod outlives;
pub mod relate;
106
pub mod steal;
107
pub mod subst;
108
pub mod trait_def;
109 110
pub mod walk;
pub mod wf;
111
pub mod util;
112

113 114
mod context;
mod flags;
115
mod instance;
116 117 118
mod structural_impls;
mod sty;

119
// Data types
120

121 122
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
123 124 125
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
126
#[derive(Clone)]
127
pub struct CrateAnalysis {
128
    pub access_levels: Lrc<AccessLevels>,
129
    pub name: String,
130
    pub glob_map: Option<hir::GlobMap>,
131 132
}

133 134 135 136 137
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
138
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
139
    pub export_map: ExportMap,
140 141
}

142
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
143
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
144 145
    TraitContainer(DefId),
    ImplContainer(DefId),
146 147
}

148
impl AssociatedItemContainer {
149 150 151 152 153 154 155 156 157
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
158
    pub fn id(&self) -> DefId {
159 160 161 162 163 164 165
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
166 167 168 169 170 171 172 173 174 175 176
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
177
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
178 179 180 181 182 183 184
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
185

186 187 188 189
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
190

191
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
192 193 194 195 196
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
197

198 199 200 201 202 203
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
204 205
        }
    }
A
Andrew Cann 已提交
206 207 208 209 210 211 212

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
213
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
214 215 216
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
217 218 219 220 221 222 223 224

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
225
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
226 227 228 229 230 231 232
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
233 234
}

235
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
236 237 238 239
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
240
    Restricted(DefId),
241
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
242
    Invisible,
243 244
}

245 246
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
261 262
}

263 264 265
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
266 267 268
    }
}

269
impl Visibility {
270
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
271 272
        match *visibility {
            hir::Public => Visibility::Public,
273
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
274
            hir::Visibility::Restricted { ref path, .. } => match path.def {
275 276
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
277
                Def::Err => Visibility::Public,
278
                def => Visibility::Restricted(def.def_id()),
279
            },
280
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
281
                Visibility::Restricted(tcx.hir.get_module_parent(id))
282
            }
283 284
        }
    }
285 286

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
287
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
288 289 290 291
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
292
            Visibility::Invisible => return false,
293
            // Restricted items are visible in an arbitrary local module.
294
            Visibility::Restricted(other) if other.krate != module.krate => return false,
295 296 297
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
298
        tree.is_descendant_of(module, restriction)
299
    }
300 301

    /// Returns true if this visibility is at least as accessible as the given visibility
302
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
303 304
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
305
            Visibility::Invisible => return true,
306 307 308
            Visibility::Restricted(module) => module,
        };

309
        self.is_accessible_from(vis_restriction, tree)
310
    }
311 312 313 314 315 316 317 318 319

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
320 321
}

322
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
323
pub enum Variance {
324 325 326 327
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
328
}
329

330 331 332 333
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
334
/// `tcx.variances_of()` to get the variance for a *particular*
335 336 337 338 339
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
340
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
341 342

    /// An empty vector, useful for cloning.
343
    pub empty_variance: Lrc<Vec<ty::Variance>>,
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

406 407 408
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
409
pub struct CReaderCacheKey {
410 411 412 413
    pub cnum: CrateNum,
    pub pos: usize,
}

414 415 416 417
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
418
bitflags! {
419 420 421 422 423 424
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
425 426 427 428 429

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
430
        const HAS_RE_EARLY_BOUND = 1 << 5;
431 432 433

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
434
        const HAS_FREE_REGIONS   = 1 << 6;
435 436

        /// Is an error type reachable?
437 438
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
439 440

        // FIXME: Rename this to the actual property since it's used for generators too
441
        const HAS_TY_CLOSURE     = 1 << 9;
442 443 444

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
445
        const HAS_LOCAL_NAMES    = 1 << 10;
446

447 448
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
449
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
450

451 452
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
453
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
454

455 456
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
457
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
458 459

        // Flags representing the nominal content of a type,
460 461
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
462 463 464 465
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
466
                                  TypeFlags::HAS_RE_SKOL.bits |
467 468
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
469
                                  TypeFlags::HAS_TY_ERR.bits |
470
                                  TypeFlags::HAS_PROJECTION.bits |
471
                                  TypeFlags::HAS_TY_CLOSURE.bits |
472
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
473
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits;
474
    }
475 476
}

477
pub struct TyS<'tcx> {
478
    pub sty: TypeVariants<'tcx>,
479
    pub flags: TypeFlags,
480 481

    // the maximal depth of any bound regions appearing in this type.
482
    region_depth: u32,
483 484
}

485
impl<'tcx> PartialEq for TyS<'tcx> {
486
    #[inline]
487 488 489 490 491
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
492
impl<'tcx> Eq for TyS<'tcx> {}
493

A
Alex Crichton 已提交
494 495
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
496
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
497 498
    }
}
499

G
Guillaume Gomez 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
            TypeVariants::TyRef(_, x) => x.ty.is_primitive_ty(),
            _ => false,
        }
    }
516 517 518 519 520 521 522 523

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
524
            TypeVariants::TyInfer(..) |
525 526 527 528
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
529 530
}

531
impl<'gcx> HashStable<StableHashingContext<'gcx>> for ty::TyS<'gcx> {
532
    fn hash_stable<W: StableHasherResult>(&self,
533
                                          hcx: &mut StableHashingContext<'gcx>,
534 535 536 537 538 539 540 541 542 543 544 545 546 547
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

548
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
549

550 551
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
552

A
Adam Perry 已提交
553
/// A wrapper for slices with the additional invariant
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

