sty.rs 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This module contains TypeVariants and its major components

13
use middle::cstore;
14
use hir::def_id::DefId;
15
use middle::region;
16 17
use ty::subst::{self, Substs};
use ty::{self, AdtDef, ToPredicate, TypeFlags, Ty, TyCtxt, TyS, TypeFoldable};
18 19 20 21 22 23 24
use util::common::ErrorReported;

use collections::enum_set::{self, EnumSet, CLike};
use std::fmt;
use std::ops;
use std::mem;
use syntax::abi;
25
use syntax::ast::{self, Name};
26
use syntax::parse::token::keywords;
27

28
use serialize::{Decodable, Decoder, Encodable, Encoder};
29

30
use hir;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

use self::InferTy::*;
use self::TypeVariants::*;

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct TypeAndMut<'tcx> {
    pub ty: Ty<'tcx>,
    pub mutbl: hir::Mutability,
}

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
         RustcEncodable, RustcDecodable, Copy)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
pub struct FreeRegion {
    pub scope: region::CodeExtent,
    pub bound_region: BoundRegion
}

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
         RustcEncodable, RustcDecodable, Copy)]
pub enum BoundRegion {
    /// An anonymous region parameter for a given fn (&T)
    BrAnon(u32),

    /// Named region parameters for functions (a in &'a T)
    ///
    /// The def-id is needed to distinguish free regions in
    /// the event of shadowing.
60
    BrNamed(DefId, Name, Issue32330),
61 62 63 64 65 66 67 68 69

    /// Fresh bound identifiers created during GLB computations.
    BrFresh(u32),

    // Anonymous region for the implicit env pointer parameter
    // to a closure
    BrEnv
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/// True if this late-bound region is unconstrained, and hence will
/// become early-bound once #32330 is fixed.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Ord, Hash,
         RustcEncodable, RustcDecodable)]
pub enum Issue32330 {
    WontChange,

    /// this region will change from late-bound to early-bound once
    /// #32330 is fixed.
    WillChange {
        /// fn where is region declared
        fn_def_id: DefId,

        /// name of region; duplicates the info in BrNamed but convenient
        /// to have it here, and this code is only temporary
        region_name: ast::Name,
    }
}

89 90 91 92 93 94 95 96 97 98 99 100
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum TypeVariants<'tcx> {
    /// The primitive boolean type. Written as `bool`.
    TyBool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point).  Written as `char`.
    TyChar,

    /// A primitive signed integer type. For example, `i32`.
101
    TyInt(ast::IntTy),
102 103

    /// A primitive unsigned integer type. For example, `u32`.
104
    TyUint(ast::UintTy),
105 106

    /// A primitive floating-point type. For example, `f64`.
107
    TyFloat(ast::FloatTy),
108 109 110 111 112 113

    /// An enumerated type, defined with `enum`.
    ///
    /// Substs here, possibly against intuition, *may* contain `TyParam`s.
    /// That is, even after substitution it is possible that there are type
    /// variables. This happens when the `TyEnum` corresponds to an enum
114 115
    /// definition and not a concrete use of it. This is true for `TyStruct`
    /// as well.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    TyEnum(AdtDef<'tcx>, &'tcx Substs<'tcx>),

    /// A structure type, defined with `struct`.
    ///
    /// See warning about substitutions for enumerated types.
    TyStruct(AdtDef<'tcx>, &'tcx Substs<'tcx>),

    /// `Box<T>`; this is nominally a struct in the documentation, but is
    /// special-cased internally. For example, it is possible to implicitly
    /// move the contents of a box out of that box, and methods of any type
    /// can have type `Box<Self>`.
    TyBox(Ty<'tcx>),

    /// The pointee of a string slice. Written as `str`.
    TyStr,

    /// An array with the given length. Written as `[T; n]`.
    TyArray(Ty<'tcx>, usize),

    /// The pointee of an array slice.  Written as `[T]`.
    TySlice(Ty<'tcx>),

    /// A raw pointer. Written as `*mut T` or `*const T`
    TyRawPtr(TypeAndMut<'tcx>),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&a mut T` or `&'a T`.
    TyRef(&'tcx Region, TypeAndMut<'tcx>),

145 146
    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type.
147
    TyFnDef(DefId, &'tcx Substs<'tcx>, &'tcx BareFnTy<'tcx>),
148 149 150 151 152

    /// A pointer to a function.  Written as `fn() -> i32`.
    /// FIXME: This is currently also used to represent the callee of a method;
    /// see ty::MethodCallee etc.
    TyFnPtr(&'tcx BareFnTy<'tcx>),
153 154

    /// A trait, defined with `trait`.
155
    TyTrait(Box<TraitObject<'tcx>>),
156 157 158

