process.rs 26.7 KB
Newer Older
A
Aaron Turon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Working with processes.

#![unstable(feature = "process", reason = "recently added via RFC 579")]
#![allow(non_upper_case_globals)]

use prelude::v1::*;
use io::prelude::*;

use ffi::AsOsStr;
use fmt;
use io::{self, Error, ErrorKind};
use path::AsPath;
use libc;
use sync::mpsc::{channel, Receiver};
use sys::pipe2::{self, AnonPipe};
use sys::process2::Process as ProcessImp;
use sys::process2::Command as CommandImp;
use sys::process2::ExitStatus as ExitStatusImp;
use sys_common::{AsInner, AsInnerMut};
A
Aaron Turon 已提交
30
use thread;
A
Aaron Turon 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

/// Representation of a running or exited child process.
///
/// This structure is used to represent and manage child processes. A child
/// process is created via the `Command` struct, which configures the spawning
/// process and can itself be constructed using a builder-style interface.
///
/// # Example
///
/// ```should_fail
/// # #![feature(process)]
///
/// use std::process::Command;
///
/// let output = Command::new("/bin/cat").arg("file.txt").output().unwrap_or_else(|e| {
///     panic!("failed to execute child: {}", e)
/// });
/// let contents = output.stdout;
/// assert!(output.status.success());
/// ```
pub struct Child {
    handle: ProcessImp,

    /// None until wait() or wait_with_output() is called.
    status: Option<ExitStatusImp>,

    /// The handle for writing to the child's stdin, if it has been captured
    pub stdin: Option<ChildStdin>,

    /// The handle for reading from the child's stdout, if it has been captured
    pub stdout: Option<ChildStdout>,

    /// The handle for reading from the child's stderr, if it has been captured
    pub stderr: Option<ChildStderr>,
}

/// A handle to a child procesess's stdin
pub struct ChildStdin {
    inner: AnonPipe
}

impl Write for ChildStdin {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

/// A handle to a child procesess's stdout
pub struct ChildStdout {
    inner: AnonPipe
}

impl Read for ChildStdout {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.read(buf)
    }
}

/// A handle to a child procesess's stderr
pub struct ChildStderr {
    inner: AnonPipe
}

impl Read for ChildStderr {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.read(buf)
    }
}

/// The `Command` type acts as a process builder, providing fine-grained control
/// over how a new process should be spawned. A default configuration can be
/// generated using `Command::new(program)`, where `program` gives a path to the
/// program to be executed. Additional builder methods allow the configuration
/// to be changed (for example, by adding arguments) prior to spawning:
///
/// ```
/// # #![feature(process)]
///
/// use std::process::Command;
///
/// let output = Command::new("sh").arg("-c").arg("echo hello").output().unwrap_or_else(|e| {
///   panic!("failed to execute process: {}", e)
/// });
/// let hello = output.stdout;
/// ```
pub struct Command {
    inner: CommandImp,

    // Details explained in the builder methods
    stdin: Option<StdioImp>,
    stdout: Option<StdioImp>,
    stderr: Option<StdioImp>,
}

impl Command {
    /// Constructs a new `Command` for launching the program at
    /// path `program`, with the following default configuration:
    ///
    /// * No arguments to the program
    /// * Inherit the current process's environment
    /// * Inherit the current process's working directory
    /// * Inherit stdin/stdout/stderr for `run` or `status`, but create pipes for `output`
    ///
    /// Builder methods are provided to change these defaults and
    /// otherwise configure the process.
    pub fn new<S: AsOsStr + ?Sized>(program: &S) -> Command {
        Command {
            inner: CommandImp::new(program.as_os_str()),
            stdin: None,
            stdout: None,
            stderr: None,
        }
    }

    /// Add an argument to pass to the program.
    pub fn arg<S: AsOsStr + ?Sized>(&mut self, arg: &S) -> &mut Command {
        self.inner.arg(arg.as_os_str());
        self
    }

    /// Add multiple arguments to pass to the program.
    pub fn args<S: AsOsStr>(&mut self, args: &[S]) -> &mut Command {
        self.inner.args(args.iter().map(AsOsStr::as_os_str));
        self
    }