592 593 594 595 596 597 598 599
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
600 601 602
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
603
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
604
pub struct UpvarId {
605
    pub var_id: hir::HirId,
606
    pub closure_expr_id: LocalDefId,
607 608
}

J
Jorge Aparicio 已提交
609
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
610 611 612 613 614 615
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
616
    /// implicit closure bindings. It is needed when the closure
617 618
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
619
    ///    let x: &mut isize = ...;
620 621 622 623 624
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
625 626
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
627 628 629 630 631 632 633
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
634 635
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

655 656
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
657
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
658
pub enum UpvarCapture<'tcx> {
659 660 661 662 663 664
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
665
    ByRef(UpvarBorrow<'tcx>),
666 667
}

668
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
669
pub struct UpvarBorrow<'tcx> {
670 671 672
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
673
    pub kind: BorrowKind,
674 675

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
676
    pub region: ty::Region<'tcx>,
677 678
}

679
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
680

681 682
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
683
    pub def: Def,
684 685 686 687
    pub span: Span,
    pub ty: Ty<'tcx>,
}

688
#[derive(Clone, Copy, PartialEq, Eq)]
689
pub enum IntVarValue {
690 691
    IntType(ast::IntTy),
    UintType(ast::UintTy),
692 693
}

694 695 696
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

697 698
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
699
    pub name: Name,
N
Niko Matsakis 已提交
700
    pub def_id: DefId,
701
    pub index: u32,
702 703
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
704 705 706 707 708

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
709 710

    pub synthetic: Option<hir::SyntheticTyParamKind>,
711 712
}

713 714
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
715
    pub name: Name,
N
Niko Matsakis 已提交
716
    pub def_id: DefId,
717
    pub index: u32,
718 719 720 721 722

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
723 724
}

725
impl RegionParameterDef {
726 727
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
728
            def_id: self.def_id,
729 730
            index: self.index,
            name: self.name,
731
        }
732
    }
733

734 735 736 737 738 739
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
740
    pub fn to_bound_region(&self) -> ty::BoundRegion {
741
        ty::BoundRegion::BrNamed(self.def_id, self.name)
742
    }
743 744 745
}

/// Information about the formal type/lifetime parameters associated
746
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
747 748 749 750 751 752 753
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
754
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
755
pub struct Generics {
756 757 758
    pub parent: Option<DefId>,
    pub parent_regions: u32,
    pub parent_types: u32,
759
    pub regions: Vec<RegionParameterDef>,
760 761
    pub types: Vec<TypeParameterDef>,

762 763
    /// Reverse map to each `TypeParameterDef`'s `index` field
    pub type_param_to_index: FxHashMap<DefId, u32>,
764

765
    pub has_self: bool,
766
    pub has_late_bound_regions: Option<Span>,
767 768
}

769
impl<'a, 'gcx, 'tcx> Generics {
770 771 772 773 774 775 776 777 778 779 780
    pub fn parent_count(&self) -> usize {
        self.parent_regions as usize + self.parent_types as usize
    }

    pub fn own_count(&self) -> usize {
        self.regions.len() + self.types.len()
    }

    pub fn count(&self) -> usize {
        self.parent_count() + self.own_count()
    }
781

782 783 784 785 786 787 788 789 790 791 792
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
        if let Some(index) = param.index.checked_sub(self.parent_count() as u32) {
            &self.regions[index as usize - self.has_self as usize]
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
793 794
    }

A
Ariel Ben-Yehuda 已提交
795
    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
796 797
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
798
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
A
Ariel Ben-Yehuda 已提交
799
                      -> &TypeParameterDef {
800
        if let Some(idx) = param.idx.checked_sub(self.parent_count() as u32) {
A
Ariel Ben-Yehuda 已提交
801 802
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
803
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
804 805
            // for the regions:
            //
806 807 808 809 810 811 812 813 814 815 816
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
817 818 819 820 821 822 823
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
824 825 826 827
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
A
Ariel Ben-Yehuda 已提交
828
            let type_param_offset = self.regions.len();
829 830 831 832

            let has_self = self.has_self && self.parent.is_none();
            let is_separated_self = type_param_offset != 0 && idx == 0 && has_self;

A
Ariel Ben-Yehuda 已提交
833
            if let Some(idx) = (idx as usize).checked_sub(type_param_offset) {
834
                assert!(!is_separated_self, "found a Self after type_param_offset");
A
Ariel Ben-Yehuda 已提交
835
                &self.types[idx]
A
Ariel Ben-Yehuda 已提交
836
            } else {
837
                assert!(is_separated_self, "non-Self param before type_param_offset");
A
Ariel Ben-Yehuda 已提交
838
                &self.types[0]
A
Ariel Ben-Yehuda 已提交
839
            }
840 841 842 843
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
844
    }
845 846
}

847
/// Bounds on generics.
848
#[derive(Clone, Default)]
849
pub struct GenericPredicates<'tcx> {
850
    pub parent: Option<DefId>,
851
    pub predicates: Vec<Predicate<'tcx>>,
852 853
}

854 855 856
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

857 858
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
859
                       -> InstantiatedPredicates<'tcx> {
860 861 862 863 864 865
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
866
        InstantiatedPredicates {
867 868 869 870 871 872 873 874
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
875
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
876
        }
877
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
878
    }
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

895
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
896 897 898
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
899
        assert_eq!(self.parent, None);
900
        InstantiatedPredicates {
901
            predicates: self.predicates.iter().map(|pred| {
902
                pred.subst_supertrait(tcx, poly_trait_ref)
903
            }).collect()
904 905
        }
    }
906 907
}

908
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
909
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
910 911
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
912
    /// would be the type parameters.
913
    Trait(PolyTraitPredicate<'tcx>),
914

