math.h 50.5 KB
Newer Older
M
Matt Pharr 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
// pbrt is Copyright(c) 1998-2020 Matt Pharr, Wenzel Jakob, and Greg Humphreys.
// The pbrt source code is licensed under the Apache License, Version 2.0.
// SPDX: Apache-2.0

#ifndef PBRT_UTIL_MATH_H
#define PBRT_UTIL_MATH_H

#include <pbrt/pbrt.h>

#include <pbrt/util/bits.h>
#include <pbrt/util/check.h>
#include <pbrt/util/float.h>
#include <pbrt/util/pstd.h>

#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <string>
#include <type_traits>

#ifdef PBRT_HAS_INTRIN_H
#include <intrin.h>
#endif  // PBRT_HAS_INTRIN_H

namespace pbrt {

#ifdef PBRT_IS_GPU_CODE

#define ShadowEpsilon 0.0001f
#define Pi Float(3.14159265358979323846)
#define InvPi Float(0.31830988618379067154)
#define Inv2Pi Float(0.15915494309189533577)
#define Inv4Pi Float(0.07957747154594766788)
#define PiOver2 Float(1.57079632679489661923)
#define PiOver4 Float(0.78539816339744830961)
#define Sqrt2 Float(1.41421356237309504880)

#else

// Mathematical Constants
constexpr Float ShadowEpsilon = 0.0001f;

constexpr Float Pi = 3.14159265358979323846;
constexpr Float InvPi = 0.31830988618379067154;
constexpr Float Inv2Pi = 0.15915494309189533577;
constexpr Float Inv4Pi = 0.07957747154594766788;
constexpr Float PiOver2 = 1.57079632679489661923;
constexpr Float PiOver4 = 0.78539816339744830961;
constexpr Float Sqrt2 = 1.41421356237309504880;

#endif

// CompensatedSum Definition
template <typename Float>
class CompensatedSum {
  public:
    CompensatedSum() = default;
    PBRT_CPU_GPU
    explicit CompensatedSum(Float v) : sum(v) {}

    PBRT_CPU_GPU
    CompensatedSum &operator=(Float v) {
        sum = v;
        c = 0;
        return *this;
    }

    PBRT_CPU_GPU
    CompensatedSum &operator+=(Float v) {
        Float delta = v - c;
        Float newSum = sum + delta;
        c = (newSum - sum) - delta;
        sum = newSum;
        return *this;
    }

    PBRT_CPU_GPU
    explicit operator Float() const { return sum; }

    std::string ToString() const;

  private:
    Float sum = 0., c = 0.;
};

// CompensatedFloat Definition
struct CompensatedFloat {
  public:
    PBRT_CPU_GPU
    CompensatedFloat(Float v, Float err) : v(v), err(err) {}

    PBRT_CPU_GPU
    explicit operator float() const { return v + err; }
    PBRT_CPU_GPU
    explicit operator double() const { return double(v) + double(err); }

    Float v, err;

    std::string ToString() const;
};

// Math Inline Functions
PBRT_CPU_GPU
inline Float Lerp(Float t, Float a, Float b) {
    return (1 - t) * a + t * b;
}

// http://www.plunk.org/~hatch/rightway.php
PBRT_CPU_GPU
inline Float SinXOverX(Float x) {
    if (1 + x * x == 1)
        return 1;
    return std::sin(x) / x;
}

PBRT_CPU_GPU
inline Float Sinc(Float x) {
    return SinXOverX(Pi * x);
}

PBRT_CPU_GPU
inline Float WindowedSinc(Float x, Float radius, Float tau) {
    if (std::abs(x) > radius)
        return 0;
    Float lanczos = Sinc(x / tau);
    return Sinc(x) * lanczos;
}

#ifdef PBRT_IS_MSVC
#pragma warning(push)
#pragma warning(disable : 4018)  // signed/unsigned mismatch
#endif

template <typename T, typename U, typename V>
PBRT_CPU_GPU inline constexpr T Clamp(T val, U low, V high) {
    if (val < low)
        return low;
    else if (val > high)
        return high;
    else
        return val;
}

#ifdef PBRT_IS_MSVC
#pragma warning(pop)
#endif

template <typename T>
PBRT_CPU_GPU inline T Mod(T a, T b) {
    T result = a - (a / b) * b;
    return (T)((result < 0) ? result + b : result);
}

template <>
PBRT_CPU_GPU inline Float Mod(Float a, Float b) {
    return std::fmod(a, b);
}

// (0,0): v[0], (1, 0): v[1], (0, 1): v[2], (1, 1): v[3]
PBRT_CPU_GPU
inline Float Bilerp(pstd::array<Float, 2> p, pstd::span<const Float> v) {
    return ((1 - p[0]) * (1 - p[1]) * v[0] + p[0] * (1 - p[1]) * v[1] +
            (1 - p[0]) * p[1] * v[2] + p[0] * p[1] * v[3]);
}

PBRT_CPU_GPU
inline Float Radians(Float deg) {
    return (Pi / 180) * deg;
}
PBRT_CPU_GPU
inline Float Degrees(Float rad) {
    return (180 / Pi) * rad;
}

PBRT_CPU_GPU
inline float FMA(float a, float b, float c) {
    return std::fma(a, b, c);
}

PBRT_CPU_GPU
inline double FMA(double a, double b, double c) {
    return std::fma(a, b, c);
}
inline long double FMA(long double a, long double b, long double c) {
    return std::fma(a, b, c);
}
// Needed so can use e.g. EvaluatePolynomial() with ints
template <typename T>
PBRT_CPU_GPU inline typename std::enable_if_t<std::is_integral<T>::value, T> FMA(T a, T b,
                                                                                 T c) {
    return a * b + c;
}

PBRT_CPU_GPU
inline float SafeSqrt(float x) {
    DCHECK_GE(x, -1e-3f);  // not too negative
    return std::sqrt(std::max(0.f, x));
}

PBRT_CPU_GPU
inline double SafeSqrt(double x) {
    DCHECK_GE(x, -1e-3);  // not too negative
    return std::sqrt(std::max(0., x));
}

template <typename T>
PBRT_CPU_GPU inline constexpr T Sqr(T v) {
    return v * v;
}

// Would be nice to allow Float to be a template type here, but it's tricky:
// https://stackoverflow.com/questions/5101516/why-function-template-cannot-be-partially-specialized
template <int n>
PBRT_CPU_GPU inline constexpr float Pow(float v) {
    static_assert(n > 0, "Power can't be negative");
    float n2 = Pow<n / 2>(v);
    return n2 * n2 * Pow<n & 1>(v);
}

template <>
PBRT_CPU_GPU inline constexpr float Pow<1>(float v) {
    return v;
}

template <>
PBRT_CPU_GPU inline constexpr float Pow<0>(float v) {
    return 1;
}

template <int n>
PBRT_CPU_GPU inline constexpr double Pow(double v) {
    static_assert(n > 0, "Power can't be negative");
    double n2 = Pow<n / 2>(v);
    return n2 * n2 * Pow<n & 1>(v);
}

template <>
PBRT_CPU_GPU inline constexpr double Pow<1>(double v) {
    return v;
}

template <>
PBRT_CPU_GPU inline constexpr double Pow<0>(double v) {
    return 1;
}

template <typename Float, typename C>
PBRT_CPU_GPU inline constexpr Float EvaluatePolynomial(Float t, C c) {
    return c;
}

template <typename Float, typename C, typename... Args>
PBRT_CPU_GPU inline constexpr Float EvaluatePolynomial(Float t, C c, Args... cRemaining) {
    using FMAT = typename std::common_type<Float, C>::type;
    return FMA(FMAT(t), FMAT(EvaluatePolynomial(t, cRemaining...)), FMAT(c));
}