    /// Inserts or updates an environment variable mapping.
    ///
    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
    /// and case-sensitive on all other platforms.
    pub fn env<S: ?Sized, T: ?Sized>(&mut self, key: &S, val: &T) -> &mut Command where
        S: AsOsStr, T: AsOsStr
    {
        self.inner.env(key.as_os_str(), val.as_os_str());
        self
    }

    /// Removes an environment variable mapping.
    pub fn env_remove<S: ?Sized + AsOsStr>(&mut self, key: &S) -> &mut Command {
        self.inner.env_remove(key.as_os_str());
        self
    }

    /// Clears the entire environment map for the child process.
    pub fn env_clear(&mut self) -> &mut Command {
        self.inner.env_clear();
        self
    }

    /// Set the working directory for the child process.
    pub fn current_dir<P: AsPath + ?Sized>(&mut self, dir: &P) -> &mut Command {
        self.inner.cwd(dir.as_path().as_os_str());
        self
    }

    /// Configuration for the child process's stdin handle (file descriptor 0).
    /// Defaults to `CreatePipe(true, false)` so the input can be written to.
    pub fn stdin(&mut self, cfg: Stdio) -> &mut Command {
        self.stdin = Some(cfg.0);
        self
    }

    /// Configuration for the child process's stdout handle (file descriptor 1).
    /// Defaults to `CreatePipe(false, true)` so the output can be collected.
    pub fn stdout(&mut self, cfg: Stdio) -> &mut Command {
        self.stdout = Some(cfg.0);
        self
    }

    /// Configuration for the child process's stderr handle (file descriptor 2).
    /// Defaults to `CreatePipe(false, true)` so the output can be collected.
    pub fn stderr(&mut self, cfg: Stdio) -> &mut Command {
        self.stderr = Some(cfg.0);
        self
    }

    fn spawn_inner(&self, default_io: StdioImp) -> io::Result<Child> {
        let (their_stdin, our_stdin) = try!(
            setup_io(self.stdin.as_ref().unwrap_or(&default_io), 0, true)
        );
        let (their_stdout, our_stdout) = try!(
            setup_io(self.stdout.as_ref().unwrap_or(&default_io), 1, false)
        );
        let (their_stderr, our_stderr) = try!(
            setup_io(self.stderr.as_ref().unwrap_or(&default_io), 2, false)
        );

        match ProcessImp::spawn(&self.inner, their_stdin, their_stdout, their_stderr) {
            Err(e) => Err(e),
            Ok(handle) => Ok(Child {
                handle: handle,
                status: None,
                stdin: our_stdin.map(|fd| ChildStdin { inner: fd }),
                stdout: our_stdout.map(|fd| ChildStdout { inner: fd }),
                stderr: our_stderr.map(|fd| ChildStderr { inner: fd }),
            })
        }
    }

    /// Executes the command as a child process, returning a handle to it.
    ///
    /// By default, stdin, stdout and stderr are inherited by the parent.
    pub fn spawn(&mut self) -> io::Result<Child> {
        self.spawn_inner(StdioImp::Inherit)
    }

    /// Executes the command as a child process, waiting for it to finish and
    /// collecting all of its output.
    ///
    /// By default, stdin, stdout and stderr are captured (and used to
    /// provide the resulting output).
    ///
    /// # Example
    ///
    /// ```
    /// # #![feature(process)]
    /// use std::process::Command;
    ///
    /// let output = Command::new("cat").arg("foot.txt").output().unwrap_or_else(|e| {
    ///     panic!("failed to execute process: {}", e)
    /// });
    ///
    /// println!("status: {}", output.status);
    /// println!("stdout: {}", String::from_utf8_lossy(output.stdout.as_slice()));
    /// println!("stderr: {}", String::from_utf8_lossy(output.stderr.as_slice()));
    /// ```
    pub fn output(&mut self) -> io::Result<Output> {
        self.spawn_inner(StdioImp::Capture).and_then(|p| p.wait_with_output())
    }