    /// The anonymous type of a closure. Used to represent the type of
    /// `|a| a`.
159
    TyClosure(DefId, ClosureSubsts<'tcx>),
160

A
Andrew Cann 已提交
161 162
    /// The never type `!`
    TyNever,
163

164
    /// A tuple type.  For example, `(i32, bool)`.
165
    TyTuple(&'tcx [Ty<'tcx>]),
166 167 168 169 170

    /// The projection of an associated type.  For example,
    /// `<T as Trait<..>>::N`.
    TyProjection(ProjectionTy<'tcx>),

171 172 173 174 175 176
    /// Anonymized (`impl Trait`) type found in a return type.
    /// The DefId comes from the `impl Trait` ast::Ty node, and the
    /// substitutions are for the generics of the function in question.
    /// After typeck, the concrete type can be found in the `tcache` map.
    TyAnon(DefId, &'tcx Substs<'tcx>),

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
    TyParam(ParamTy),

    /// A type variable used during type-checking.
    TyInfer(InferTy),

    /// A placeholder for a type which could not be computed; this is
    /// propagated to avoid useless error messages.
    TyError,
}

/// A closure can be modeled as a struct that looks like:
///
///     struct Closure<'l0...'li, T0...Tj, U0...Uk> {
///         upvar0: U0,
///         ...
///         upvark: Uk
///     }
///
/// where 'l0...'li and T0...Tj are the lifetime and type parameters
/// in scope on the function that defined the closure, and U0...Uk are
/// type parameters representing the types of its upvars (borrowed, if
/// appropriate).
///
/// So, for example, given this function:
///
///     fn foo<'a, T>(data: &'a mut T) {
///          do(|| data.count += 1)
///     }
///
/// the type of the closure would be something like:
///
///     struct Closure<'a, T, U0> {
///         data: U0
///     }
///
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
///
///     impl<'b, 'a, T> FnMut() for Closure<'a, T, &'b mut &'a mut T> {
///         ...
///     }
///
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// as extra type parameters? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the extent of the closure itself; this is some
/// subset of `foo`, probably just the extent of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that trans may need them
/// when monomorphizing, and they may not appear in the upvars.  A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
262
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
263 264 265 266 267 268 269 270 271
pub struct ClosureSubsts<'tcx> {
    /// Lifetime and type parameters from the enclosing function.
    /// These are separated out because trans wants to pass them around
    /// when monomorphizing.
    pub func_substs: &'tcx Substs<'tcx>,

    /// The types of the upvars. The list parallels the freevars and
    /// `upvar_borrows` lists. These are kept distinct so that we can
    /// easily index into them.
272
    pub upvar_tys: &'tcx [Ty<'tcx>]
273 274
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288
impl<'tcx> Encodable for ClosureSubsts<'tcx> {
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (self.func_substs, self.upvar_tys).encode(s)
    }
}

impl<'tcx> Decodable for ClosureSubsts<'tcx> {
    fn decode<D: Decoder>(d: &mut D) -> Result<ClosureSubsts<'tcx>, D::Error> {
        let (func_substs, upvar_tys) = Decodable::decode(d)?;
        cstore::tls::with_decoding_context(d, |dcx, _| {
            Ok(ClosureSubsts {
                func_substs: func_substs,
                upvar_tys: dcx.tcx().mk_type_list(upvar_tys)
            })
289 290 291 292
        })
    }
}

293
#[derive(Clone, PartialEq, Eq, Hash)]
294 295 296 297 298
pub struct TraitObject<'tcx> {
    pub principal: PolyExistentialTraitRef<'tcx>,
    pub region_bound: ty::Region,
    pub builtin_bounds: BuiltinBounds,
    pub projection_bounds: Vec<PolyExistentialProjection<'tcx>>,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
}

/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where clause:
///
///     T : Foo<U>
///
/// This would be represented by a trait-reference where the def-id is the
/// def-id for the trait `Foo` and the substs defines `T` as parameter 0 in the
/// `SelfSpace` and `U` as parameter 0 in the `TypeSpace`.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
///
/// Note that a `TraitRef` introduces a level of region binding, to
/// account for higher-ranked trait bounds like `T : for<'a> Foo<&'a
/// U>` or higher-ranked object types.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct TraitRef<'tcx> {
    pub def_id: DefId,
    pub substs: &'tcx Substs<'tcx>,
}

pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;

impl<'tcx> PolyTraitRef<'tcx> {
    pub fn self_ty(&self) -> Ty<'tcx> {
        self.0.self_ty()
    }

    pub fn def_id(&self) -> DefId {
        self.0.def_id
    }

    pub fn substs(&self) -> &'tcx Substs<'tcx> {
        // FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
        self.0.substs
    }

