compare_method.rs 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use middle::infer;
use middle::traits;
use middle::ty::{self};
use middle::subst::{self, Subst, Substs, VecPerParamSpace};
use util::ppaux::{self, Repr};

use syntax::ast;
use syntax::codemap::{Span};
use syntax::parse::token;

use super::assoc;

/// Checks that a method from an impl conforms to the signature of
/// the same method as declared in the trait.
///
/// # Parameters
///
/// - impl_m: type of the method we are checking
/// - impl_m_span: span to use for reporting errors
/// - impl_m_body_id: id of the method body
/// - trait_m: the method in the trait
/// - impl_trait_ref: the TraitRef corresponding to the trait implementation

pub fn compare_impl_method<'tcx>(tcx: &ty::ctxt<'tcx>,
                                 impl_m: &ty::Method<'tcx>,
                                 impl_m_span: Span,
                                 impl_m_body_id: ast::NodeId,
                                 trait_m: &ty::Method<'tcx>,
                                 impl_trait_ref: &ty::TraitRef<'tcx>) {
    debug!("compare_impl_method(impl_trait_ref={})",
           impl_trait_ref.repr(tcx));

    debug!("compare_impl_method: impl_trait_ref (liberated) = {}",
           impl_trait_ref.repr(tcx));

    let infcx = infer::new_infer_ctxt(tcx);
    let mut fulfillment_cx = traits::FulfillmentContext::new();

    let trait_to_impl_substs = &impl_trait_ref.substs;

    // Try to give more informative error messages about self typing
    // mismatches.  Note that any mismatch will also be detected
    // below, where we construct a canonical function type that
    // includes the self parameter as a normal parameter.  It's just
    // that the error messages you get out of this code are a bit more
    // inscrutable, particularly for cases where one method has no
    // self.
    match (&trait_m.explicit_self, &impl_m.explicit_self) {
        (&ty::StaticExplicitSelfCategory,
         &ty::StaticExplicitSelfCategory) => {}
        (&ty::StaticExplicitSelfCategory, _) => {
B
Brian Anderson 已提交
62 63
            span_err!(tcx.sess, impl_m_span, E0185,
                "method `{}` has a `{}` declaration in the impl, \
64 65 66
                        but not in the trait",
                        token::get_name(trait_m.name),
                        ppaux::explicit_self_category_to_str(
B
Brian Anderson 已提交
67
                            &impl_m.explicit_self));
68 69 70
            return;
        }
        (_, &ty::StaticExplicitSelfCategory) => {
B
Brian Anderson 已提交
71 72
            span_err!(tcx.sess, impl_m_span, E0186,
                "method `{}` has a `{}` declaration in the trait, \
73 74 75
                        but not in the impl",
                        token::get_name(trait_m.name),
                        ppaux::explicit_self_category_to_str(
B
Brian Anderson 已提交
76
                            &trait_m.explicit_self));
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            return;
        }
        _ => {
            // Let the type checker catch other errors below
        }
    }

    let num_impl_m_type_params = impl_m.generics.types.len(subst::FnSpace);
    let num_trait_m_type_params = trait_m.generics.types.len(subst::FnSpace);
    if num_impl_m_type_params != num_trait_m_type_params {
        span_err!(tcx.sess, impl_m_span, E0049,
            "method `{}` has {} type parameter{} \
             but its trait declaration has {} type parameter{}",
            token::get_name(trait_m.name),
            num_impl_m_type_params,
            if num_impl_m_type_params == 1 {""} else {"s"},
            num_trait_m_type_params,
            if num_trait_m_type_params == 1 {""} else {"s"});
        return;
    }

    if impl_m.fty.sig.0.inputs.len() != trait_m.fty.sig.0.inputs.len() {
        span_err!(tcx.sess, impl_m_span, E0050,
            "method `{}` has {} parameter{} \
             but the declaration in trait `{}` has {}",
            token::get_name(trait_m.name),
            impl_m.fty.sig.0.inputs.len(),
            if impl_m.fty.sig.0.inputs.len() == 1 {""} else {"s"},
            ty::item_path_str(tcx, trait_m.def_id),
            trait_m.fty.sig.0.inputs.len());
        return;
    }