N
Niko Matsakis 已提交
915
    /// where `T1 == T2`.
916
    Equate(PolyEquatePredicate<'tcx>),
917 918

    /// where 'a : 'b
919
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
920 921

    /// where T : 'a
922
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
923

N
Niko Matsakis 已提交
924 925
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
926
    Projection(PolyProjectionPredicate<'tcx>),
927 928 929 930 931

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
932
    ObjectSafe(DefId),
933

934 935 936
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
937
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
938 939 940

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
941 942 943

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
944 945
}

946 947 948 949 950 951
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

952
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
953
    /// Performs a substitution suitable for going from a
954 955 956 957
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
958
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        let substs = &trait_ref.0.substs;
        match *self {
            Predicate::Trait(ty::Binder(ref data)) =>
                Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
            Predicate::Equate(ty::Binder(ref data)) =>
                Predicate::Equate(ty::Binder(data.subst(tcx, substs))),
N
Niko Matsakis 已提交
1028 1029
            Predicate::Subtype(ty::Binder(ref data)) =>
                Predicate::Subtype(ty::Binder(data.subst(tcx, substs))),
1030 1031 1032 1033 1034 1035
            Predicate::RegionOutlives(ty::Binder(ref data)) =>
                Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::TypeOutlives(ty::Binder(ref data)) =>
                Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::Projection(ty::Binder(ref data)) =>
                Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
1036 1037 1038 1039
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1040 1041
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1042 1043
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1044 1045 1046 1047
        }
    }
}

1048
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1049
pub struct TraitPredicate<'tcx> {
1050
    pub trait_ref: TraitRef<'tcx>
1051 1052 1053 1054
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1055
    pub fn def_id(&self) -> DefId {
1056 1057 1058
        self.trait_ref.def_id
    }

1059
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1060
        self.trait_ref.input_types()
1061 1062 1063 1064 1065 1066 1067 1068
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1069
    pub fn def_id(&self) -> DefId {
1070
        // ok to skip binder since trait def-id does not care about regions
1071 1072
        self.0.def_id()
    }
1073 1074
}

1075
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1076 1077 1078
pub struct EquatePredicate<'tcx>(pub Ty<'tcx>, pub Ty<'tcx>); // `0 == 1`
pub type PolyEquatePredicate<'tcx> = ty::Binder<EquatePredicate<'tcx>>;

1079
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1080 1081
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
N
Niko Matsakis 已提交
1082 1083 1084
pub type PolyRegionOutlivesPredicate<'tcx> = PolyOutlivesPredicate<ty::Region<'tcx>,
                                                                   ty::Region<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
1085

1086
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1087 1088 1089 1090 1091 1092 1093
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1094 1095 1096 1097 1098 1099 1100 1101 1102
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1103 1104
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1105
/// instances to normalize the LHS.
1106
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1107 1108 1109 1110 1111 1112 1113
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1114
impl<'tcx> PolyProjectionPredicate<'tcx> {
1115 1116 1117 1118 1119 1120 1121
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        ty::Binder(self.0.projection_ty.trait_ref(tcx))
1122
    }
1123 1124 1125 1126

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
        Binder(self.skip_binder().ty) // preserves binding levels
    }
1127 1128
}

1129 1130 1131 1132
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1133
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1134 1135 1136 1137 1138 1139 1140 1141
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        assert!(!self.has_escaping_regions());
        ty::Binder(self.clone())
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1142
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1143 1144 1145
    }
}

1146 1147
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1148 1149
}

1150 1151
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        // we're about to add a binder, so let's check that we don't
        // accidentally capture anything, or else that might be some
        // weird debruijn accounting.
        assert!(!self.has_escaping_regions());

        ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
            trait_ref: self.clone()
        }))
    }
}

1163 1164
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1165
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1166 1167 1168
    }
}

1169 1170
impl<'tcx> ToPredicate<'tcx> for PolyEquatePredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1171 1172 1173 1174
        Predicate::Equate(self.clone())
    }
}

1175
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1176
    fn to_predicate(&self) -> Predicate<'tcx> {
1177 1178 1179 1180
        Predicate::RegionOutlives(self.clone())
    }
}

1181 1182
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1183 1184
        Predicate::TypeOutlives(self.clone())
    }
1185 1186
}

1187 1188
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1189 1190 1191 1192
        Predicate::Projection(self.clone())
    }
}

1193
impl<'tcx> Predicate<'tcx> {
1194 1195 1196 1197 1198 1199
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1200
                data.skip_binder().input_types().collect()
1201 1202 1203 1204
            }
            ty::Predicate::Equate(ty::Binder(ref data)) => {
                vec![data.0, data.1]
            }
N
Niko Matsakis 已提交
1205 1206 1207
            ty::Predicate::Subtype(ty::Binder(SubtypePredicate { a, b, a_is_expected: _ })) => {
                vec![a, b]
            }
1208 1209 1210 1211 1212 1213 1214
            ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
                vec![data.0]
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1215
                data.0.projection_ty.substs.types().chain(Some(data.0.ty)).collect()
1216
            }
1217 1218 1219 1220 1221 1222
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1223 1224
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1225
            }
1226 1227 1228
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1239
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1240 1241
        match *self {
            Predicate::Trait(ref t) => {
1242
                Some(t.to_poly_trait_ref())
1243
            }
1244
            Predicate::Projection(..) |
1245
            Predicate::Equate(..) |
N
Niko Matsakis 已提交
1246
            Predicate::Subtype(..) |
1247
            Predicate::RegionOutlives(..) |
1248 1249
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1250
            Predicate::ClosureKind(..) |
1251 1252
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1253 1254
                None
            }
1255 1256
        }
    }
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Equate(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1276 1277
}