PBRT_CPU_GPU
inline Float ApproxSin(Float x) {
#ifdef PBRT_IS_GPU_CODE
    return __sinf(x * (Pi / 4));
#else
    DCHECK_RARE(1e-5, x < 0 || x > 2);
    x = Clamp(x, 0, 2);

    // Coefficients for minimax approximation of sin(x*pi/4), x=[0,2].
    const float s1 = 0.7853975892066955566406250000000000f;
    const float s2 = -0.0807407423853874206542968750000000f;
    const float s3 = 0.0024843954015523195266723632812500f;
    const float s4 = -0.0000341485538228880614042282104492f;
    return EvaluatePolynomial(x * x, s1, s2, s3, s4) * x;
#endif
}

PBRT_CPU_GPU
inline Float ApproxCos(Float x) {
#ifdef PBRT_IS_GPU_CODE
    return __cosf(x * (Pi / 4));
#else
    DCHECK_RARE(1e-5, x < 0 || x > 2);
    x = Clamp(x, 0, 2);

    // Coefficients for minimax approximation of cos(x*pi/4), x=[0,2].
    const float c1 = 0.9999932952821962577665326692990000f;
    const float c2 = -0.3083711259464511647371969120320000f;
    const float c3 = 0.0157862649459062213825197189573000f;
    const float c4 = -0.0002983708648233575495551227373110f;
    return EvaluatePolynomial(x * x, c1, c2, c3, c4);
#endif
}

PBRT_CPU_GPU
inline float SafeASin(float x) {
    DCHECK(x >= -1.0001 && x <= 1.0001);
    return std::asin(Clamp(x, -1, 1));
}

PBRT_CPU_GPU
inline double SafeASin(double x) {
    DCHECK(x >= -1.0001 && x <= 1.0001);
    return std::asin(Clamp(x, -1, 1));
}

PBRT_CPU_GPU
inline float SafeACos(float x) {
    DCHECK(x >= -1.0001 && x <= 1.0001);
    return std::acos(Clamp(x, -1, 1));
}

PBRT_CPU_GPU
inline double SafeACos(double x) {
    DCHECK(x >= -1.0001 && x <= 1.0001);
    return std::acos(Clamp(x, -1, 1));
}

PBRT_CPU_GPU
inline Float Log2(Float x) {
    const Float invLog2 = 1.442695040888963387004650940071;
    return std::log(x) * invLog2;
}

PBRT_CPU_GPU
inline int Log2Int(float v) {
    DCHECK_GT(v, 0);
    if (v < 1)
        return -Log2Int(1 / v);
    // https://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
    // (With an additional check of the significant to get round-to-nearest
    // rather than round down.)
    // midsignif = Significand(std::pow(2., 1.5))
    // i.e. grab the significand of a value halfway between two exponents,
    // in log space.
    const uint32_t midsignif = 0b00000000001101010000010011110011;
    return Exponent(v) + ((Significand(v) >= midsignif) ? 1 : 0);
}

PBRT_CPU_GPU
inline int Log2Int(double v) {
    DCHECK_GT(v, 0);
    if (v < 1)
        return -Log2Int(1 / v);
    // https://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
    // (With an additional check of the significant to get round-to-nearest
    // rather than round down.)
    // midsignif = Significand(std::pow(2., 1.5))
    // i.e. grab the significand of a value halfway between two exponents,
    // in log space.
    const uint64_t midsignif = 0b110101000001001111001100110011111110011101111001101;
    return Exponent(v) + ((Significand(v) >= midsignif) ? 1 : 0);
}

PBRT_CPU_GPU
inline int Log2Int(uint32_t v) {
#ifdef PBRT_IS_GPU_CODE
    return 31 - __clz(v);
#elif defined(PBRT_HAS_INTRIN_H)
    unsigned long lz = 0;
    if (_BitScanReverse(&lz, v))
        return lz;
    return 0;
#else
    return 31 - __builtin_clz(v);
#endif
}

PBRT_CPU_GPU
inline int Log2Int(int32_t v) {
    return Log2Int((uint32_t)v);
}

PBRT_CPU_GPU
inline int Log2Int(uint64_t v) {
#ifdef PBRT_IS_GPU_CODE
    return 64 - __clzll(v);
#elif defined(PBRT_HAS_INTRIN_H)
    unsigned long lz = 0;
#if defined(_WIN64)
    _BitScanReverse64(&lz, v);
#else
    if (_BitScanReverse(&lz, v >> 32))
        lz += 32;
    else
        _BitScanReverse(&lz, v & 0xffffffff);
#endif  // _WIN64
    return lz;
#else   // PBRT_HAS_INTRIN_H
    return 63 - __builtin_clzll(v);
#endif
}

PBRT_CPU_GPU
inline int Log2Int(int64_t v) {
    return Log2Int((uint64_t)v);
}

// log4(x) = log2(x) / log2(4) = 1/2 log2(x) = log2(x) >> 1
template <typename T>
PBRT_CPU_GPU inline int Log4Int(T v) {
    return Log2Int(v) >> 1;
}

// https://stackoverflow.com/a/10792321
PBRT_CPU_GPU
inline float FastExp(float x) {
#ifdef __CUDA__ARCH__
    return __expf(x);
#else
    /* exp(x) = 2^i * 2^f; i = floor (log2(e) * x), 0 <= f <= 1 */
    float t = x * 1.442695041f;
    float fi = std::floor(t);
    float f = t - fi;
    int i = (int)fi;

    // TODO: figure out what these should be.
    if (i < -30)
        return 0;
    if (i > 30)
        return Infinity;

    // built-in exp on OSX is about 69ms, so 1.55x speedup.
    // approximations to 2^f over [0,1]...

    // quadratic:
    // quadratic, from stack exchange: max error: 0.001725, 40.3ms
    // float twoToF = EvaluatePolynomial(f, 1.00172476f, 0.657636276f,
    // 0.3371894346f);

    // mathematica quadratic polynomial via Fit: max error: 0.003699, 40.3ms
    // float twoToF = EvaluatePolynomial(f, 1.00375f, 0.649445f, 0.342662f);

    // mathematica quadratic polynomial via FindFit, Linfinity norm
    // max error: 0.002431, 40.5ms
    // float twoToF = EvaluatePolynomial(f, 1.00248f, 0.651047f, 0.344001f);

    // cubic polynomial via Fit: max error: 0.000183, 44.5ms
    float twoToF = EvaluatePolynomial(f, 0.999813f, 0.696834f, 0.224131f, 0.0790209f);

    // mathematcia rational polynomial via FindFit: max err 0.00059, 47.291ms
    // float twoToF = EvaluatePolynomial(f, 0.263371f, 0.128038f, 0.0268998f) /
    //(0.263355f - 0.0542072f * f);

    // scale by 2^i, including the case of i being negative....
    uint32_t bits = FloatToBits(twoToF);
    bits += (i << 23);
    return BitsToFloat(bits);
#endif
}

PBRT_CPU_GPU
inline Float Gaussian(Float x, Float mu = 0, Float sigma = 1) {
    return 1 / std::sqrt(2 * Pi * sigma * sigma) *
           FastExp(-Sqr(x - mu) / (2 * sigma * sigma));
}