    pub fn input_types(&self) -> &[Ty<'tcx>] {
        // FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
        self.0.input_types()
    }

    pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
        // Note that we preserve binding levels
        Binder(ty::TraitPredicate { trait_ref: self.0.clone() })
    }
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
///
///     exists T. T: Trait<'a, 'b, X, Y>
///
/// The substitutions don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct ExistentialTraitRef<'tcx> {
    pub def_id: DefId,
    pub substs: &'tcx Substs<'tcx>,
}

impl<'a, 'gcx, 'tcx> ExistentialTraitRef<'tcx> {
    pub fn erase_self_ty(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                         trait_ref: ty::TraitRef<'tcx>)
                         -> ty::ExistentialTraitRef<'tcx> {
        let mut substs = trait_ref.substs.clone();
        substs.types.pop(subst::SelfSpace);
        ty::ExistentialTraitRef {
            def_id: trait_ref.def_id,
            substs: tcx.mk_substs(substs)
        }
    }

    pub fn input_types(&self) -> &[Ty<'tcx>] {
        // Select only the "input types" from a trait-reference. For
        // now this is all the types that appear in the
        // trait-reference, but it should eventually exclude
        // associated types.
        self.substs.types.as_full_slice()
    }
}

pub type PolyExistentialTraitRef<'tcx> = Binder<ExistentialTraitRef<'tcx>>;

impl<'a, 'gcx, 'tcx> PolyExistentialTraitRef<'tcx> {
    pub fn def_id(&self) -> DefId {
        self.0.def_id
    }

    pub fn input_types(&self) -> &[Ty<'tcx>] {
        // FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
        self.0.input_types()
    }

    /// Object types don't have a self-type specified. Therefore, when
    /// we convert the principal trait-ref into a normal trait-ref,
    /// you must give *some* self-type. A common choice is `mk_err()`
    /// or some skolemized type.
    pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        self_ty: Ty<'tcx>)
                        -> ty::PolyTraitRef<'tcx>
    {
        // otherwise the escaping regions would be captured by the binder
        assert!(!self_ty.has_escaping_regions());

        self.map_bound(|trait_ref| TraitRef {
            def_id: trait_ref.def_id,
            substs: tcx.mk_substs(trait_ref.substs.with_self_ty(self_ty)),
        })
    }
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/// Binder is a binder for higher-ranked lifetimes. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<TraitRef>`). Note that when we skolemize, instantiate,
/// erase, or otherwise "discharge" these bound regions, we change the
/// type from `Binder<T>` to just `T` (see
/// e.g. `liberate_late_bound_regions`).
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Binder<T>(pub T);

impl<T> Binder<T> {
    /// Skips the binder and returns the "bound" value. This is a
    /// risky thing to do because it's easy to get confused about
    /// debruijn indices and the like. It is usually better to
    /// discharge the binder using `no_late_bound_regions` or
    /// `replace_late_bound_regions` or something like
    /// that. `skip_binder` is only valid when you are either
    /// extracting data that has nothing to do with bound regions, you
    /// are doing some sort of test that does not involve bound
    /// regions, or you are being very careful about your depth
    /// accounting.
    ///
    /// Some examples where `skip_binder` is reasonable:
    /// - extracting the def-id from a PolyTraitRef;
    /// - comparing the self type of a PolyTraitRef to see if it is equal to
    ///   a type parameter `X`, since the type `X`  does not reference any regions
    pub fn skip_binder(&self) -> &T {
        &self.0
    }

    pub fn as_ref(&self) -> Binder<&T> {
        ty::Binder(&self.0)
    }

    pub fn map_bound_ref<F,U>(&self, f: F) -> Binder<U>
        where F: FnOnce(&T) -> U
    {
        self.as_ref().map_bound(f)
    }

    pub fn map_bound<F,U>(self, f: F) -> Binder<U>
        where F: FnOnce(T) -> U
    {
        ty::Binder(f(self.0))
    }
}

impl fmt::Debug for TypeFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.bits)
    }
}

/// Represents the projection of an associated type. In explicit UFCS
/// form this would be written `<T as Trait<..>>::N`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct ProjectionTy<'tcx> {
    /// The trait reference `T as Trait<..>`.
    pub trait_ref: ty::TraitRef<'tcx>,

    /// The name `N` of the associated type.
    pub item_name: Name,
}

impl<'tcx> ProjectionTy<'tcx> {
    pub fn sort_key(&self) -> (DefId, Name) {
        (self.trait_ref.def_id, self.item_name)
    }
}

#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct BareFnTy<'tcx> {
    pub unsafety: hir::Unsafety,
    pub abi: abi::Abi,
    pub sig: PolyFnSig<'tcx>,
}