    /// Executes a command as a child process, waiting for it to finish and
    /// collecting its exit status.
    ///
    /// By default, stdin, stdout and stderr are inherited by the parent.
    ///
    /// # Example
    ///
    /// ```
    /// # #![feature(process)]
    /// use std::process::Command;
    ///
    /// let status = Command::new("ls").status().unwrap_or_else(|e| {
    ///     panic!("failed to execute process: {}", e)
    /// });
    ///
    /// println!("process exited with: {}", status);
    /// ```
    pub fn status(&mut self) -> io::Result<ExitStatus> {
        self.spawn().and_then(|mut p| p.wait())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Command {
    /// Format the program and arguments of a Command for display. Any
    /// non-utf8 data is lossily converted using the utf8 replacement
    /// character.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "{:?}", self.inner.program));
        for arg in &self.inner.args {
            try!(write!(f, " {:?}", arg));
        }
        Ok(())
    }
}

impl AsInner<CommandImp> for Command {
    fn as_inner(&self) -> &CommandImp { &self.inner }
}

impl AsInnerMut<CommandImp> for Command {
    fn as_inner_mut(&mut self) -> &mut CommandImp { &mut self.inner }
}

fn setup_io(io: &StdioImp, fd: libc::c_int, readable: bool)
            -> io::Result<(Option<AnonPipe>, Option<AnonPipe>)>
{
    use self::StdioImp::*;
    Ok(match *io {
        Null => {
            (None, None)
        }
        Inherit => {
            (Some(AnonPipe::from_fd(fd)), None)
        }
        Capture => {
            let (reader, writer) = try!(unsafe { pipe2::anon_pipe() });
            if readable {
                (Some(reader), Some(writer))
            } else {
                (Some(writer), Some(reader))
            }
        }
    })
}

/// The output of a finished process.
#[derive(PartialEq, Eq, Clone)]
pub struct Output {
    /// The status (exit code) of the process.
    pub status: ExitStatus,
    /// The data that the process wrote to stdout.
    pub stdout: Vec<u8>,
    /// The data that the process wrote to stderr.
    pub stderr: Vec<u8>,
}

/// Describes what to do with a standard io stream for a child process.
pub struct Stdio(StdioImp);

// The internal enum for stdio setup; see below for descriptions.
#[derive(Clone)]
enum StdioImp {
    Capture,
    Inherit,
    Null,
}

impl Stdio {
    /// A new pipe should be arranged to connect the parent and child processes.
    pub fn capture() -> Stdio { Stdio(StdioImp::Capture) }

    /// The child inherits from the corresponding parent descriptor.
    pub fn inherit() -> Stdio { Stdio(StdioImp::Capture) }

    /// This stream will be ignored. This is the equivalent of attaching the
    /// stream to `/dev/null`
    pub fn null() -> Stdio { Stdio(StdioImp::Capture) }
}

/// Describes the result of a process after it has terminated.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(ExitStatusImp);

impl ExitStatus {
    /// Was termination successful? Signal termination not considered a success,
    /// and success is defined as a zero exit status.
    pub fn success(&self) -> bool {
        self.0.success()
    }

    /// Return the exit code of the process, if any.
    ///
    /// On Unix, this will return `None` if the process was terminated
    /// by a signal; `std::os::unix` provides an extension trait for
    /// extracting the signal and other details from the `ExitStatus`.
    pub fn code(&self) -> Option<i32> {
        self.0.code()
    }
}

impl AsInner<ExitStatusImp> for ExitStatus {
    fn as_inner(&self) -> &ExitStatusImp { &self.0 }
}

impl fmt::Display for ExitStatus {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl Child {
    /// Forces the child to exit. This is equivalent to sending a
    /// SIGKILL on unix platforms.
    pub fn kill(&mut self) -> io::Result<()> {
        #[cfg(unix)] fn collect_status(p: &mut Child) {
            // On Linux (and possibly other unices), a process that has exited will
            // continue to accept signals because it is "defunct". The delivery of
            // signals will only fail once the child has been reaped. For this
            // reason, if the process hasn't exited yet, then we attempt to collect
            // their status with WNOHANG.
            if p.status.is_none() {
                match p.handle.try_wait() {
                    Some(status) => { p.status = Some(status); }
                    None => {}
                }
            }
        }
        #[cfg(windows)] fn collect_status(_p: &mut Child) {}

        collect_status(self);