PBRT_CPU_GPU
inline Float GaussianIntegral(Float x0, Float x1, Float mu = 0, Float sigma = 1) {
    DCHECK_GT(sigma, 0);
    Float sigmaRoot2 = sigma * Float(1.414213562373095);
    return 0.5f * (std::erf((mu - x0) / sigmaRoot2) - std::erf((mu - x1) / sigmaRoot2));
}

PBRT_CPU_GPU
inline Float Logistic(Float x, Float s) {
    x = std::abs(x);
    return std::exp(-x / s) / (s * Sqr(1 + std::exp(-x / s)));
}

PBRT_CPU_GPU
inline Float LogisticCDF(Float x, Float s) {
    return 1 / (1 + std::exp(-x / s));
}

PBRT_CPU_GPU
inline Float TrimmedLogistic(Float x, Float s, Float a, Float b) {
    DCHECK_LT(a, b);
    return Logistic(x, s) / (LogisticCDF(b, s) - LogisticCDF(a, s));
}

PBRT_CPU_GPU
inline Float ErfInv(Float a);
PBRT_CPU_GPU
inline Float I0(Float x);
PBRT_CPU_GPU
inline Float LogI0(Float x);

/**
 * \brief Find an interval in an ordered set
 *
 * This function is very similar to \c std::upper_bound, but it uses a functor
 * rather than an actual array to permit working with procedurally defined
 * data. It returns the index \c i such that pred(i) is \c true and pred(i+1)
 * is \c false. See below for special cases.
 *
 * This function is primarily used to locate an interval (i, i+1) for linear
 * interpolation, hence its name. To avoid issues out of bounds accesses, and
 * to deal with predicates that evaluate to \c true or \c false on the entire
 * domain, the returned left interval index is clamped to the range <tt>[left,
 * right-2]</tt>.
 * In particular:
 * If there is no index such that pred(i) is true, we return (left).
 * If there is no index such that pred(i+1) is false, we return (right-2).
 */
template <typename Predicate>
PBRT_CPU_GPU inline size_t FindInterval(size_t size_, const Predicate &pred) {
    using ssize_t = std::make_signed_t<size_t>;  // Not all platforms have ssize_t
    ssize_t size = (ssize_t)size_ - 2, first = 1;

    while (size > 0) {
        size_t half = (size_t)size >> 1, middle = first + half;

        // .. and recurse into the left or right side
        bool predResult = pred(middle);
        first = predResult ? middle + 1 : first;
        size = predResult ? size - (half + 1) : half;
    }

    return (size_t)Clamp((ssize_t)first - 1, 0, size_ - 2);
}

template <typename T>
PBRT_CPU_GPU inline constexpr bool IsPowerOf2(T v) {
    return v && !(v & (v - 1));
}

template <typename T>
PBRT_CPU_GPU inline bool IsPowerOf4(T v) {
    return v == 1 << (2 * Log4Int(v));
}

PBRT_CPU_GPU
inline constexpr int32_t RoundUpPow2(int32_t v) {
    v--;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    return v + 1;
}

PBRT_CPU_GPU
inline constexpr int64_t RoundUpPow2(int64_t v) {
    v--;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    v |= v >> 32;
    return v + 1;
}

template <typename T>
PBRT_CPU_GPU inline T RoundUpPow4(T v) {
    return IsPowerOf4(v) ? v : (1 << (2 * (1 + Log4Int(v))));
}

template <typename Float>
PBRT_CPU_GPU inline CompensatedFloat TwoProd(Float a, Float b) {
    Float ab = a * b;
    return {ab, FMA(a, b, -ab)};
}

template <typename Float>
PBRT_CPU_GPU inline CompensatedFloat TwoSum(Float a, Float b) {
    Float s = a + b;
    Float ap = s - b;
    Float bp = s - ap;
    Float da = a - ap;
    Float db = b - bp;
    return {s, da + db};
}

// Returns ab-cd with <1.5 ulps of error
// Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller,
//  "Further Analysis of Kahan's Algorithm for the Accurate Computation
//  of 2x2 Determinants". Mathematics of Computation, Vol. 82, No. 284,
//  Oct. 2013, pp. 2245-2264
template <typename Ta, typename Tb, typename Tc, typename Td>
PBRT_CPU_GPU inline auto DifferenceOfProducts(Ta a, Tb b, Tc c, Td d) {
    auto cd = c * d;
    auto err = FMA(-c, d, cd);  // Error (exact)
    auto dop = FMA(a, b, -cd);
    return dop + err;
}

template <typename Ta, typename Tb, typename Tc, typename Td>
PBRT_CPU_GPU inline auto SumOfProducts(Ta a, Tb b, Tc c, Td d) {
    auto cd = c * d;
    auto err = FMA(c, d, -cd);  // Error (exact)
    auto sop = FMA(a, b, cd);
    return sop + err;
}

namespace internal {

template <typename Float>
PBRT_CPU_GPU inline CompensatedFloat InnerProduct(Float a, Float b) {
    return TwoProd(a, b);
}

// Accurate dot products with FMA: Graillat et al.,
// http://rnc7.loria.fr/louvet_poster.pdf
//
// Accurate summation, dot product and polynomial evaluation in complex
// floating point arithmetic, Graillat and Menissier-Morain.
//
// Precision same as if in working with doubles. Unfortunately is about
// 4.6x slower than plain old float dot product. Going to doubles is just
// ~2x slower...
template <typename Float, typename... T>
PBRT_CPU_GPU inline CompensatedFloat InnerProduct(Float a, Float b, T... terms) {
    CompensatedFloat ab = TwoProd(a, b);
    CompensatedFloat tp = InnerProduct(terms...);
    CompensatedFloat sum = TwoSum(ab.v, tp.v);
    return {sum.v, ab.err + (tp.err + sum.err)};
}

}  // namespace internal

template <typename... T>
PBRT_CPU_GPU inline Float InnerProduct(T... terms) {
    CompensatedFloat ip = internal::InnerProduct(terms...);
    return Float(ip);
}

PBRT_CPU_GPU
inline bool Quadratic(float a, float b, float c, float *t0, float *t1) {
    // Find quadratic discriminant
    float discrim = DifferenceOfProducts(b, b, 4 * a, c);
    if (discrim < 0)
        return false;
    float rootDiscrim = std::sqrt(discrim);

    // Compute quadratic _t_ values
    float q = -0.5f * (b + std::copysign(rootDiscrim, b));
    *t0 = q / a;
    *t1 = c / q;
    if (*t0 > *t1)
        pstd::swap(*t0, *t1);
    return true;
}

PBRT_CPU_GPU
inline bool Quadratic(double a, double b, double c, double *t0, double *t1) {
    // Find quadratic discriminant
    double discrim = DifferenceOfProducts(b, b, 4 * a, c);
    if (discrim < 0)
        return false;
    double rootDiscrim = std::sqrt(discrim);

    // Compute quadratic _t_ values
    double q = -0.5 * (b + std::copysign(rootDiscrim, b));
    *t0 = q / a;
    *t1 = c / q;
    if (*t0 > *t1)
        pstd::swap(*t0, *t1);
    return true;
}