#[derive(Clone, PartialEq, Eq, Hash)]
pub struct ClosureTy<'tcx> {
    pub unsafety: hir::Unsafety,
    pub abi: abi::Abi,
    pub sig: PolyFnSig<'tcx>,
}

/// Signature of a function type, which I have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs` is the list of arguments and their modes.
/// - `output` is the return type.
/// - `variadic` indicates whether this is a variadic function. (only true for foreign fns)
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct FnSig<'tcx> {
    pub inputs: Vec<Ty<'tcx>>,
506
    pub output: Ty<'tcx>,
507 508 509 510 511 512 513 514 515 516 517 518
    pub variadic: bool
}

pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;

impl<'tcx> PolyFnSig<'tcx> {
    pub fn inputs(&self) -> ty::Binder<Vec<Ty<'tcx>>> {
        self.map_bound_ref(|fn_sig| fn_sig.inputs.clone())
    }
    pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
        self.map_bound_ref(|fn_sig| fn_sig.inputs[index])
    }
519
    pub fn output(&self) -> ty::Binder<Ty<'tcx>> {
520 521 522 523 524 525 526 527 528 529 530 531 532 533
        self.map_bound_ref(|fn_sig| fn_sig.output.clone())
    }
    pub fn variadic(&self) -> bool {
        self.skip_binder().variadic
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct ParamTy {
    pub space: subst::ParamSpace,
    pub idx: u32,
    pub name: Name,
}

534
impl<'a, 'gcx, 'tcx> ParamTy {
535 536 537 538 539 540 541 542
    pub fn new(space: subst::ParamSpace,
               index: u32,
               name: Name)
               -> ParamTy {
        ParamTy { space: space, idx: index, name: name }
    }

    pub fn for_self() -> ParamTy {
543
        ParamTy::new(subst::SelfSpace, 0, keywords::SelfType.name())
544 545 546 547 548 549
    }

    pub fn for_def(def: &ty::TypeParameterDef) -> ParamTy {
        ParamTy::new(def.space, def.index, def.name)
    }

550
    pub fn to_ty(self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
551 552 553 554 555 556 557 558
        tcx.mk_param(self.space, self.idx, self.name)
    }

    pub fn is_self(&self) -> bool {
        self.space == subst::SelfSpace && self.idx == 0
    }
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
///     for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
///     ^          ^            |        |         |
///     |          |            |        |         |
///     |          +------------+ 1      |         |
///     |                                |         |
///     +--------------------------------+ 2       |
///     |                                          |
///     +------------------------------------------+ 1
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 1, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 2, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 1, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
#[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug, Copy)]
pub struct DebruijnIndex {
    // We maintain the invariant that this is never 0. So 1 indicates
    // the innermost binder. To ensure this, create with `DebruijnIndex::new`.
    pub depth: u32,
}

/// Representation of regions.
///
/// Unlike types, most region variants are "fictitious", not concrete,
/// regions. Among these, `ReStatic`, `ReEmpty` and `ReScope` are the only
/// ones representing concrete regions.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are 2 kind of
/// bound regions: early-bound, which are bound in a TypeScheme/TraitDef,
/// and are substituted by a Substs,  and late-bound, which are part of
/// higher-ranked types (e.g. `for<'a> fn(&'a ())`) and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike TyParam-s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g. in types passed to type inference, and
/// should first be substituted (by skolemized regions, free regions,
/// or region variables).
///
/// ## Skolemized and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// The process of doing that is called "skolemization". The bound regions
/// are replaced by skolemized markers, which don't satisfy any relation
/// not explicity provided.
///
/// There are 2 kinds of skolemized regions in rustc: `ReFree` and
/// `ReSkolemized`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
643
/// aren't checked when you `make_subregion` (or `eq_types`), only by
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `ReSkolemized` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your skolemized region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a skolemized region `'%a`, the variable `'_` would just be
/// instantiated to the skolemized region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the skolemized region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by infer/higher_ranked/README.md.
///
/// [1] http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2] http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
661
#[derive(Clone, PartialEq, Eq, Hash, Copy, RustcEncodable, RustcDecodable)]
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
pub enum Region {
    // Region bound in a type or fn declaration which will be
    // substituted 'early' -- that is, at the same time when type
    // parameters are substituted.
    ReEarlyBound(EarlyBoundRegion),

    // Region bound in a function scope, which will be substituted when the
    // function is called.
    ReLateBound(DebruijnIndex, BoundRegion),

    /// When checking a function body, the types of all arguments and so forth
    /// that refer to bound region parameters are modified to refer to free
    /// region parameters.
    ReFree(FreeRegion),