S
Steve Klabnik 已提交
1278 1279
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1280 1281 1282 1283 1284
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1285 1286 1287 1288 1289 1290 1291 1292
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1293
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1294
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1295 1296
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1297
#[derive(Clone)]
1298
pub struct InstantiatedPredicates<'tcx> {
1299
    pub predicates: Vec<Predicate<'tcx>>,
1300 1301
}

1302 1303
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1304
        InstantiatedPredicates { predicates: vec![] }
1305 1306
    }

1307 1308
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1309
    }
1310 1311
}

N
Niko Matsakis 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1348
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1349 1350 1351 1352 1353
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1354
    pub const ROOT: UniverseIndex = UniverseIndex(0);
N
Niko Matsakis 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn from(v: u32) -> UniverseIndex {
        UniverseIndex(v)
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
N
Niko Matsakis 已提交
1381
    }
1382 1383 1384 1385 1386 1387 1388

    /// Gets the "depth" of this universe in the universe tree. This
    /// is not really useful except for e.g. the `HashStable`
    /// implementation
    pub fn depth(&self) -> u32 {
        self.0
    }
N
Niko Matsakis 已提交
1389 1390
}

1391
/// When type checking, we use the `ParamEnv` to track
1392 1393 1394
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1395
pub struct ParamEnv<'tcx> {
1396 1397
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1398
    /// into Obligations, and elaborated and normalized.
1399
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1400 1401 1402 1403 1404

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

    /// What is the innermost universe we have created? Starts out as
    /// `UniverseIndex::root()` but grows from there as we enter
    /// universal quantifiers.
    ///
    /// NB: At present, we exclude the universal quantifiers on the
    /// item we are type-checking, and just consider those names as
    /// part of the root universe. So this would only get incremented
    /// when we enter into a higher-ranked (`for<..>`) type or trait
    /// bound.
    pub universe: UniverseIndex,
1416
}
1417

1418
impl<'tcx> ParamEnv<'tcx> {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    /// Creates a suitable environment in which to perform trait
    /// queries on the given value. This will either be `self` *or*
    /// the empty environment, depending on whether `value` references
    /// type parameters that are in scope. (If it doesn't, then any
    /// judgements should be completely independent of the context,
    /// and hence we can safely use the empty environment so as to
    /// enable more sharing across functions.)
    ///
    /// NB: This is a mildly dubious thing to do, in that a function
    /// (or other environment) might have wacky where-clauses like
    /// `where Box<u32>: Copy`, which are clearly never
    /// satisfiable. The code will at present ignore these,
    /// effectively, when type-checking the body of said
    /// function. This preserves existing behavior in any
    /// case. --nmatsakis
1434
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1435 1436
        assert!(!value.needs_infer());
        if value.has_param_types() || value.has_self_ty() {
1437
            ParamEnvAnd {
1438
                param_env: self,
1439
                value,
1440 1441
            }
        } else {
1442
            ParamEnvAnd {
1443
                param_env: ParamEnv::empty(self.reveal),
1444
                value,
1445
            }
1446 1447 1448
        }
    }
}
1449

1450
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1451 1452
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1453
    pub value: T,
1454 1455
}

1456 1457
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1458
        (self.param_env, self.value)
1459
    }
1460 1461
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
impl<'gcx, T> HashStable<StableHashingContext<'gcx>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'gcx>>
{
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1478 1479 1480 1481 1482 1483
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1484
bitflags! {
1485 1486 1487 1488 1489 1490 1491
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1492 1493 1494 1495
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1496
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1497
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1498 1499 1500
    }
}

1501
#[derive(Debug)]
1502
pub struct VariantDef {
1503 1504
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1505 1506
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1507
    pub discr: VariantDiscr,
1508
    pub fields: Vec<FieldDef>,
1509
    pub ctor_kind: CtorKind,
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1525
#[derive(Debug)]
1526
pub struct FieldDef {
1527
    pub did: DefId,
1528
    pub name: Name,
1529
    pub vis: Visibility,
1530 1531
}

A
Ariel Ben-Yehuda 已提交
1532 1533 1534 1535
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1536
pub struct AdtDef {
1537
    pub did: DefId,
1538
    pub variants: Vec<VariantDef>,
1539
    flags: AdtFlags,
1540
    pub repr: ReprOptions,
1541 1542
}

1543 1544
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1545 1546 1547 1548
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1549
impl Eq for AdtDef {}
1550

1551
impl Hash for AdtDef {
1552 1553
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1554
        (self as *const AdtDef).hash(s)
1555 1556 1557
    }
}

1558
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1559
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1560 1561 1562 1563
        self.did.encode(s)
    }
}

1564
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1565

1566

1567
impl<'gcx> HashStable<StableHashingContext<'gcx>> for AdtDef {
1568
    fn hash_stable<W: StableHasherResult>(&self,
1569
                                          hcx: &mut StableHashingContext<'gcx>,
1570
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1571 1572 1573 1574
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1575

W
Wesley Wiser 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1597 1598 1599
    }
}

1600
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1601
pub enum AdtKind { Struct, Union, Enum }
1602

1603 1604
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1605 1606 1607 1608
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_PACKED          = 1 << 1;
        const IS_SIMD            = 1 << 2;
R
Robin Kruppe 已提交
1609
        const IS_TRANSPARENT     = 1 << 3;
1610
        // Internal only for now. If true, don't reorder fields.
R
Robin Kruppe 已提交
1611
        const IS_LINEAR          = 1 << 4;
1612 1613 1614 1615 1616

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_PACKED.bits |
                                   ReprFlags::IS_SIMD.bits |
1617
                                   ReprFlags::IS_LINEAR.bits;
1618 1619 1620 1621 1622 1623 1624 1625 1626
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1627 1628 1629 1630
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1631
    pub align: u32,
1632
    pub flags: ReprFlags,
1633 1634
}