    // This code is best explained by example. Consider a trait:
    //
    //     trait Trait<'t,T> {
    //          fn method<'a,M>(t: &'t T, m: &'a M) -> Self;
    //     }
    //
    // And an impl:
    //
    //     impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
    //          fn method<'b,N>(t: &'j &'i U, m: &'b N) -> Foo;
    //     }
    //
    // We wish to decide if those two method types are compatible.
    //
    // We start out with trait_to_impl_substs, that maps the trait
    // type parameters to impl type parameters. This is taken from the
    // impl trait reference:
    //
    //     trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
    //
    // We create a mapping `dummy_substs` that maps from the impl type
    // parameters to fresh types and regions. For type parameters,
    // this is the identity transform, but we could as well use any
    // skolemized types. For regions, we convert from bound to free
    // regions (Note: but only early-bound regions, i.e., those
    // declared on the impl or used in type parameter bounds).
    //
    //     impl_to_skol_substs = {'i => 'i0, U => U0, N => N0 }
    //
    // Now we can apply skol_substs to the type of the impl method
    // to yield a new function type in terms of our fresh, skolemized
    // types:
    //
    //     <'b> fn(t: &'i0 U0, m: &'b) -> Foo
    //
    // We now want to extract and substitute the type of the *trait*
    // method and compare it. To do so, we must create a compound
    // substitution by combining trait_to_impl_substs and
    // impl_to_skol_substs, and also adding a mapping for the method
    // type parameters. We extend the mapping to also include
    // the method parameters.
    //
    //     trait_to_skol_substs = { T => &'i0 U0, Self => Foo, M => N0 }
    //
    // Applying this to the trait method type yields:
    //
    //     <'a> fn(t: &'i0 U0, m: &'a) -> Foo
    //
    // This type is also the same but the name of the bound region ('a
    // vs 'b).  However, the normal subtyping rules on fn types handle
    // this kind of equivalency just fine.
    //
J
Joseph Crail 已提交
162
    // We now use these substitutions to ensure that all declared bounds are
163 164 165
    // satisfied by the implementation's method.
    //
    // We do this by creating a parameter environment which contains a
J
Joseph Crail 已提交
166
    // substitution corresponding to impl_to_skol_substs. We then build
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    // trait_to_skol_substs and use it to convert the predicates contained
    // in the trait_m.generics to the skolemized form.
    //
    // Finally we register each of these predicates as an obligation in
    // a fresh FulfillmentCtxt, and invoke select_all_or_error.

    // Create a parameter environment that represents the implementation's
    // method.
    let impl_param_env =
        ty::ParameterEnvironment::for_item(tcx, impl_m.def_id.node);

    // Create mapping from impl to skolemized.
    let impl_to_skol_substs = &impl_param_env.free_substs;

    // Create mapping from trait to skolemized.
    let trait_to_skol_substs =
        trait_to_impl_substs
        .subst(tcx, impl_to_skol_substs)
        .with_method(impl_to_skol_substs.types.get_slice(subst::FnSpace).to_vec(),
                     impl_to_skol_substs.regions().get_slice(subst::FnSpace).to_vec());
    debug!("compare_impl_method: trait_to_skol_substs={}",
           trait_to_skol_substs.repr(tcx));

    // Check region bounds. FIXME(@jroesch) refactor this away when removing
    // ParamBounds.
    if !check_region_bounds_on_impl_method(tcx,
                                           impl_m_span,
                                           impl_m,
                                           &trait_m.generics,
                                           &impl_m.generics,
                                           &trait_to_skol_substs,
                                           impl_to_skol_substs) {
        return;
    }