    /// A concrete region naming some statically determined extent
    /// (e.g. an expression or sequence of statements) within the
    /// current function.
    ReScope(region::CodeExtent),

    /// Static data that has an "infinite" lifetime. Top in the region lattice.
    ReStatic,

    /// A region variable.  Should not exist after typeck.
    ReVar(RegionVid),

    /// A skolemized region - basically the higher-ranked version of ReFree.
    /// Should not exist after typeck.
    ReSkolemized(SkolemizedRegionVid, BoundRegion),

    /// Empty lifetime is for data that is never accessed.
    /// Bottom in the region lattice. We treat ReEmpty somewhat
    /// specially; at least right now, we do not generate instances of
    /// it during the GLB computations, but rather
    /// generate an error instead. This is to improve error messages.
    /// The only way to get an instance of ReEmpty is to have a region
    /// variable with no constraints.
    ReEmpty,
700 701 702

    /// Erased region, used by trait selection, in MIR and during trans.
    ReErased,
703 704 705 706 707 708 709 710 711 712 713
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
pub struct EarlyBoundRegion {
    pub space: subst::ParamSpace,
    pub index: u32,
    pub name: Name,
}

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct TyVid {
N
Niko Matsakis 已提交
714
    pub index: u32,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
}

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct IntVid {
    pub index: u32
}

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct FloatVid {
    pub index: u32
}

#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct RegionVid {
    pub index: u32
}

732
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
733 734 735 736 737 738 739 740 741 742 743 744
pub struct SkolemizedRegionVid {
    pub index: u32
}

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub enum InferTy {
    TyVar(TyVid),
    IntVar(IntVid),
    FloatVar(FloatVid),

    /// A `FreshTy` is one that is generated as a replacement for an
    /// unbound type variable. This is convenient for caching etc. See
745
    /// `infer::freshen` for more details.
746 747 748 749 750
    FreshTy(u32),
    FreshIntTy(u32),
    FreshFloatTy(u32)
}

751 752 753 754 755 756
/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct ExistentialProjection<'tcx> {
    pub trait_ref: ExistentialTraitRef<'tcx>,
    pub item_name: Name,
    pub ty: Ty<'tcx>
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
pub type PolyExistentialProjection<'tcx> = Binder<ExistentialProjection<'tcx>>;

impl<'a, 'tcx, 'gcx> PolyExistentialProjection<'tcx> {
    pub fn item_name(&self) -> Name {
        self.0.item_name // safe to skip the binder to access a name
    }

    pub fn sort_key(&self) -> (DefId, Name) {
        (self.0.trait_ref.def_id, self.0.item_name)
    }

    pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        self_ty: Ty<'tcx>)
                        -> ty::PolyProjectionPredicate<'tcx>
    {
        // otherwise the escaping regions would be captured by the binders
        assert!(!self_ty.has_escaping_regions());

        let trait_ref = self.map_bound(|proj| proj.trait_ref);
        self.map_bound(|proj| ty::ProjectionPredicate {
            projection_ty: ty::ProjectionTy {
                trait_ref: trait_ref.with_self_ty(tcx, self_ty).0,
                item_name: proj.item_name
            },
            ty: proj.ty
        })
785 786 787 788 789 790
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct BuiltinBounds(EnumSet<BuiltinBound>);

791
impl<'a, 'gcx, 'tcx> BuiltinBounds {
792 793 794 795 796 797 798 799
    pub fn empty() -> BuiltinBounds {
        BuiltinBounds(EnumSet::new())
    }

    pub fn iter(&self) -> enum_set::Iter<BuiltinBound> {
        self.into_iter()
    }

800
    pub fn to_predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
801 802
                         self_ty: Ty<'tcx>)
                         -> Vec<ty::Predicate<'tcx>> {
803
        self.iter().filter_map(|builtin_bound|
804
            match tcx.trait_ref_for_builtin_bound(builtin_bound, self_ty) {
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
                Ok(trait_ref) => Some(trait_ref.to_predicate()),
                Err(ErrorReported) => { None }
            }
        ).collect()
    }
}

impl ops::Deref for BuiltinBounds {
    type Target = EnumSet<BuiltinBound>;
    fn deref(&self) -> &Self::Target { &self.0 }
}

impl ops::DerefMut for BuiltinBounds {
    fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 }
}

impl<'a> IntoIterator for &'a BuiltinBounds {
    type Item = BuiltinBound;
    type IntoIter = enum_set::Iter<BuiltinBound>;
    fn into_iter(self) -> Self::IntoIter {
        (**self).into_iter()
    }
}