1635
impl_stable_hash_for!(struct ReprOptions {
1636
    align,
1637
    int,
1638
    flags
1639 1640
});

1641
impl ReprOptions {
1642
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1643 1644
        let mut flags = ReprFlags::empty();
        let mut size = None;
1645
        let mut max_align = 0;
1646 1647
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1648
                flags.insert(match r {
1649
                    attr::ReprC => ReprFlags::IS_C,
1650
                    attr::ReprPacked => ReprFlags::IS_PACKED,
R
Robin Kruppe 已提交
1651
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1652 1653 1654 1655 1656
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1657 1658 1659 1660
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1661
                });
1662 1663
            }
        }
1664

1665
        // This is here instead of layout because the choice must make it into metadata.
1666 1667 1668
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1669
        ReprOptions { int: size, align: max_align, flags: flags }
1670
    }
1671

1672 1673 1674 1675 1676 1677 1678
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
    pub fn packed(&self) -> bool { self.flags.contains(ReprFlags::IS_PACKED) }
    #[inline]
R
Robin Kruppe 已提交
1679 1680
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1681 1682
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1683
    pub fn discr_type(&self) -> attr::IntType {
1684
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1685
    }
1686 1687 1688 1689 1690

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1691
        self.c() || self.int.is_some()
1692
    }
1693 1694
}

1695
impl<'a, 'gcx, 'tcx> AdtDef {
1696
    fn new(tcx: TyCtxt,
1697
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1698
           kind: AdtKind,
1699 1700
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1701
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1702
        let attrs = tcx.get_attrs(did);
1703
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1704
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1705
        }
1706
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1707
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1708
        }
1709
        if Some(did) == tcx.lang_items().owned_box() {
1710 1711
            flags = flags | AdtFlags::IS_BOX;
        }
1712 1713 1714
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1715 1716 1717 1718
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1719
        }
1720
        AdtDef {
1721 1722 1723 1724
            did,
            variants,
            flags,
            repr,
1725 1726 1727
        }
    }

1728 1729 1730 1731 1732 1733 1734
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1735
        self.flags.intersects(AdtFlags::IS_UNION)
1736 1737 1738 1739
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1740
        self.flags.intersects(AdtFlags::IS_ENUM)
1741 1742
    }

1743 1744 1745 1746 1747
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1748
    /// Returns the kind of the ADT - Struct or Enum.
1749
    #[inline]
A
Ariel Ben-Yehuda 已提交
1750
    pub fn adt_kind(&self) -> AdtKind {
1751
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1752
            AdtKind::Enum
1753
        } else if self.is_union() {
1754
            AdtKind::Union
1755
        } else {
A
Ariel Ben-Yehuda 已提交
1756
            AdtKind::Struct
1757 1758 1759
        }
    }

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1776 1777
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1778 1779
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1780
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1781 1782
    }

A
Ariel Ben-Yehuda 已提交
1783
    /// Returns true if this is PhantomData<T>.
1784 1785
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1786
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1787 1788
    }

1789 1790 1791
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1792
        self.flags.intersects(AdtFlags::IS_BOX)
1793 1794
    }

A
Ariel Ben-Yehuda 已提交
1795
    /// Returns whether this type has a destructor.
1796 1797
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1798 1799
    }

1800 1801 1802
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1803
        &self.variants[0]
1804 1805 1806
    }

    #[inline]
1807
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1808
        tcx.predicates_of(self.did)
1809
    }
1810

A
Ariel Ben-Yehuda 已提交
1811 1812
    /// Returns an iterator over all fields contained
    /// by this ADT.
1813
    #[inline]
1814 1815
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1816 1817 1818 1819 1820 1821 1822
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1823
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1824 1825 1826 1827 1828 1829
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1830 1831 1832 1833 1834 1835 1836
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1837
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1838
        match def {
1839 1840
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1841
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1842
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1843 1844
        }
    }
1845

1846
    #[inline]
1847 1848
    pub fn discriminants(&'a self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                         -> impl Iterator<Item=ConstInt> + 'a {
1849
        let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
1850
        let repr_type = self.repr.discr_type();
1851 1852 1853 1854 1855
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
        let mut prev_discr = None::<ConstInt>;
        self.variants.iter().map(move |v| {
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr());
            if let VariantDiscr::Explicit(expr_did) = v.discr {
1856
                let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
1857
                match tcx.const_eval(param_env.and((expr_did, substs))) {
1858
                    Ok(&ty::Const { val: ConstVal::Integral(v), .. }) => {
1859 1860
                        discr = v;
                    }
1861 1862 1863 1864 1865 1866 1867
                    err => {
                        if !expr_did.is_local() {
                            span_bug!(tcx.def_span(expr_did),
                                "variant discriminant evaluation succeeded \
                                 in its crate but failed locally: {:?}", err);
                        }
                    }
1868 1869 1870 1871 1872 1873 1874 1875
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