    // Create obligations for each predicate declared by the impl
    // definition in the context of the trait's parameter
    // environment. We can't just use `impl_env.caller_bounds`,
    // however, because we want to replace all late-bound regions with
    // region variables.
    let impl_bounds =
208
        impl_m.predicates.instantiate(tcx, impl_to_skol_substs);
209 210 211 212 213 214 215 216 217 218

    let (impl_bounds, _) =
        infcx.replace_late_bound_regions_with_fresh_var(
            impl_m_span,
            infer::HigherRankedType,
            &ty::Binder(impl_bounds));
    debug!("compare_impl_method: impl_bounds={}",
           impl_bounds.repr(tcx));

    // Normalize the associated types in the trait_bounds.
219
    let trait_bounds = trait_m.predicates.instantiate(tcx, &trait_to_skol_substs);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    // Obtain the predicate split predicate sets for each.
    let trait_pred = trait_bounds.predicates.split();
    let impl_pred = impl_bounds.predicates.split();

    // This is the only tricky bit of the new way we check implementation methods
    // We need to build a set of predicates where only the FnSpace bounds
    // are from the trait and we assume all other bounds from the implementation
    // to be previously satisfied.
    //
    // We then register the obligations from the impl_m and check to see
    // if all constraints hold.
    let hybrid_preds = VecPerParamSpace::new(
        impl_pred.types,
        impl_pred.selfs,
        trait_pred.fns
    );

    // Construct trait parameter environment and then shift it into the skolemized viewpoint.
    // The key step here is to update the caller_bounds's predicates to be
    // the new hybrid bounds we computed.
241 242 243 244
    let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_body_id);
    let trait_param_env = impl_param_env.with_caller_bounds(hybrid_preds.into_vec());
    let trait_param_env = traits::normalize_param_env_or_error(trait_param_env,
                                                               normalize_cause.clone());
245 246 247 248 249 250

    debug!("compare_impl_method: trait_bounds={}",
        trait_param_env.caller_bounds.repr(tcx));

    let mut selcx = traits::SelectionContext::new(&infcx, &trait_param_env);

251
    for predicate in impl_pred.fns {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        let traits::Normalized { value: predicate, .. } =
            traits::normalize(&mut selcx, normalize_cause.clone(), &predicate);

        let cause = traits::ObligationCause {
            span: impl_m_span,
            body_id: impl_m_body_id,
            code: traits::ObligationCauseCode::CompareImplMethodObligation
        };

        fulfillment_cx.register_predicate_obligation(
            &infcx,
            traits::Obligation::new(cause, predicate));
    }

    // We now need to check that the signature of the impl method is
    // compatible with that of the trait method. We do this by
    // checking that `impl_fty <: trait_fty`.
    //
    // FIXME. Unfortunately, this doesn't quite work right now because
    // associated type normalization is not integrated into subtype
    // checks. For the comparison to be valid, we need to
    // normalize the associated types in the impl/trait methods
    // first. However, because function types bind regions, just
    // calling `normalize_associated_types_in` would have no effect on
    // any associated types appearing in the fn arguments or return
    // type.

    // Compute skolemized form of impl and trait method tys.
    let impl_fty = ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(impl_m.fty.clone()));
    let impl_fty = impl_fty.subst(tcx, impl_to_skol_substs);
    let trait_fty = ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(trait_m.fty.clone()));
    let trait_fty = trait_fty.subst(tcx, &trait_to_skol_substs);

    let err = infcx.try(|snapshot| {
        let origin = infer::MethodCompatCheck(impl_m_span);

        let (impl_sig, _) =
            infcx.replace_late_bound_regions_with_fresh_var(impl_m_span,
                                                            infer::HigherRankedType,
                                                            &impl_m.fty.sig);
        let impl_sig =
            impl_sig.subst(tcx, impl_to_skol_substs);
        let impl_sig =
            assoc::normalize_associated_types_in(&infcx,
                                                 &impl_param_env,
                                                 &mut fulfillment_cx,
                                                 impl_m_span,
                                                 impl_m_body_id,
                                                 &impl_sig);
        let impl_fty =
            ty::mk_bare_fn(tcx,
                           None,
                           tcx.mk_bare_fn(ty::BareFnTy { unsafety: impl_m.fty.unsafety,
                                                         abi: impl_m.fty.abi,
                                                         sig: ty::Binder(impl_sig) }));
        debug!("compare_impl_method: impl_fty={}",
               impl_fty.repr(tcx));