#[derive(Clone, RustcEncodable, PartialEq, Eq, RustcDecodable, Hash,
           Debug, Copy)]
#[repr(usize)]
pub enum BuiltinBound {
    Send,
    Sized,
    Copy,
    Sync,
}

impl CLike for BuiltinBound {
    fn to_usize(&self) -> usize {
        *self as usize
    }
    fn from_usize(v: usize) -> BuiltinBound {
        unsafe { mem::transmute(v) }
    }
}

848
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
849
    pub fn try_add_builtin_trait(self,
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
                                 trait_def_id: DefId,
                                 builtin_bounds: &mut EnumSet<BuiltinBound>)
                                 -> bool
    {
        //! Checks whether `trait_ref` refers to one of the builtin
        //! traits, like `Send`, and adds the corresponding
        //! bound to the set `builtin_bounds` if so. Returns true if `trait_ref`
        //! is a builtin trait.

        match self.lang_items.to_builtin_kind(trait_def_id) {
            Some(bound) => { builtin_bounds.insert(bound); true }
            None => false
        }
    }
}

impl DebruijnIndex {
    pub fn new(depth: u32) -> DebruijnIndex {
        assert!(depth > 0);
        DebruijnIndex { depth: depth }
    }

    pub fn shifted(&self, amount: u32) -> DebruijnIndex {
        DebruijnIndex { depth: self.depth + amount }
    }
}

// Region utilities
impl Region {
    pub fn is_bound(&self) -> bool {
        match *self {
            ty::ReEarlyBound(..) => true,
            ty::ReLateBound(..) => true,
            _ => false
        }
    }

    pub fn needs_infer(&self) -> bool {
        match *self {
            ty::ReVar(..) | ty::ReSkolemized(..) => true,
            _ => false
        }
    }

    pub fn escapes_depth(&self, depth: u32) -> bool {
        match *self {
            ty::ReLateBound(debruijn, _) => debruijn.depth > depth,
            _ => false,
        }
    }

    /// Returns the depth of `self` from the (1-based) binding level `depth`
    pub fn from_depth(&self, depth: u32) -> Region {
        match *self {
            ty::ReLateBound(debruijn, r) => ty::ReLateBound(DebruijnIndex {
                depth: debruijn.depth - (depth - 1)
            }, r),
            r => r
        }
    }
}

// Type utilities
913
impl<'a, 'gcx, 'tcx> TyS<'tcx> {
914 915 916 917 918 919 920
    pub fn as_opt_param_ty(&self) -> Option<ty::ParamTy> {
        match self.sty {
            ty::TyParam(ref d) => Some(d.clone()),
            _ => None,
        }
    }

921 922 923 924 925 926 927
    pub fn is_nil(&self) -> bool {
        match self.sty {
            TyTuple(ref tys) => tys.is_empty(),
            _ => false
        }
    }

A
Andrew Cann 已提交
928 929 930 931 932 933 934
    pub fn is_never(&self) -> bool {
        match self.sty {
            TyNever => true,
            _ => false,
        }
    }

A
Andrew Cann 已提交
935
    pub fn is_uninhabited(&self, _cx: TyCtxt) -> bool {
A
Andrew Cann 已提交
936 937
        // FIXME(#24885): be smarter here, the AdtDefData::is_empty method could easily be made
        // more complete.
938 939
        match self.sty {
            TyEnum(def, _) | TyStruct(def, _) => def.is_empty(),
A
Andrew Cann 已提交
940

941 942 943
            // FIXME(canndrew): There's no reason why these can't be uncommented, they're tested
            // and they don't break anything. But I'm keeping my changes small for now.
            //TyNever => true,
A
Andrew Cann 已提交
944 945 946
            //TyTuple(ref tys) => tys.iter().any(|ty| ty.is_uninhabited(cx)),

            // FIXME(canndrew): this line breaks core::fmt
A
Andrew Cann 已提交
947
            //TyRef(_, ref tm) => tm.ty.is_uninhabited(cx),
A
Andrew Cann 已提交
948
            _ => false,
949 950 951
        }
    }

952 953 954 955 956 957 958
    pub fn is_primitive(&self) -> bool {
        match self.sty {
            TyBool | TyChar | TyInt(_) | TyUint(_) | TyFloat(_) => true,
            _ => false,
        }
    }

959 960 961 962 963 964 965
    pub fn is_ty_var(&self) -> bool {
        match self.sty {
            TyInfer(TyVar(_)) => true,
            _ => false
        }
    }

966 967 968 969 970 971 972 973
    pub fn is_phantom_data(&self) -> bool {
        if let TyStruct(def, _) = self.sty {
            def.is_phantom_data()
        } else {
            false
        }
    }