// Solve f[x] == 0 over [x0, x1]. f should return a std::pair<FloatType,
// FloatType>[f(x), f'(x)]. Only enabled for float and double.
template <typename FloatType, typename Func>
PBRT_CPU_GPU inline FloatType NewtonBisection(
    FloatType x0, FloatType x1, Func f, Float xEps = 1e-6f, Float fEps = 1e-6f,
    typename std::enable_if_t<std::is_floating_point<FloatType>::value> * = nullptr) {
    DCHECK_LT(x0, x1);
    Float fx0 = f(x0).first, fx1 = f(x1).first;
    if (std::abs(fx0) < fEps)
        return x0;
    if (std::abs(fx1) < fEps)
        return x1;
    bool startIsNegative = fx0 < 0;
    // Implicit line equation: (y-y0)/(y1-y0) = (x-x0)/(x1-x0).
    // Solve for y = 0 to find x for starting point.
    FloatType xMid = x0 + (x1 - x0) * -fx0 / (fx1 - fx0);

    while (true) {
        if (!(x0 < xMid && xMid < x1))
            // Fall back to bisection.
            xMid = (x0 + x1) / 2;

        std::pair<FloatType, FloatType> fxMid = f(xMid);
        DCHECK(!std::isnan(fxMid.first));

        if (startIsNegative == fxMid.first < 0)
            x0 = xMid;
        else
            x1 = xMid;

        if ((x1 - x0) < xEps || std::abs(fxMid.first) < fEps)
            return xMid;

        // Try a Newton step.
        xMid -= fxMid.first / fxMid.second;
    }
}

// If an integral type is used for x0 and x1, assume Float.
template <typename NotFloatType, typename Func>
PBRT_CPU_GPU inline Float NewtonBisection(
    NotFloatType x0, NotFloatType x1, Func f, Float xEps = 1e-6f, Float fEps = 1e-6f,
    typename std::enable_if_t<std::is_integral<NotFloatType>::value> * = nullptr) {
    return NewtonBisection(Float(x0), Float(x1), f, xEps, fEps);
}

PBRT_CPU_GPU
inline Float SmoothStep(Float x, Float a, Float b) {
    if (a == b)
        return (x < a) ? 0 : 1;
    DCHECK_LT(a, b);
    Float t = Clamp((x - a) / (b - a), 0, 1);
    return t * t * (3 - 2 * t);
}

// Math Function Declarations
int NextPrime(int x);

PBRT_CPU_GPU
inline Float ErfInv(Float a) {
#ifdef PBRT_IS_GPU_CODE
    return erfinv(a);
#else
    // https://stackoverflow.com/a/49743348
    float p;
    float t = std::log(std::max(FMA(a, -a, 1), std::numeric_limits<Float>::min()));
    CHECK(!std::isnan(t) && !std::isinf(t));
    if (std::abs(t) > 6.125f) {          // maximum ulp error = 2.35793
        p = 3.03697567e-10f;             //  0x1.4deb44p-32
        p = FMA(p, t, 2.93243101e-8f);   //  0x1.f7c9aep-26
        p = FMA(p, t, 1.22150334e-6f);   //  0x1.47e512p-20
        p = FMA(p, t, 2.84108955e-5f);   //  0x1.dca7dep-16
        p = FMA(p, t, 3.93552968e-4f);   //  0x1.9cab92p-12
        p = FMA(p, t, 3.02698812e-3f);   //  0x1.8cc0dep-9
        p = FMA(p, t, 4.83185798e-3f);   //  0x1.3ca920p-8
        p = FMA(p, t, -2.64646143e-1f);  // -0x1.0eff66p-2
        p = FMA(p, t, 8.40016484e-1f);   //  0x1.ae16a4p-1
    } else {                             // maximum ulp error = 2.35456
        p = 5.43877832e-9f;              //  0x1.75c000p-28
        p = FMA(p, t, 1.43286059e-7f);   //  0x1.33b458p-23
        p = FMA(p, t, 1.22775396e-6f);   //  0x1.49929cp-20
        p = FMA(p, t, 1.12962631e-7f);   //  0x1.e52bbap-24
        p = FMA(p, t, -5.61531961e-5f);  // -0x1.d70c12p-15
        p = FMA(p, t, -1.47697705e-4f);  // -0x1.35be9ap-13
        p = FMA(p, t, 2.31468701e-3f);   //  0x1.2f6402p-9
        p = FMA(p, t, 1.15392562e-2f);   //  0x1.7a1e4cp-7
        p = FMA(p, t, -2.32015476e-1f);  // -0x1.db2aeep-3
        p = FMA(p, t, 8.86226892e-1f);   //  0x1.c5bf88p-1
    }
    return a * p;
#endif  // PBRT_IS_GPU_CODE
}

PBRT_CPU_GPU
inline Float I0(Float x) {
    Float val = 0;
    Float x2i = 1;
    int64_t ifact = 1;
    int i4 = 1;
    // I0(x) \approx Sum_i x^(2i) / (4^i (i!)^2)
    for (int i = 0; i < 10; ++i) {
        if (i > 1)
            ifact *= i;
        val += x2i / (i4 * Sqr(ifact));
        x2i *= x * x;
        i4 *= 4;
    }
    return val;
}

PBRT_CPU_GPU
inline Float LogI0(Float x) {
    if (x > 12)
        return x + 0.5f * (-std::log(2 * Pi) + std::log(1 / x) + 1 / (8 * x));
    else
        return std::log(I0(x));
}

// Interval Definition
template <typename Float>
class Interval {
  public:
    // Interval Public Methods
    Interval() = default;
    PBRT_CPU_GPU
    constexpr Interval(Float low, Float high)
        : low(std::min(low, high)), high(std::max(low, high)) {}

    PBRT_CPU_GPU
    Interval &operator=(Float v) {
        low = high = v;
        return *this;
    }

    PBRT_CPU_GPU
    static Interval FromValueAndError(Float v, Float err) {
        Interval i;
        if (err == 0)
            i.low = i.high = v;
        else {
            // Compute conservative bounds by rounding the endpoints away
            // from the middle. Note that this will be over-conservative in
            // cases where v-err or v+err are exactly representable in
            // floating-point, but it's probably not worth the trouble of
            // checking this case.
            i.low = NextFloatDown(v - err);
            i.high = NextFloatUp(v + err);
        }
        return i;
    }

    PBRT_CPU_GPU
    Float UpperBound() const { return high; }
    PBRT_CPU_GPU
    Float LowerBound() const { return low; }
    PBRT_CPU_GPU
    Float Midpoint() const { return (low + high) / 2; }
    PBRT_CPU_GPU
    Float Width() const { return high - low; }

    PBRT_CPU_GPU
    Float operator[](int i) const {
        DCHECK(i == 0 || i == 1);
        return (i == 0) ? low : high;
    }

    PBRT_CPU_GPU
    explicit Interval(Float v) : low(v), high(v) {}

    PBRT_CPU_GPU
    explicit operator Float() const { return Midpoint(); }

    PBRT_CPU_GPU
    bool Exactly(Float v) const { return low == v && high == v; }

    template <typename T>
    PBRT_CPU_GPU explicit Interval(const Interval<T> &i) {
        *this = i;
    }

    template <typename T>
    PBRT_CPU_GPU Interval &operator=(const Interval<T> &i) {
        low = i.LowerBound();
        high = i.UpperBound();
        if (sizeof(T) > sizeof(Float)) {
            // Assume that if Float is bigger than T, then it's more
            // precise, which seems not unreasonable...
            low = NextFloatDown(low);
            high = NextFloatUp(high);
        }
        return *this;
    }