        let (trait_sig, skol_map) =
            infcx.skolemize_late_bound_regions(&trait_m.fty.sig, snapshot);
        let trait_sig =
            trait_sig.subst(tcx, &trait_to_skol_substs);
        let trait_sig =
            assoc::normalize_associated_types_in(&infcx,
                                                 &impl_param_env,
                                                 &mut fulfillment_cx,
                                                 impl_m_span,
                                                 impl_m_body_id,
                                                 &trait_sig);
        let trait_fty =
            ty::mk_bare_fn(tcx,
                           None,
                           tcx.mk_bare_fn(ty::BareFnTy { unsafety: trait_m.fty.unsafety,
                                                         abi: trait_m.fty.abi,
                                                         sig: ty::Binder(trait_sig) }));

        debug!("compare_impl_method: trait_fty={}",
               trait_fty.repr(tcx));

        try!(infer::mk_subty(&infcx, false, origin, impl_fty, trait_fty));

        infcx.leak_check(&skol_map, snapshot)
    });

    match err {
        Ok(()) => { }
        Err(terr) => {
            debug!("checking trait method for compatibility: impl ty {}, trait ty {}",
                   impl_fty.repr(tcx),
                   trait_fty.repr(tcx));
            span_err!(tcx.sess, impl_m_span, E0053,
                      "method `{}` has an incompatible type for trait: {}",
                      token::get_name(trait_m.name),
                      ty::type_err_to_str(tcx, &terr));
            return;
        }
    }

    // Check that all obligations are satisfied by the implementation's
    // version.
    match fulfillment_cx.select_all_or_error(&infcx, &trait_param_env) {
        Err(ref errors) => { traits::report_fulfillment_errors(&infcx, errors) }
        Ok(_) => {}
    }

    // Finally, resolve all regions. This catches wily misuses of lifetime
    // parameters.
    infcx.resolve_regions_and_report_errors(impl_m_body_id);

    fn check_region_bounds_on_impl_method<'tcx>(tcx: &ty::ctxt<'tcx>,
                                                span: Span,
                                                impl_m: &ty::Method<'tcx>,
                                                trait_generics: &ty::Generics<'tcx>,
                                                impl_generics: &ty::Generics<'tcx>,
                                                trait_to_skol_substs: &Substs<'tcx>,
                                                impl_to_skol_substs: &Substs<'tcx>)
                                                -> bool
    {

        let trait_params = trait_generics.regions.get_slice(subst::FnSpace);
        let impl_params = impl_generics.regions.get_slice(subst::FnSpace);

        debug!("check_region_bounds_on_impl_method: \
               trait_generics={} \
               impl_generics={} \
               trait_to_skol_substs={} \
               impl_to_skol_substs={}",
               trait_generics.repr(tcx),
               impl_generics.repr(tcx),
               trait_to_skol_substs.repr(tcx),
               impl_to_skol_substs.repr(tcx));

        // Must have same number of early-bound lifetime parameters.
        // Unfortunately, if the user screws up the bounds, then this
        // will change classification between early and late.  E.g.,
        // if in trait we have `<'a,'b:'a>`, and in impl we just have
        // `<'a,'b>`, then we have 2 early-bound lifetime parameters
        // in trait but 0 in the impl. But if we report "expected 2
        // but found 0" it's confusing, because it looks like there
        // are zero. Since I don't quite know how to phrase things at
        // the moment, give a kind of vague error message.
        if trait_params.len() != impl_params.len() {
B
Brian Anderson 已提交
394 395
            span_err!(tcx.sess, span, E0195,
                "lifetime parameters or bounds on method `{}` do \
396
                         not match the trait declaration",
B
Brian Anderson 已提交
397
                         token::get_name(impl_m.name));
398 399 400 401 402 403
            return false;
        }

        return true;
    }
}