974 975
    pub fn is_bool(&self) -> bool { self.sty == TyBool }

976 977 978 979 980 981 982
    pub fn is_param(&self, space: subst::ParamSpace, index: u32) -> bool {
        match self.sty {
            ty::TyParam(ref data) => data.space == space && data.idx == index,
            _ => false,
        }
    }

983 984 985 986 987 988 989
    pub fn is_self(&self) -> bool {
        match self.sty {
            TyParam(ref p) => p.space == subst::SelfSpace,
            _ => false
        }
    }

990
    pub fn is_slice(&self) -> bool {
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        match self.sty {
            TyRawPtr(mt) | TyRef(_, mt) => match mt.ty.sty {
                TySlice(_) | TyStr => true,
                _ => false,
            },
            _ => false
        }
    }

    pub fn is_structural(&self) -> bool {
        match self.sty {
            TyStruct(..) | TyTuple(_) | TyEnum(..) |
            TyArray(..) | TyClosure(..) => true,
            _ => self.is_slice() | self.is_trait()
        }
    }

    #[inline]
    pub fn is_simd(&self) -> bool {
        match self.sty {
            TyStruct(def, _) => def.is_simd(),
            _ => false
        }
    }

1016
    pub fn sequence_element_type(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
1017 1018
        match self.sty {
            TyArray(ty, _) | TySlice(ty) => ty,
1019
            TyStr => tcx.mk_mach_uint(ast::UintTy::U8),
1020
            _ => bug!("sequence_element_type called on non-sequence value: {}", self),
1021 1022 1023
        }
    }

1024
    pub fn simd_type(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
1025 1026
        match self.sty {
            TyStruct(def, substs) => {
1027
                def.struct_variant().fields[0].ty(tcx, substs)
1028
            }
1029
            _ => bug!("simd_type called on invalid type")
1030 1031 1032
        }
    }

1033
    pub fn simd_size(&self, _cx: TyCtxt) -> usize {
1034 1035
        match self.sty {
            TyStruct(def, _) => def.struct_variant().fields.len(),
1036
            _ => bug!("simd_size called on invalid type")
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        }
    }

    pub fn is_region_ptr(&self) -> bool {
        match self.sty {
            TyRef(..) => true,
            _ => false
        }
    }

    pub fn is_unsafe_ptr(&self) -> bool {
        match self.sty {
            TyRawPtr(_) => return true,
            _ => return false
        }
    }

    pub fn is_unique(&self) -> bool {
        match self.sty {
            TyBox(_) => true,
            _ => false
        }
    }

    /*
     A scalar type is one that denotes an atomic datum, with no sub-components.
     (A TyRawPtr is scalar because it represents a non-managed pointer, so its
     contents are abstract to rustc.)
    */
    pub fn is_scalar(&self) -> bool {
        match self.sty {
            TyBool | TyChar | TyInt(_) | TyFloat(_) | TyUint(_) |
            TyInfer(IntVar(_)) | TyInfer(FloatVar(_)) |
1070
            TyFnDef(..) | TyFnPtr(_) | TyRawPtr(_) => true,
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            _ => false
        }
    }

    /// Returns true if this type is a floating point type and false otherwise.
    pub fn is_floating_point(&self) -> bool {
        match self.sty {
            TyFloat(_) |
            TyInfer(FloatVar(_)) => true,
            _ => false,
        }
    }

    pub fn is_trait(&self) -> bool {
        match self.sty {
            TyTrait(..) => true,
            _ => false
        }
    }

    pub fn is_integral(&self) -> bool {
        match self.sty {
            TyInfer(IntVar(_)) | TyInt(_) | TyUint(_) => true,
            _ => false
        }
    }

    pub fn is_fresh(&self) -> bool {
        match self.sty {
            TyInfer(FreshTy(_)) => true,
            TyInfer(FreshIntTy(_)) => true,
            TyInfer(FreshFloatTy(_)) => true,
            _ => false
        }
    }

    pub fn is_uint(&self) -> bool {
        match self.sty {
1109
            TyInfer(IntVar(_)) | TyUint(ast::UintTy::Us) => true,
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
            _ => false
        }
    }

    pub fn is_char(&self) -> bool {
        match self.sty {
            TyChar => true,
            _ => false
        }
    }

    pub fn is_fp(&self) -> bool {
        match self.sty {
            TyInfer(FloatVar(_)) | TyFloat(_) => true,
            _ => false
        }
    }

    pub fn is_numeric(&self) -> bool {
        self.is_integral() || self.is_fp()
    }

    pub fn is_signed(&self) -> bool {
        match self.sty {
            TyInt(_) => true,
            _ => false
        }
    }

    pub fn is_machine(&self) -> bool {
        match self.sty {
1141
            TyInt(ast::IntTy::Is) | TyUint(ast::UintTy::Us) => false,
1142 1143 1144 1145 1146
            TyInt(..) | TyUint(..) | TyFloat(..) => true,
            _ => false
        }
    }