    PBRT_CPU_GPU
    bool operator==(Float v) const { return Exactly(v); }

    PBRT_CPU_GPU
    Interval operator-() const { return {-high, -low}; }

    template <typename F>
    PBRT_CPU_GPU auto operator+(Interval<F> i) const
        -> Interval<decltype(Float() + F())> {
        using FR = decltype(Float() + F());
        if (Exactly(0))
            return Interval<FR>(i);
        else if (i.Exactly(0))
            return Interval<FR>(*this);

        return Interval<FR>(NextFloatDown(LowerBound() + i.LowerBound()),
                            NextFloatUp(UpperBound() + i.UpperBound()));
    }

    template <typename F>
    PBRT_CPU_GPU auto operator-(Interval<F> i) const
        -> Interval<decltype(Float() - F())> {
        using FR = decltype(Float() - F());
        if (Exactly(0))
            return Interval<FR>(-i);
        else if (i.Exactly(0))
            return Interval<FR>(*this);

        return Interval<FR>(NextFloatDown(LowerBound() - i.UpperBound()),
                            NextFloatUp(UpperBound() - i.LowerBound()));
    }

    template <typename F>
    PBRT_CPU_GPU auto operator*(Interval<F> i) const
        -> Interval<decltype(Float() * F())> {
        using FR = decltype(Float() * F());
        if (Exactly(0) || i.Exactly(0))
            return Interval<FR>(0);
        if (Exactly(1))
            return Interval<FR>(i);
        if (i.Exactly(1))
            return Interval<FR>(*this);

        FR prod[4] = {LowerBound() * i.LowerBound(), UpperBound() * i.LowerBound(),
                      LowerBound() * i.UpperBound(), UpperBound() * i.UpperBound()};
        return Interval<FR>(NextFloatDown(std::min({prod[0], prod[1], prod[2], prod[3]})),
                            NextFloatUp(std::max({prod[0], prod[1], prod[2], prod[3]})));
    }

    template <typename F>
    PBRT_CPU_GPU auto operator/(Interval<F> i) const
        -> Interval<decltype(Float() / F())> {
        using FR = decltype(Float() / F());
        if (Exactly(0))
            // Not going to worry about NaN...
            return Interval<FR>(0);
        if (i.Exactly(1))
            return Interval<FR>(*this);

        if (InRange(0, i))
            // The interval we're dividing by straddles zero, so just
            // return an interval of everything.
            return Interval<FR>(-Infinity, Infinity);

        FR div[4] = {LowerBound() / i.LowerBound(), UpperBound() / i.LowerBound(),
                     LowerBound() / i.UpperBound(), UpperBound() / i.UpperBound()};
        return Interval<FR>(NextFloatDown(std::min({div[0], div[1], div[2], div[3]})),
                            NextFloatUp(std::max({div[0], div[1], div[2], div[3]})));
    }

    template <typename F>
    PBRT_CPU_GPU bool operator==(Interval<F> i) const {
        return low == i.low && high == i.high;
    }

    PBRT_CPU_GPU
    bool operator!=(Float f) const { return f < low || f > high; }

    std::string ToString() const;

    template <typename F>
    PBRT_CPU_GPU Interval &operator+=(Interval<F> i) {
        *this = Interval(*this + i);
        return *this;
    }
    template <typename F>
    PBRT_CPU_GPU Interval &operator-=(Interval<F> i) {
        *this = Interval(*this - i);
        return *this;
    }
    template <typename F>
    PBRT_CPU_GPU Interval &operator*=(Interval<F> i) {
        *this = Interval(*this * i);
        return *this;
    }
    template <typename F>
    PBRT_CPU_GPU Interval &operator/=(Interval<F> i) {
        *this = Interval(*this / i);
        return *this;
    }
    PBRT_CPU_GPU
    Interval &operator+=(Float f) { return *this += Interval<Float>(f); }
    PBRT_CPU_GPU
    Interval &operator-=(Float f) { return *this -= Interval<Float>(f); }
    PBRT_CPU_GPU
    Interval &operator*=(Float f) { return *this *= Interval<Float>(f); }
    PBRT_CPU_GPU
    Interval &operator/=(Float f) { return *this /= Interval<Float>(f); }

#ifndef PBRT_IS_GPU_CODE
    static const Interval Pi;
#endif

  private:
    friend class SOA<Interval<Float>>;
    // Interval Private Members
    Float low, high;
};

using FloatInterval = Interval<Float>;

// Interval Inline Functions
template <typename T, typename Float>
PBRT_CPU_GPU inline bool InRange(T v, Interval<Float> i) {
    return v >= i.LowerBound() && v <= i.UpperBound();
}

template <typename FloatA, typename FloatB>
PBRT_CPU_GPU inline bool InRange(Interval<FloatA> a, Interval<FloatB> b) {
    return a.LowerBound() <= b.UpperBound() && a.UpperBound() >= b.LowerBound();
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator+(T f, Interval<Float> i) {
    return Interval<Float>(f) + i;
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator-(T f, Interval<Float> i) {
    return Interval<Float>(f) - i;
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator*(T f, Interval<Float> i) {
    return Interval<Float>(f) * i;
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator/(T f, Interval<Float> i) {
    return Interval<Float>(f) / i;
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator+(Interval<Float> i, T f) {
    return i + Interval<Float>(f);
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator-(Interval<Float> i, T f) {
    return i - Interval<Float>(f);
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator*(Interval<Float> i, T f) {
    return i * Interval<Float>(f);
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    operator/(Interval<Float> i, T f) {
    return i / Interval<Float>(f);
}

template <typename Float>
PBRT_CPU_GPU inline Float Floor(Interval<Float> i) {
    return std::floor(i.LowerBound());
}

template <typename Float>
PBRT_CPU_GPU inline Float Ceil(Interval<Float> i) {
    return std::ceil(i.UpperBound());
}

template <typename Float>
PBRT_CPU_GPU inline Float floor(Interval<Float> i) {
    return Floor(i);
}

template <typename Float>
PBRT_CPU_GPU inline Float ceil(Interval<Float> i) {
    return Ceil(i);
}

template <typename Float>
PBRT_CPU_GPU inline Float Min(Interval<Float> a, Interval<Float> b) {
    return std::min(a.LowerBound(), b.LowerBound());
}

template <typename Float>
PBRT_CPU_GPU inline Float Max(Interval<Float> a, Interval<Float> b) {
    return std::max(a.UpperBound(), b.UpperBound());
}

template <typename Float>
PBRT_CPU_GPU inline Float min(Interval<Float> a, Interval<Float> b) {
    return Min(a, b);
}

template <typename Float>
PBRT_CPU_GPU inline Float max(Interval<Float> a, Interval<Float> b) {
    return Max(a, b);
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> Sqrt(Interval<Float> i) {
    return Interval<Float>(std::max<Float>(0, NextFloatDown(std::sqrt(i.LowerBound()))),
                           NextFloatUp(std::sqrt(i.UpperBound())));
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> sqrt(Interval<Float> i) {
    return Sqrt(i);
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> Sqr(Interval<Float> i) {
    Float slow = Sqr(i.LowerBound()), shigh = Sqr(i.UpperBound());
    if (slow > shigh)
        pstd::swap(slow, shigh);
    if (InRange(0, i))
        return Interval<Float>(0, NextFloatUp(shigh));
    return Interval<Float>(NextFloatDown(slow), NextFloatUp(shigh));
}