1876 1877 1878 1879 1880 1881 1882 1883 1884
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
                                    -> ConstInt {
1885
        let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
        let repr_type = self.repr.discr_type();
        let mut explicit_value = repr_type.initial_discriminant(tcx.global_tcx());
        let mut explicit_index = variant_index;
        loop {
            match self.variants[explicit_index].discr {
                ty::VariantDiscr::Relative(0) => break,
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
                ty::VariantDiscr::Explicit(expr_did) => {
1896
                    let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
1897
                    match tcx.const_eval(param_env.and((expr_did, substs))) {
1898
                        Ok(&ty::Const { val: ConstVal::Integral(v), .. }) => {
1899 1900 1901
                            explicit_value = v;
                            break;
                        }
1902 1903 1904 1905 1906 1907 1908 1909 1910
                        err => {
                            if !expr_did.is_local() {
                                span_bug!(tcx.def_span(expr_did),
                                    "variant discriminant evaluation succeeded \
                                     in its crate but failed locally: {:?}", err);
                            }
                            if explicit_index == 0 {
                                break;
                            }
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
                            explicit_index -= 1;
                        }
                    }
                }
            }
        }
        let discr = explicit_value.to_u128_unchecked()
            .wrapping_add((variant_index - explicit_index) as u128);
        match repr_type {
            attr::UnsignedInt(ty) => {
                ConstInt::new_unsigned_truncating(discr, ty,
1922
                                                  tcx.sess.target.usize_ty)
1923 1924 1925
            }
            attr::SignedInt(ty) => {
                ConstInt::new_signed_truncating(discr as i128, ty,
1926
                                                tcx.sess.target.isize_ty)
1927 1928 1929 1930
            }
        }
    }

1931
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
1932
        tcx.adt_destructor(self.did)
1933 1934
    }

1935
    /// Returns a list of types such that `Self: Sized` if and only
1936
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
1937 1938 1939 1940 1941 1942 1943 1944
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
1945
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
1946
        match queries::adt_sized_constraint::try_get(tcx, DUMMY_SP, self.did) {
1947
            Ok(tys) => tys,
1948
            Err(mut bug) => {
1949 1950 1951 1952
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
1953 1954 1955 1956
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
1957
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
1958
            }
1959 1960
        }
    }
1961

1962 1963 1964 1965
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
1966 1967
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
1968
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
1969
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
1970
                vec![]
1971 1972
            }

1973 1974 1975 1976 1977 1978
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
1979
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
1980
                vec![ty]
1981 1982
            }

A
Andrew Cann 已提交
1983
            TyTuple(ref tys, _) => {
1984 1985
                match tys.last() {
                    None => vec![],
1986
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
1987
                }
1988 1989
            }

1990
            TyAdt(adt, substs) => {
1991
                // recursive case
1992
                let adt_tys = adt.sized_constraint(tcx);
1993
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
1994 1995 1996 1997 1998
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
1999 2000
            }

2001
            TyProjection(..) | TyAnon(..) => {
2002 2003
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2004
                vec![ty]
2005 2006 2007
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2008 2009 2010 2011
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2012
                let sized_trait = match tcx.lang_items().sized_trait() {
2013
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2014
                    _ => return vec![ty]
2015 2016 2017
                };
                let sized_predicate = Binder(TraitRef {
                    def_id: sized_trait,
2018
                    substs: tcx.mk_substs_trait(ty, &[])
2019
                }).to_predicate();
2020
                let predicates = tcx.predicates_of(self.did).predicates;
2021
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2022
                    vec![]
2023
                } else {
A
Ariel Ben-Yehuda 已提交
2024
                    vec![ty]
2025 2026 2027
                }
            }

A
Ariel Ben-Yehuda 已提交
2028
            TyInfer(..) => {
2029 2030 2031 2032 2033 2034 2035
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2036 2037
}

2038
impl<'a, 'gcx, 'tcx> VariantDef {
2039
    #[inline]
J
Jeffrey Seyfried 已提交
2040 2041
    pub fn find_field_named(&self, name: ast::Name) -> Option<&FieldDef> {
        self.index_of_field_named(name).map(|index| &self.fields[index])
2042 2043
    }

J
Jeffrey Seyfried 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
    pub fn index_of_field_named(&self, name: ast::Name) -> Option<usize> {
        if let Some(index) = self.fields.iter().position(|f| f.name == name) {
            return Some(index);
        }
        let mut ident = name.to_ident();
        while ident.ctxt != SyntaxContext::empty() {
            ident.ctxt.remove_mark();
            if let Some(field) = self.fields.iter().position(|f| f.name.to_ident() == ident) {
                return Some(field);
            }
        }
        None
2056 2057
    }

2058
    #[inline]
2059
    pub fn field_named(&self, name: ast::Name) -> &FieldDef {
2060 2061
        self.find_field_named(name).unwrap()
    }
2062 2063
}

2064
impl<'a, 'gcx, 'tcx> FieldDef {
2065
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2066
        tcx.type_of(self.did).subst(tcx, subst)
2067
    }
2068 2069
}

2070 2071 2072 2073 2074 2075
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2076
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2077
pub enum ClosureKind {
2078 2079 2080
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2081 2082 2083
    Fn,
    FnMut,
    FnOnce,
2084 2085
}

2086
impl<'a, 'tcx> ClosureKind {
2087 2088 2089
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2090
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2091 2092
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2093
            ClosureKind::FnMut => {
2094
                tcx.require_lang_item(FnMutTraitLangItem)
2095
            }
2096
            ClosureKind::FnOnce => {
2097
                tcx.require_lang_item(FnOnceTraitLangItem)
2098 2099 2100
            }
        }
    }
2101 2102 2103 2104 2105

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2106 2107 2108 2109 2110 2111
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2112 2113 2114
            _ => false,
        }
    }
2115 2116 2117 2118 2119 2120 2121 2122 2123

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2124
    }
2125 2126
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2140 2141
    }

2142 2143 2144
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2145
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2146
        walk::walk_shallow(self)
2147 2148
    }

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2163
    }
2164
}
2165

2166
impl BorrowKind {
2167
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2168
        match m {
2169 2170
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2171 2172
        }
    }
2173

2174 2175 2176 2177
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2178
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2179
        match self {
2180 2181
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2182 2183 2184 2185