        // if the process has finished, and therefore had waitpid called,
        // and we kill it, then on unix we might ending up killing a
        // newer process that happens to have the same (re-used) id
        if self.status.is_some() {
            return Err(Error::new(
                ErrorKind::InvalidInput,
                "invalid argument: can't kill an exited process",
                None
            ))
        }

        unsafe { self.handle.kill() }
    }

    /// Wait for the child to exit completely, returning the status that it
    /// exited with. This function will continue to have the same return value
    /// after it has been called at least once.
    ///
    /// The stdin handle to the child process, if any, will be closed
    /// before waiting. This helps avoid deadlock: it ensures that the
    /// child does not block waiting for input from the parent, while
    /// the parent waits for the child to exit.
    pub fn wait(&mut self) -> io::Result<ExitStatus> {
        drop(self.stdin.take());
        match self.status {
            Some(code) => Ok(ExitStatus(code)),
            None => {
                let status = try!(self.handle.wait());
                self.status = Some(status);
                Ok(ExitStatus(status))
            }
        }
    }

    /// Simultaneously wait for the child to exit and collect all remaining
    /// output on the stdout/stderr handles, returning a `Output`
    /// instance.
    ///
    /// The stdin handle to the child process, if any, will be closed
    /// before waiting. This helps avoid deadlock: it ensures that the
    /// child does not block waiting for input from the parent, while
    /// the parent waits for the child to exit.
    pub fn wait_with_output(mut self) -> io::Result<Output> {
        drop(self.stdin.take());
461
        fn read<T: Read + Send + 'static>(stream: Option<T>) -> Receiver<io::Result<Vec<u8>>> {
A
Aaron Turon 已提交
462 463 464
            let (tx, rx) = channel();
            match stream {
                Some(stream) => {
A
Aaron Turon 已提交
465
                    thread::spawn(move || {
A
Aaron Turon 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
                        let mut stream = stream;
                        let mut ret = Vec::new();
                        let res = stream.read_to_end(&mut ret);
                        tx.send(res.map(|_| ret)).unwrap();
                    });
                }
                None => tx.send(Ok(Vec::new())).unwrap()
            }
            rx
        }
        let stdout = read(self.stdout.take());
        let stderr = read(self.stderr.take());
        let status = try!(self.wait());

        Ok(Output {
            status: status,
            stdout: stdout.recv().unwrap().unwrap_or(Vec::new()),
            stderr:  stderr.recv().unwrap().unwrap_or(Vec::new()),
        })
    }
}

#[cfg(test)]
mod tests {
    use io::ErrorKind;
    use io::prelude::*;
    use prelude::v1::{Ok, Err, range, drop, Some, None, Vec};
    use prelude::v1::{String, Clone};
    use prelude::v1::{SliceExt, Str, StrExt, AsSlice, ToString, GenericPath};
    use path::Path;
    use old_path;
    use old_io::fs::PathExtensions;
    use rt::running_on_valgrind;
    use str;
    use super::{Child, Command, Output, ExitStatus, Stdio};
    use sync::mpsc::channel;
A
Aaron Turon 已提交
502
    use thread;
A
Aaron Turon 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    use time::Duration;

    // FIXME(#10380) these tests should not all be ignored on android.

    #[cfg(not(target_os="android"))]
    #[test]
    fn smoke() {
        let p = Command::new("true").spawn();
        assert!(p.is_ok());
        let mut p = p.unwrap();
        assert!(p.wait().unwrap().success());
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn smoke_failure() {
        match Command::new("if-this-is-a-binary-then-the-world-has-ended").spawn() {
            Ok(..) => panic!(),
            Err(..) => {}
        }
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn exit_reported_right() {
        let p = Command::new("false").spawn();
        assert!(p.is_ok());
        let mut p = p.unwrap();
        assert!(p.wait().unwrap().code() == Some(1));
        drop(p.wait().clone());
    }

    #[cfg(all(unix, not(target_os="android")))]
    #[test]
    fn signal_reported_right() {
        use os::unix::ExitStatusExt;

540
        let p = Command::new("/bin/sh").arg("-c").arg("kill -9 $$").spawn();
A
Aaron Turon 已提交
541 542 543
        assert!(p.is_ok());
        let mut p = p.unwrap();
        match p.wait().unwrap().signal() {
544 545
            Some(9) => {},
            result => panic!("not terminated by signal 9 (instead, {:?})", result),
A
Aaron Turon 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        }
    }

    pub fn run_output(mut cmd: Command) -> String {
        let p = cmd.spawn();
        assert!(p.is_ok());
        let mut p = p.unwrap();
        assert!(p.stdout.is_some());
        let mut ret = String::new();
        p.stdout.as_mut().unwrap().read_to_string(&mut ret).unwrap();
        assert!(p.wait().unwrap().success());
        return ret;
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn stdout_works() {
        let mut cmd = Command::new("echo");
        cmd.arg("foobar").stdout(Stdio::capture());
        assert_eq!(run_output(cmd), "foobar\n");
    }