template <typename FloatA, typename FloatB, typename FloatC>
PBRT_CPU_GPU inline auto FMA(Interval<FloatA> a, Interval<FloatB> b, Interval<FloatC> c)
    -> Interval<decltype(FloatA() * FloatB() + FloatC())> {
    using FT = decltype(FloatA() * FloatB() + FloatC());
    Float low =
        NextFloatDown(std::min({FMA(a.LowerBound(), b.LowerBound(), c.LowerBound()),
                                FMA(a.UpperBound(), b.LowerBound(), c.LowerBound()),
                                FMA(a.LowerBound(), b.UpperBound(), c.LowerBound()),
                                FMA(a.UpperBound(), b.UpperBound(), c.LowerBound())}));
    Float high =
        NextFloatUp(std::max({FMA(a.LowerBound(), b.LowerBound(), c.UpperBound()),
                              FMA(a.UpperBound(), b.LowerBound(), c.UpperBound()),
                              FMA(a.LowerBound(), b.UpperBound(), c.UpperBound()),
                              FMA(a.UpperBound(), b.UpperBound(), c.UpperBound())}));
    return Interval<FT>(low, high);
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> DifferenceOfProducts(Interval<Float> a,
                                                         Interval<Float> b,
                                                         Interval<Float> c,
                                                         Interval<Float> d) {
    Float ab[4] = {a.LowerBound() * b.LowerBound(), a.UpperBound() * b.LowerBound(),
                   a.LowerBound() * b.UpperBound(), a.UpperBound() * b.UpperBound()};
    Float abLow = std::min({ab[0], ab[1], ab[2], ab[3]});
    Float abHigh = std::max({ab[0], ab[1], ab[2], ab[3]});
    int abLowIndex = abLow == ab[0] ? 0 : (abLow == ab[1] ? 1 : (abLow == ab[2] ? 2 : 3));
    int abHighIndex =
        abHigh == ab[0] ? 0 : (abHigh == ab[1] ? 1 : (abHigh == ab[2] ? 2 : 3));

    Float cd[4] = {c.LowerBound() * d.LowerBound(), c.UpperBound() * d.LowerBound(),
                   c.LowerBound() * d.UpperBound(), c.UpperBound() * d.UpperBound()};
    Float cdLow = std::min({cd[0], cd[1], cd[2], cd[3]});
    Float cdHigh = std::max({cd[0], cd[1], cd[2], cd[3]});
    int cdLowIndex = cdLow == cd[0] ? 0 : (cdLow == cd[1] ? 1 : (cdLow == cd[2] ? 2 : 3));
    int cdHighIndex =
        cdHigh == cd[0] ? 0 : (cdHigh == cd[1] ? 1 : (cdHigh == cd[2] ? 2 : 3));

    // Invert cd Indices since it's subtracted...
    Float low = DifferenceOfProducts(a[abLowIndex & 1], b[abLowIndex >> 1],
                                     c[cdHighIndex & 1], d[cdHighIndex >> 1]);
    Float high = DifferenceOfProducts(a[abHighIndex & 1], b[abHighIndex >> 1],
                                      c[cdLowIndex & 1], d[cdLowIndex >> 1]);
    DCHECK_LE(low, high);

    return {NextFloatDown(low, 2), NextFloatUp(high, 2)};
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> SumOfProducts(Interval<Float> a, Interval<Float> b,
                                                  Interval<Float> c, Interval<Float> d) {
    return DifferenceOfProducts(a, b, -c, d);
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    MulPow2(T s, Interval<Float> i) {
    return MulPow2(i, s);
}

template <typename T, typename Float>
PBRT_CPU_GPU inline
    typename std::enable_if_t<std::is_arithmetic<T>::value, Interval<Float>>
    MulPow2(Interval<Float> i, T s) {
    T as = std::abs(s);
    if (as < 1)
        DCHECK_EQ(1 / as, 1ull << Log2Int(1 / as));
    else
        DCHECK_EQ(as, 1ull << Log2Int(as));

    // Multiplication by powers of 2 is exaact
    return Interval<Float>(std::min(i.LowerBound() * s, i.UpperBound() * s),
                           std::max(i.LowerBound() * s, i.UpperBound() * s));
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> Abs(Interval<Float> i) {
    if (i.LowerBound() >= 0)
        // The entire interval is greater than zero, so we're all set.
        return i;
    else if (i.UpperBound() <= 0)
        // The entire interval is less than zero.
        return Interval<Float>(-i.UpperBound(), -i.LowerBound());
    else
        // The interval straddles zero.
        return Interval<Float>(0, std::max(-i.LowerBound(), i.UpperBound()));
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> abs(Interval<Float> i) {
    return Abs(i);
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> ACos(Interval<Float> i) {
    Float low = std::acos(std::min<Float>(1, i.UpperBound()));
    Float high = std::acos(std::max<Float>(-1, i.LowerBound()));

    return Interval<Float>(std::max<Float>(0, NextFloatDown(low)), NextFloatUp(high));
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> Sin(Interval<Float> i) {
    CHECK_GE(i.LowerBound(), -1e-16);
    CHECK_LE(i.UpperBound(), 2.0001 * Pi);
    Float low = std::sin(std::max<Float>(0, i.LowerBound()));
    Float high = std::sin(i.UpperBound());
    if (low > high)
        pstd::swap(low, high);
    low = std::max<Float>(-1, NextFloatDown(low));
    high = std::min<Float>(1, NextFloatUp(high));
    if (InRange(Pi / 2, i))
        high = 1;
    if (InRange((3.f / 2.f) * Pi, i))
        low = -1;

    return Interval<Float>(low, high);
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> Cos(Interval<Float> i) {
    CHECK_GE(i.LowerBound(), -1e-16);
    CHECK_LE(i.UpperBound(), 2.0001 * Pi);
    Float low = std::cos(std::max<Float>(0, i.LowerBound()));
    Float high = std::cos(i.UpperBound());
    if (low > high)
        pstd::swap(low, high);
    low = std::max<Float>(-1, NextFloatDown(low));
    high = std::min<Float>(1, NextFloatUp(high));
    if (InRange(Pi, i))
        low = -1;

    return Interval<Float>(low, high);
}

template <typename Float>
PBRT_CPU_GPU inline bool Quadratic(Interval<Float> a, Interval<Float> b,
                                   Interval<Float> c, Interval<Float> *t0,
                                   Interval<Float> *t1) {
    // Find quadratic discriminant
    Interval<Float> discrim = DifferenceOfProducts(b, b, MulPow2(4, a), c);
    if (discrim.LowerBound() < 0)
        return false;
    Interval<Float> floatRootDiscrim = Sqrt(discrim);

    // Compute quadratic _t_ values
    Interval<Float> q;
    if ((Float)b < 0)
        q = MulPow2(-.5, b - floatRootDiscrim);
    else
        q = MulPow2(-.5, b + floatRootDiscrim);
    *t0 = q / a;
    *t1 = c / q;
    if (t0->LowerBound() > t1->LowerBound())
        pstd::swap(*t0, *t1);
    return true;
}

template <typename Float>
PBRT_CPU_GPU inline Interval<Float> SumSquares(Interval<Float> i) {
    return Sqr(i);
}

template <typename Float, typename... Args>
PBRT_CPU_GPU inline Interval<Float> SumSquares(Interval<Float> i, Args... args) {
    Interval<Float> ss = FMA(i, i, SumSquares(args...));
    return Interval<Float>(std::max<Float>(0, ss.LowerBound()), ss.UpperBound());
}

PBRT_CPU_GPU
Vector3f EquiAreaSquareToSphere(const Point2f &p);
PBRT_CPU_GPU
Point2f EquiAreaSphereToSquare(const Vector3f &v);
PBRT_CPU_GPU
Point2f WrapEquiAreaSquare(Point2f p);