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2186
            UniqueImmBorrow => hir::MutMutable,
2187
        }
2188
    }
2189

2190 2191 2192 2193 2194 2195
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2196 2197 2198
    }
}

2199 2200
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2201
    Owned(Lrc<[ast::Attribute]>),
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2216
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2217
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2218
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2219 2220
    }

N
Niko Matsakis 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
    pub fn body_owners(self) -> impl Iterator<Item = DefId> + 'a {
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2231
    pub fn expr_span(self, id: NodeId) -> Span {
2232
        match self.hir.find(id) {
2233
            Some(hir_map::NodeExpr(e)) => {
2234 2235 2236
                e.span
            }
            Some(f) => {
2237
                bug!("Node id {} is not an expr: {:?}", id, f);
2238 2239
            }
            None => {
2240
                bug!("Node id {} is not present in the node map", id);
2241
            }
2242
        }
2243 2244
    }

2245 2246
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2247
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2248
            .collect()
2249 2250
    }

A
Andrew Cann 已提交
2251 2252 2253 2254 2255 2256
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2257 2258 2259 2260 2261 2262 2263
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2264
            match self.describe_def(def_id).expect("no def for def-id") {
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2277 2278
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2279
                                           parent_vis: &hir::Visibility,
2280
                                           trait_item_ref: &hir::TraitItemRef)
2281
                                           -> AssociatedItem {
2282
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2283 2284 2285 2286
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2287
            }
2288
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2289 2290 2291
        };

        AssociatedItem {
2292
            name: trait_item_ref.name,
2293
            kind,
2294 2295
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2296
            defaultness: trait_item_ref.defaultness,
2297
            def_id,
2298 2299 2300 2301 2302 2303 2304 2305 2306
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2307
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2318
            kind,
2319 2320
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2321
            defaultness: impl_item_ref.defaultness,
2322
            def_id,
2323 2324 2325 2326 2327
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2328 2329 2330 2331 2332
    #[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
    pub fn associated_items(self, def_id: DefId)
                            -> impl Iterator<Item = ty::AssociatedItem> + 'a {
        let def_ids = self.associated_item_def_ids(def_id);
        (0..def_ids.len()).map(move |i| self.associated_item(def_ids[i]))
2333 2334
    }

2335 2336 2337
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2338
        if !self.features().overlapping_marker_traits {
2339 2340
            return false;
        }
2341 2342 2343 2344 2345 2346 2347 2348
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2349
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2350 2351
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2352 2353
    }

2354 2355
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2356
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2357
        match def {
2358
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2359
                let enum_did = self.parent_def_id(did).unwrap();
2360
                self.adt_def(enum_did).variant_with_id(did)
2361
            }
2362
            Def::Struct(did) | Def::Union(did) => {
2363
                self.adt_def(did).non_enum_variant()
2364 2365 2366
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2367
                self.adt_def(did).non_enum_variant()
2368 2369 2370 2371 2372
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2387
    pub fn item_name(self, id: DefId) -> InternedString {
2388
        if id.index == CRATE_DEF_INDEX {
2389
            self.original_crate_name(id.krate).as_str()
2390
        } else {
2391
            let def_key = self.def_key(id);
2392
            // The name of a StructCtor is that of its struct parent.
2393
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2394 2395 2396 2397 2398 2399 2400 2401 2402
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2403 2404 2405
        }
    }

2406 2407
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2408
                        -> &'gcx Mir<'gcx>
2409 2410
    {
        match instance {
N
Niko Matsakis 已提交
2411
            ty::InstanceDef::Item(did) => {
2412
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2413 2414 2415 2416 2417
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2418
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2419
            ty::InstanceDef::CloneShim(..) => {
2420
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2421
            }
2422 2423 2424
        }
    }

2425 2426
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2427 2428 2429 2430 2431
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2432 2433 2434
        }
    }

2435
    /// Get the attributes of a definition.
2436
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2437
        if let Some(id) = self.hir.as_local_node_id(did) {
2438
            Attributes::Borrowed(self.hir.attrs(id))
2439
        } else {
A
achernyak 已提交
2440
            Attributes::Owned(self.item_attrs(did))
2441
        }
2442 2443
    }

2444
    /// Determine whether an item is annotated with an attribute
2445
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2446
        attr::contains_name(&self.get_attrs(did), attr)
2447
    }
2448

2449 2450
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2451
        self.trait_def(trait_def_id).has_auto_impl
2452
    }
2453

J
John Kåre Alsaker 已提交
2454 2455 2456 2457
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2458 2459
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2460
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2461
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2462
    }
2463 2464 2465

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2466
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2467
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2468
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2469 2470 2471 2472 2473
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2474
            self.opt_associated_item(def_id)
2475 2476 2477
        };

        match item {
2478
            Some(trait_item) => {
2479
                match trait_item.container {
2480 2481 2482
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2483
            }
2484
            None => None
2485 2486 2487
        }
    }

2488 2489
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2490
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2491
        if impl_did.is_local() {
2492 2493
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2494
        } else {
2495
            Err(self.crate_name(impl_did.krate))
2496 2497
        }
    }
J
Jeffrey Seyfried 已提交
2498

2499 2500 2501 2502 2503 2504 2505
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
        let scope = match ident.ctxt.adjust(expansion) {
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2517
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2518 2519 2520 2521
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2522
}
2523

2524
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2525
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2526
        F: FnOnce(&[hir::Freevar]) -> T,
2527
    {
A
Alex Crichton 已提交
2528 2529
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2530
            None => f(&[]),
2531
            Some(d) => f(&d),
2532 2533
        }
    }
2534
}
2535 2536 2537 2538 2539 2540 2541 2542 2543

