test_memopt_image_classification_train.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
from __future__ import print_function

import sys

import paddle.v2 as paddle
import paddle.v2.fluid as fluid


def resnet_cifar10(input, depth=32):
    def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=False)
        return fluid.layers.batch_norm(input=tmp, act=act)

    def shortcut(input, ch_in, ch_out, stride):
        if ch_in != ch_out:
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
        else:
            return input

    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
        short = shortcut(input, ch_in, ch_out, stride)
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')

    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
        for i in range(1, count):
            tmp = block_func(tmp, ch_out, ch_out, 1)
        return tmp

    assert (depth - 2) % 6 == 0
    n = (depth - 2) / 6
    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
    pool = fluid.layers.pool2d(
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    return pool


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    return fc2


classdim = 10
data_shape = [3, 32, 32]

images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

net_type = "vgg"
if len(sys.argv) >= 2:
    net_type = sys.argv[1]

if net_type == "vgg":
    print("train vgg net")
    net = vgg16_bn_drop(images)
elif net_type == "resnet":
    print("train resnet")
    net = resnet_cifar10(images, 32)
else:
    raise ValueError("%s network is not supported" % net_type)

predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)

optimizer = fluid.optimizer.Adam(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)

accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

# memopt_program = fluid.default_main_program()
memopt_program = fluid.memory_optimize(fluid.default_main_program())

BATCH_SIZE = 128
PASS_NUM = 1

train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.cifar.train10(), buf_size=128 * 10),
    batch_size=BATCH_SIZE)

place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe.run(fluid.default_startup_program())

for pass_id in range(PASS_NUM):
    accuracy.reset(exe)
    for data in train_reader():
        loss, acc = exe.run(memopt_program,
                            feed=feeder.feed(data),
                            fetch_list=[avg_cost] + accuracy.metrics)
        pass_acc = accuracy.eval(exe)
        print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
            pass_acc))
        # this model is slow, so if we can train two mini batch, we think it works properly.
        exit(0)
exit(1)