// Spline Interpolation Declarations
PBRT_CPU_GPU
Float CatmullRom(pstd::span<const Float> nodes, pstd::span<const Float> values, Float x);
PBRT_CPU_GPU
bool CatmullRomWeights(pstd::span<const Float> nodes, Float x, int *offset,
                       pstd::span<Float> weights);
PBRT_CPU_GPU
Float IntegrateCatmullRom(pstd::span<const Float> nodes, pstd::span<const Float> values,
                          pstd::span<Float> cdf);
PBRT_CPU_GPU
Float InvertCatmullRom(pstd::span<const Float> x, pstd::span<const Float> values,
                       Float u);

namespace {

template <int N>
PBRT_CPU_GPU inline void init(Float m[N][N], int i, int j) {}

template <int N, typename... Args>
PBRT_CPU_GPU inline void init(Float m[N][N], int i, int j, Float v, Args... args) {
    m[i][j] = v;
    if (++j == N) {
        ++i;
        j = 0;
    }
    init<N>(m, i, j, args...);
}

template <int N>
PBRT_CPU_GPU inline void initDiag(Float m[N][N], int i) {}

template <int N, typename... Args>
PBRT_CPU_GPU inline void initDiag(Float m[N][N], int i, Float v, Args... args) {
    m[i][i] = v;
    initDiag<N>(m, i + 1, args...);
}

}  // namespace

// SquareMatrix Definition
template <int N>
class SquareMatrix {
  public:
    PBRT_CPU_GPU
    SquareMatrix() {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                m[i][j] = (i == j) ? 1 : 0;
    }
    PBRT_CPU_GPU
    SquareMatrix(const Float mat[N][N]) {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                m[i][j] = mat[i][j];
    }
    PBRT_CPU_GPU
    SquareMatrix(pstd::span<const Float> t);
    template <typename... Args>
    PBRT_CPU_GPU SquareMatrix(Float v, Args... args) {
        static_assert(1 + sizeof...(Args) == N * N,
                      "Incorrect number of values provided to SquareMatrix constructor");
        init<N>(m, 0, 0, v, args...);
    }
    template <typename... Args>
    PBRT_CPU_GPU static SquareMatrix Diag(Float v, Args... args) {
        static_assert(1 + sizeof...(Args) == N,
                      "Incorrect number of values provided to SquareMatrix::Diag");
        SquareMatrix m;
        initDiag<N>(m.m, 0, v, args...);
        return m;
    }

    PBRT_CPU_GPU
    bool operator==(const SquareMatrix<N> &m2) const {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                if (m[i][j] != m2.m[i][j])
                    return false;
        return true;
    }

    PBRT_CPU_GPU
    bool operator!=(const SquareMatrix<N> &m2) const {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                if (m[i][j] != m2.m[i][j])
                    return true;
        return false;
    }

    PBRT_CPU_GPU
    bool operator<(const SquareMatrix<N> &m2) const {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j) {
                if (m[i][j] < m2.m[i][j])
                    return true;
                if (m[i][j] > m2.m[i][j])
                    return false;
            }
        return false;
    }

    PBRT_CPU_GPU
    Float Determinant() const;

    PBRT_CPU_GPU
    bool IsIdentity() const {
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j) {
                if (i == j) {
                    if (m[i][j] != 1)
                        return false;
                } else if (m[i][j] != 0)
                    return false;
            }
        return true;
    }
    std::string ToString() const;

    PBRT_CPU_GPU
    pstd::span<const Float> operator[](int i) const { return m[i]; }

    PBRT_CPU_GPU
    pstd::span<Float> operator[](int i) { return pstd::span<Float>(m[i]); }

  private:
    Float m[N][N];
};

// SquareMatrix Inline Methods
template <typename Tresult, int N, typename T>
PBRT_CPU_GPU inline Tresult Mul(const SquareMatrix<N> &m, const T &v) {
    Tresult result;
    for (int i = 0; i < N; ++i) {
        result[i] = 0;
        for (int j = 0; j < N; ++j)
            result[i] += m[i][j] * v[j];
    }
    return result;
}

template <>
PBRT_CPU_GPU inline Float SquareMatrix<3>::Determinant() const {
    Float minor12 = DifferenceOfProducts(m[1][1], m[2][2], m[1][2], m[2][1]);
    Float minor02 = DifferenceOfProducts(m[1][0], m[2][2], m[1][2], m[2][0]);
    Float minor01 = DifferenceOfProducts(m[1][0], m[2][1], m[1][1], m[2][0]);
    return FMA(m[0][2], minor01,
               DifferenceOfProducts(m[0][0], minor12, m[0][1], minor02));
}

template <int N>
PBRT_CPU_GPU inline SquareMatrix<N> Transpose(const SquareMatrix<N> &m) {
    SquareMatrix<N> r;
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
            r[i][j] = m[j][i];
    return r;
}

template <int N>
PBRT_CPU_GPU pstd::optional<SquareMatrix<N>> Inverse(const SquareMatrix<N> &);

template <>
PBRT_CPU_GPU inline pstd::optional<SquareMatrix<3>> Inverse(const SquareMatrix<3> &m) {
    Float det = m.Determinant();
    if (det == 0)
        return {};
    Float invDet = 1 / det;

    SquareMatrix<3> r;

    r[0][0] = invDet * DifferenceOfProducts(m[1][1], m[2][2], m[1][2], m[2][1]);
    r[1][0] = invDet * DifferenceOfProducts(m[1][2], m[2][0], m[1][0], m[2][2]);
    r[2][0] = invDet * DifferenceOfProducts(m[1][0], m[2][1], m[1][1], m[2][0]);
    r[0][1] = invDet * DifferenceOfProducts(m[0][2], m[2][1], m[0][1], m[2][2]);
    r[1][1] = invDet * DifferenceOfProducts(m[0][0], m[2][2], m[0][2], m[2][0]);
    r[2][1] = invDet * DifferenceOfProducts(m[0][1], m[2][0], m[0][0], m[2][1]);
    r[0][2] = invDet * DifferenceOfProducts(m[0][1], m[1][2], m[0][2], m[1][1]);
    r[1][2] = invDet * DifferenceOfProducts(m[0][2], m[1][0], m[0][0], m[1][2]);
    r[2][2] = invDet * DifferenceOfProducts(m[0][0], m[1][1], m[0][1], m[1][0]);

    return r;
}

template <int N, typename T>
PBRT_CPU_GPU inline T operator*(const SquareMatrix<N> &m, const T &v) {
    return Mul<T>(m, v);
}

template <>
PBRT_CPU_GPU inline SquareMatrix<4> operator*(const SquareMatrix<4> &m1,
                                              const SquareMatrix<4> &m2) {
    SquareMatrix<4> r;
    for (int i = 0; i < 4; ++i)
        for (int j = 0; j < 4; ++j)
            r[i][j] = InnerProduct(m1[i][0], m2[0][j], m1[i][1], m2[1][j], m1[i][2],
                                   m2[2][j], m1[i][3], m2[3][j]);
    return r;
}

template <>
PBRT_CPU_GPU inline SquareMatrix<3> operator*(const SquareMatrix<3> &m1,
                                              const SquareMatrix<3> &m2) {
    SquareMatrix<3> r;
    for (int i = 0; i < 3; ++i)
        for (int j = 0; j < 3; ++j)
            r[i][j] =
                InnerProduct(m1[i][0], m2[0][j], m1[i][1], m2[1][j], m1[i][2], m2[2][j]);
    return r;
}