    #[cfg(all(unix, not(target_os="android")))]
    #[test]
    fn set_current_dir_works() {
        let mut cmd = Command::new("/bin/sh");
        cmd.arg("-c").arg("pwd")
           .current_dir("/")
           .stdout(Stdio::capture());
        assert_eq!(run_output(cmd), "/\n");
    }

    #[cfg(all(unix, not(target_os="android")))]
    #[test]
    fn stdin_works() {
        let mut p = Command::new("/bin/sh")
                            .arg("-c").arg("read line; echo $line")
                            .stdin(Stdio::capture())
                            .stdout(Stdio::capture())
                            .spawn().unwrap();
        p.stdin.as_mut().unwrap().write("foobar".as_bytes()).unwrap();
        drop(p.stdin.take());
        let mut out = String::new();
        p.stdout.as_mut().unwrap().read_to_string(&mut out).unwrap();
        assert!(p.wait().unwrap().success());
        assert_eq!(out, "foobar\n");
    }


    #[cfg(all(unix, not(target_os="android")))]
    #[test]
    fn uid_works() {
        use os::unix::*;
        use libc;
        let mut p = Command::new("/bin/sh")
                            .arg("-c").arg("true")
                            .uid(unsafe { libc::getuid() })
                            .gid(unsafe { libc::getgid() })
                            .spawn().unwrap();
        assert!(p.wait().unwrap().success());
    }

    #[cfg(all(unix, not(target_os="android")))]
    #[test]
    fn uid_to_root_fails() {
        use os::unix::*;
        use libc;

        // if we're already root, this isn't a valid test. Most of the bots run
        // as non-root though (android is an exception).
        if unsafe { libc::getuid() == 0 } { return }
        assert!(Command::new("/bin/ls").uid(0).gid(0).spawn().is_err());
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_process_status() {
        let mut status = Command::new("false").status().unwrap();
        assert!(status.code() == Some(1));

        status = Command::new("true").status().unwrap();
        assert!(status.success());
    }

    #[test]
    fn test_process_output_fail_to_start() {
        match Command::new("/no-binary-by-this-name-should-exist").output() {
            Err(e) => assert_eq!(e.kind(), ErrorKind::FileNotFound),
            Ok(..) => panic!()
        }
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_process_output_output() {
        let Output {status, stdout, stderr}
             = Command::new("echo").arg("hello").output().unwrap();
        let output_str = str::from_utf8(stdout.as_slice()).unwrap();

        assert!(status.success());
        assert_eq!(output_str.trim().to_string(), "hello");
        // FIXME #7224
        if !running_on_valgrind() {
            assert_eq!(stderr, Vec::new());
        }
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_process_output_error() {
        let Output {status, stdout, stderr}
             = Command::new("mkdir").arg(".").output().unwrap();

        assert!(status.code() == Some(1));
        assert_eq!(stdout, Vec::new());
        assert!(!stderr.is_empty());
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_finish_once() {
        let mut prog = Command::new("false").spawn().unwrap();
        assert!(prog.wait().unwrap().code() == Some(1));
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_finish_twice() {
        let mut prog = Command::new("false").spawn().unwrap();
        assert!(prog.wait().unwrap().code() == Some(1));
        assert!(prog.wait().unwrap().code() == Some(1));
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_wait_with_output_once() {
        let prog = Command::new("echo").arg("hello").stdout(Stdio::capture())
            .spawn().unwrap();
        let Output {status, stdout, stderr} = prog.wait_with_output().unwrap();
        let output_str = str::from_utf8(stdout.as_slice()).unwrap();

        assert!(status.success());
        assert_eq!(output_str.trim().to_string(), "hello");
        // FIXME #7224
        if !running_on_valgrind() {
            assert_eq!(stderr, Vec::new());
        }
    }

    #[cfg(all(unix, not(target_os="android")))]
    pub fn pwd_cmd() -> Command {
        Command::new("pwd")
    }
    #[cfg(target_os="android")]
    pub fn pwd_cmd() -> Command {
        let mut cmd = Command::new("/system/bin/sh");
        cmd.arg("-c").arg("pwd");
        cmd
    }