1147 1148 1149 1150 1151 1152 1153
    pub fn has_concrete_skeleton(&self) -> bool {
        match self.sty {
            TyParam(_) | TyInfer(_) | TyError => false,
            _ => true,
        }
    }

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    // Returns the type and mutability of *ty.
    //
    // The parameter `explicit` indicates if this is an *explicit* dereference.
    // Some types---notably unsafe ptrs---can only be dereferenced explicitly.
    pub fn builtin_deref(&self, explicit: bool, pref: ty::LvaluePreference)
        -> Option<TypeAndMut<'tcx>>
    {
        match self.sty {
            TyBox(ty) => {
                Some(TypeAndMut {
                    ty: ty,
                    mutbl: if pref == ty::PreferMutLvalue {
                        hir::MutMutable
                    } else {
                        hir::MutImmutable
                    },
                })
            },
            TyRef(_, mt) => Some(mt),
            TyRawPtr(mt) if explicit => Some(mt),
            _ => None
        }
    }

    // Returns the type of ty[i]
    pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
        match self.sty {
            TyArray(ty, _) | TySlice(ty) => Some(ty),
            _ => None
        }
    }

    pub fn fn_sig(&self) -> &'tcx PolyFnSig<'tcx> {
        match self.sty {
1188
            TyFnDef(_, _, ref f) | TyFnPtr(ref f) => &f.sig,
1189
            _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self)
1190 1191 1192 1193 1194 1195
        }
    }

    /// Returns the ABI of the given function.
    pub fn fn_abi(&self) -> abi::Abi {
        match self.sty {
1196
            TyFnDef(_, _, ref f) | TyFnPtr(ref f) => f.abi,
1197
            _ => bug!("Ty::fn_abi() called on non-fn type"),
1198 1199 1200 1201 1202 1203 1204 1205
        }
    }

    // Type accessors for substructures of types
    pub fn fn_args(&self) -> ty::Binder<Vec<Ty<'tcx>>> {
        self.fn_sig().inputs()
    }

1206
    pub fn fn_ret(&self) -> Binder<Ty<'tcx>> {
1207 1208 1209 1210 1211
        self.fn_sig().output()
    }

    pub fn is_fn(&self) -> bool {
        match self.sty {
1212
            TyFnDef(..) | TyFnPtr(_) => true,
1213 1214 1215 1216 1217 1218
            _ => false
        }
    }

    pub fn ty_to_def_id(&self) -> Option<DefId> {
        match self.sty {
1219
            TyTrait(ref tt) => Some(tt.principal.def_id()),
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
            TyStruct(def, _) |
            TyEnum(def, _) => Some(def.did),
            TyClosure(id, _) => Some(id),
            _ => None
        }
    }

    pub fn ty_adt_def(&self) -> Option<AdtDef<'tcx>> {
        match self.sty {
            TyStruct(adt, _) | TyEnum(adt, _) => Some(adt),
            _ => None
        }
    }
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

    /// Returns the regions directly referenced from this type (but
    /// not types reachable from this type via `walk_tys`). This
    /// ignores late-bound regions binders.
    pub fn regions(&self) -> Vec<ty::Region> {
        match self.sty {
            TyRef(region, _) => {
                vec![*region]
            }
            TyTrait(ref obj) => {
1243 1244
                let mut v = vec![obj.region_bound];
                v.extend_from_slice(obj.principal.skip_binder().substs.regions.as_full_slice());
1245 1246 1247
                v
            }
            TyEnum(_, substs) |
1248 1249
            TyStruct(_, substs) |
            TyAnon(_, substs) => {
1250
                substs.regions.as_full_slice().to_vec()
1251 1252
            }
            TyClosure(_, ref substs) => {
1253
                substs.func_substs.regions.as_full_slice().to_vec()
1254 1255
            }
            TyProjection(ref data) => {
1256
                data.trait_ref.substs.regions.as_full_slice().to_vec()
1257
            }
1258 1259
            TyFnDef(..) |
            TyFnPtr(_) |
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
            TyBool |
            TyChar |
            TyInt(_) |
            TyUint(_) |
            TyFloat(_) |
            TyBox(_) |
            TyStr |
            TyArray(_, _) |
            TySlice(_) |
            TyRawPtr(_) |
A
Andrew Cann 已提交
1270
            TyNever |
1271 1272 1273 1274 1275 1276 1277 1278
            TyTuple(_) |
            TyParam(_) |
            TyInfer(_) |
            TyError => {
                vec![]
            }
        }
    }
1279
}