template <int N>
PBRT_CPU_GPU inline SquareMatrix<N> operator*(const SquareMatrix<N> &m1,
                                              const SquareMatrix<N> &m2) {
    SquareMatrix<N> r;
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j) {
            r[i][j] = 0;
            for (int k = 0; k < N; ++k)
                r[i][j] = FMA(m1[i][k], m2[k][j], r[i][j]);
        }
    return r;
}

template <int N>
PBRT_CPU_GPU inline SquareMatrix<N>::SquareMatrix(pstd::span<const Float> t) {
    CHECK_EQ(N * N, t.size());
    for (int i = 0; i < N * N; ++i)
        m[i / N][i % N] = t[i];
}

template <int N>
PBRT_CPU_GPU SquareMatrix<N> operator*(const SquareMatrix<N> &m1,
                                       const SquareMatrix<N> &m2);

template <>
PBRT_CPU_GPU inline Float SquareMatrix<1>::Determinant() const {
    return m[0][0];
}

template <>
PBRT_CPU_GPU inline Float SquareMatrix<2>::Determinant() const {
    return DifferenceOfProducts(m[0][0], m[1][1], m[0][1], m[1][0]);
}

template <>
PBRT_CPU_GPU inline Float SquareMatrix<4>::Determinant() const {
    Float s0 = DifferenceOfProducts(m[0][0], m[1][1], m[1][0], m[0][1]);
    Float s1 = DifferenceOfProducts(m[0][0], m[1][2], m[1][0], m[0][2]);
    Float s2 = DifferenceOfProducts(m[0][0], m[1][3], m[1][0], m[0][3]);

    Float s3 = DifferenceOfProducts(m[0][1], m[1][2], m[1][1], m[0][2]);
    Float s4 = DifferenceOfProducts(m[0][1], m[1][3], m[1][1], m[0][3]);
    Float s5 = DifferenceOfProducts(m[0][2], m[1][3], m[1][2], m[0][3]);

    Float c0 = DifferenceOfProducts(m[2][0], m[3][1], m[3][0], m[2][1]);
    Float c1 = DifferenceOfProducts(m[2][0], m[3][2], m[3][0], m[2][2]);
    Float c2 = DifferenceOfProducts(m[2][0], m[3][3], m[3][0], m[2][3]);

    Float c3 = DifferenceOfProducts(m[2][1], m[3][2], m[3][1], m[2][2]);
    Float c4 = DifferenceOfProducts(m[2][1], m[3][3], m[3][1], m[2][3]);
    Float c5 = DifferenceOfProducts(m[2][2], m[3][3], m[3][2], m[2][3]);

    return (DifferenceOfProducts(s0, c5, s1, c4) + DifferenceOfProducts(s2, c3, -s3, c2) +
            DifferenceOfProducts(s5, c0, s4, c1));
}

template <int N>
PBRT_CPU_GPU inline Float SquareMatrix<N>::Determinant() const {
    SquareMatrix<N - 1> sub;
    Float det = 0;
    // Inefficient, but we don't currently use N>4 anyway..
    for (int i = 0; i < N; ++i) {
        // Sub-matrix without row 0 and column i
        for (int j = 0; j < N - 1; ++j)
            for (int k = 0; k < N - 1; ++k)
                sub[j][k] = m[j + 1][k < i ? k : k + 1];

        Float sign = (i & 1) ? -1 : 1;
        det += sign * m[0][i] * sub.Determinant();
    }
    return det;
}

template <>
PBRT_CPU_GPU inline pstd::optional<SquareMatrix<4>> Inverse(const SquareMatrix<4> &m) {
    // Via: https://github.com/google/ion/blob/master/ion/math/matrixutils.cc,
    // (c) Google, Apache license.

    // For 4x4 do not compute the adjugate as the transpose of the cofactor
    // matrix, because this results in extra work. Several calculations can be
    // shared across the sub-determinants.
    //
    // This approach is explained in David Eberly's Geometric Tools book,
    // excerpted here:
    //   http://www.geometrictools.com/Documentation/LaplaceExpansionTheorem.pdf
    Float s0 = DifferenceOfProducts(m[0][0], m[1][1], m[1][0], m[0][1]);
    Float s1 = DifferenceOfProducts(m[0][0], m[1][2], m[1][0], m[0][2]);
    Float s2 = DifferenceOfProducts(m[0][0], m[1][3], m[1][0], m[0][3]);

    Float s3 = DifferenceOfProducts(m[0][1], m[1][2], m[1][1], m[0][2]);
    Float s4 = DifferenceOfProducts(m[0][1], m[1][3], m[1][1], m[0][3]);
    Float s5 = DifferenceOfProducts(m[0][2], m[1][3], m[1][2], m[0][3]);

    Float c0 = DifferenceOfProducts(m[2][0], m[3][1], m[3][0], m[2][1]);
    Float c1 = DifferenceOfProducts(m[2][0], m[3][2], m[3][0], m[2][2]);
    Float c2 = DifferenceOfProducts(m[2][0], m[3][3], m[3][0], m[2][3]);

    Float c3 = DifferenceOfProducts(m[2][1], m[3][2], m[3][1], m[2][2]);
    Float c4 = DifferenceOfProducts(m[2][1], m[3][3], m[3][1], m[2][3]);
    Float c5 = DifferenceOfProducts(m[2][2], m[3][3], m[3][2], m[2][3]);

    Float determinant = InnerProduct(s0, c5, -s1, c4, s2, c3, s3, c2, s5, c0, -s4, c1);
    if (determinant == 0)
        return {};
    Float s = 1 / determinant;

    Float inv[4][4] = {s * InnerProduct(m[1][1], c5, m[1][3], c3, -m[1][2], c4),
                       s * InnerProduct(-m[0][1], c5, m[0][2], c4, -m[0][3], c3),
                       s * InnerProduct(m[3][1], s5, m[3][3], s3, -m[3][2], s4),
                       s * InnerProduct(-m[2][1], s5, m[2][2], s4, -m[2][3], s3),

                       s * InnerProduct(-m[1][0], c5, m[1][2], c2, -m[1][3], c1),
                       s * InnerProduct(m[0][0], c5, m[0][3], c1, -m[0][2], c2),
                       s * InnerProduct(-m[3][0], s5, m[3][2], s2, -m[3][3], s1),
                       s * InnerProduct(m[2][0], s5, m[2][3], s1, -m[2][2], s2),

                       s * InnerProduct(m[1][0], c4, m[1][3], c0, -m[1][1], c2),
                       s * InnerProduct(-m[0][0], c4, m[0][1], c2, -m[0][3], c0),
                       s * InnerProduct(m[3][0], s4, m[3][3], s0, -m[3][1], s2),
                       s * InnerProduct(-m[2][0], s4, m[2][1], s2, -m[2][3], s0),

                       s * InnerProduct(-m[1][0], c3, m[1][1], c1, -m[1][2], c0),
                       s * InnerProduct(m[0][0], c3, m[0][2], c0, -m[0][1], c1),
                       s * InnerProduct(-m[3][0], s3, m[3][1], s1, -m[3][2], s0),
                       s * InnerProduct(m[2][0], s3, m[2][2], s0, -m[2][1], s1)};

    return SquareMatrix<4>(inv);
}

extern template class SquareMatrix<2>;
extern template class SquareMatrix<3>;
extern template class SquareMatrix<4>;

}  // namespace pbrt

#endif  // PBRT_UTIL_MATH_H