    #[cfg(windows)]
    pub fn pwd_cmd() -> Command {
        let mut cmd = Command::new("cmd");
        cmd.arg("/c").arg("cd");
        cmd
    }

    #[test]
    fn test_keep_current_working_dir() {
        use os;
        let prog = pwd_cmd().spawn().unwrap();

        let output = String::from_utf8(prog.wait_with_output().unwrap().stdout).unwrap();
        let parent_dir = os::getcwd().unwrap();
        let child_dir = old_path::Path::new(output.trim());

        let parent_stat = parent_dir.stat().unwrap();
        let child_stat = child_dir.stat().unwrap();

        assert_eq!(parent_stat.unstable.device, child_stat.unstable.device);
        assert_eq!(parent_stat.unstable.inode, child_stat.unstable.inode);
    }

    #[test]
    fn test_change_working_directory() {
        use os;
        // test changing to the parent of os::getcwd() because we know
        // the path exists (and os::getcwd() is not expected to be root)
        let parent_dir = os::getcwd().unwrap().dir_path();
        let result = pwd_cmd().current_dir(&parent_dir).output().unwrap();

        let output = String::from_utf8(result.stdout).unwrap();
        let child_dir = old_path::Path::new(output.trim());

        let parent_stat = parent_dir.stat().unwrap();
        let child_stat = child_dir.stat().unwrap();

        assert_eq!(parent_stat.unstable.device, child_stat.unstable.device);
        assert_eq!(parent_stat.unstable.inode, child_stat.unstable.inode);
    }

    #[cfg(all(unix, not(target_os="android")))]
    pub fn env_cmd() -> Command {
        Command::new("env")
    }
    #[cfg(target_os="android")]
    pub fn env_cmd() -> Command {
        let mut cmd = Command::new("/system/bin/sh");
        cmd.arg("-c").arg("set");
        cmd
    }

    #[cfg(windows)]
    pub fn env_cmd() -> Command {
        let mut cmd = Command::new("cmd");
        cmd.arg("/c").arg("set");
        cmd
    }

    #[cfg(not(target_os="android"))]
    #[test]
    fn test_inherit_env() {
        use os;
        if running_on_valgrind() { return; }

        let result = env_cmd().output().unwrap();
        let output = String::from_utf8(result.stdout).unwrap();

        let r = os::env();
        for &(ref k, ref v) in &r {
            // don't check windows magical empty-named variables
            assert!(k.is_empty() ||
                    output.contains(format!("{}={}", *k, *v).as_slice()),
                    "output doesn't contain `{}={}`\n{}",
                    k, v, output);
        }
    }
    #[cfg(target_os="android")]
    #[test]
    fn test_inherit_env() {
        use os;
        if running_on_valgrind() { return; }

        let mut result = env_cmd().output().unwrap();
        let output = String::from_utf8(result.stdout).unwrap();

        let r = os::env();
        for &(ref k, ref v) in &r {
            // don't check android RANDOM variables
            if *k != "RANDOM".to_string() {
                assert!(output.contains(format!("{}={}",
                                                *k,
                                                *v).as_slice()) ||
                        output.contains(format!("{}=\'{}\'",
                                                *k,
                                                *v).as_slice()));
            }
        }
    }

    #[test]
    fn test_override_env() {
        use env;

        // In some build environments (such as chrooted Nix builds), `env` can
        // only be found in the explicitly-provided PATH env variable, not in
        // default places such as /bin or /usr/bin. So we need to pass through
        // PATH to our sub-process.
        let mut cmd = env_cmd();
        cmd.env_clear().env("RUN_TEST_NEW_ENV", "123");
        if let Some(p) = env::var_os("PATH") {
            cmd.env("PATH", &p);
        }
        let result = cmd.output().unwrap();
        let output = String::from_utf8_lossy(result.stdout.as_slice()).to_string();

        assert!(output.contains("RUN_TEST_NEW_ENV=123"),
                "didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
    }

    #[test]
    fn test_add_to_env() {
        let result = env_cmd().env("RUN_TEST_NEW_ENV", "123").output().unwrap();
        let output = String::from_utf8_lossy(result.stdout.as_slice()).to_string();

        assert!(output.contains("RUN_TEST_NEW_ENV=123"),
                "didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
    }
}