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2544
        hir::ItemImpl(.., ref impl_item_refs) => {
2545
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2546 2547
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2548 2549
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2550 2551 2552 2553
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2554
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2555 2556 2557
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2558 2559
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2560 2561 2562
            }
        }

2563
        _ => { }
2564
    }
2565 2566 2567 2568

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2569 2570
}

2571 2572
/// Calculates the Sized-constraint.
///
2573
/// In fact, there are only a few options for the types in the constraint:
2574 2575 2576 2577 2578 2579 2580 2581
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2582
                                  -> &'tcx [Ty<'tcx>] {
2583
    let def = tcx.adt_def(def_id);
2584

2585
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2586 2587
        v.fields.last()
    }).flat_map(|f| {
2588
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2589
    }).collect::<Vec<_>>());
2590

2591
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2592

2593
    result
2594 2595
}

A
Ariel Ben-Yehuda 已提交
2596 2597 2598 2599
/// Calculates the dtorck constraint for a type.
fn adt_dtorck_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                   def_id: DefId)
                                   -> DtorckConstraint<'tcx> {
2600
    let def = tcx.adt_def(def_id);
A
Ariel Ben-Yehuda 已提交
2601 2602 2603 2604 2605 2606 2607
    let span = tcx.def_span(def_id);
    debug!("dtorck_constraint: {:?}", def);

    if def.is_phantom_data() {
        let result = DtorckConstraint {
            outlives: vec![],
            dtorck_types: vec![
2608
                tcx.mk_param_from_def(&tcx.generics_of(def_id).types[0])
A
Ariel Ben-Yehuda 已提交
2609 2610 2611 2612 2613 2614 2615
           ]
        };
        debug!("dtorck_constraint: {:?} => {:?}", def, result);
        return result;
    }

    let mut result = def.all_fields()
2616
        .map(|field| tcx.type_of(field.did))
A
Ariel Ben-Yehuda 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
        .map(|fty| tcx.dtorck_constraint_for_ty(span, fty, 0, fty))
        .collect::<Result<DtorckConstraint, ErrorReported>>()
        .unwrap_or(DtorckConstraint::empty());
    result.outlives.extend(tcx.destructor_constraints(def));
    result.dedup();

    debug!("dtorck_constraint: {:?} => {:?}", def, result);

    result
}

2628 2629
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2630
                                     -> Lrc<Vec<DefId>> {
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2646
        hir::ItemTraitAlias(..) => vec![],
2647 2648
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2649
    Lrc::new(vec)
2650 2651
}

A
achernyak 已提交
2652
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2653
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2654 2655
}

A
achernyak 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2669
/// See `ParamEnv` struct def'n for details.
2670
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2671 2672
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2690
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2691 2692
                                             traits::Reveal::UserFacing,
                                             ty::UniverseIndex::ROOT);
2693 2694 2695 2696 2697 2698 2699

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2700

2701
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2702
                                 crate_num: CrateNum) -> CrateDisambiguator {
2703 2704 2705 2706
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2707 2708 2709 2710 2711 2712
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2713 2714 2715 2716 2717 2718 2719
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2720 2721 2722 2723
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2724 2725 2726
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2727 2728
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2729
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2730 2731 2732 2733
        _ => 1
    }
}

2734
pub fn provide(providers: &mut ty::maps::Providers) {
2735
    context::provide(providers);
2736
    erase_regions::provide(providers);
2737 2738
    layout::provide(providers);
    util::provide(providers);
2739 2740
    *providers = ty::maps::Providers {
        associated_item,
2741
        associated_item_def_ids,
2742
        adt_sized_constraint,
A
Ariel Ben-Yehuda 已提交
2743
        adt_dtorck_constraint,
A
achernyak 已提交
2744
        def_span,
2745
        param_env,
A
achernyak 已提交
2746
        trait_of_item,
2747
        crate_disambiguator,
2748
        original_crate_name,
2749
        crate_hash,
2750
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2751
        instance_def_size_estimate,
2752 2753 2754 2755
        ..*providers
    };
}

2756 2757 2758
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2759 2760
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2761 2762
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2763
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2764
}
A
Ariel Ben-Yehuda 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

/// A set of constraints that need to be satisfied in order for
/// a type to be valid for destruction.
#[derive(Clone, Debug)]
pub struct DtorckConstraint<'tcx> {
    /// Types that are required to be alive in order for this
    /// type to be valid for destruction.
    pub outlives: Vec<ty::subst::Kind<'tcx>>,
    /// Types that could not be resolved: projections and params.
    pub dtorck_types: Vec<Ty<'tcx>>,
}

impl<'tcx> FromIterator<DtorckConstraint<'tcx>> for DtorckConstraint<'tcx>
{
    fn from_iter<I: IntoIterator<Item=DtorckConstraint<'tcx>>>(iter: I) -> Self {
        let mut result = Self::empty();

        for constraint in iter {
            result.outlives.extend(constraint.outlives);
            result.dtorck_types.extend(constraint.dtorck_types);
        }

        result
    }
}


impl<'tcx> DtorckConstraint<'tcx> {
    fn empty() -> DtorckConstraint<'tcx> {
        DtorckConstraint {
            outlives: vec![],
            dtorck_types: vec![]
        }
    }

    fn dedup<'a>(&mut self) {
        let mut outlives = FxHashSet();
        let mut dtorck_types = FxHashSet();

        self.outlives.retain(|&val| outlives.replace(val).is_none());
        self.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none());
    }
}
2808

2809
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2810 2811 2812 2813 2814 2815
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2816 2817 2818 2819
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
impl Deref for SymbolName {
    type Target = str;

    fn deref(&self) -> &str { &self.name }
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}