ziplist.c 39.6 KB
Newer Older
1 2 3 4 5 6 7
/* The ziplist is a specially encoded dually linked list that is designed
 * to be very memory efficient. It stores both strings and integer values,
 * where integers are encoded as actual integers instead of a series of
 * characters. It allows push and pop operations on either side of the list
 * in O(1) time. However, because every operation requires a reallocation of
 * the memory used by the ziplist, the actual complexity is related to the
 * amount of memory used by the ziplist.
8
 *
9
 * ----------------------------------------------------------------------------
10
 *
11 12 13
 * ZIPLIST OVERALL LAYOUT:
 * The general layout of the ziplist is as follows:
 * <zlbytes><zltail><zllen><entry><entry><zlend>
14
 *
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 * <zlbytes> is an unsigned integer to hold the number of bytes that the
 * ziplist occupies. This value needs to be stored to be able to resize the
 * entire structure without the need to traverse it first.
 *
 * <zltail> is the offset to the last entry in the list. This allows a pop
 * operation on the far side of the list without the need for full traversal.
 *
 * <zllen> is the number of entries.When this value is larger than 2**16-2,
 * we need to traverse the entire list to know how many items it holds.
 *
 * <zlend> is a single byte special value, equal to 255, which indicates the
 * end of the list.
 *
 * ZIPLIST ENTRIES:
 * Every entry in the ziplist is prefixed by a header that contains two pieces
 * of information. First, the length of the previous entry is stored to be
 * able to traverse the list from back to front. Second, the encoding with an
 * optional string length of the entry itself is stored.
 *
 * The length of the previous entry is encoded in the following way:
 * If this length is smaller than 254 bytes, it will only consume a single
 * byte that takes the length as value. When the length is greater than or
 * equal to 254, it will consume 5 bytes. The first byte is set to 254 to
 * indicate a larger value is following. The remaining 4 bytes take the
 * length of the previous entry as value.
 *
 * The other header field of the entry itself depends on the contents of the
 * entry. When the entry is a string, the first 2 bits of this header will hold
 * the type of encoding used to store the length of the string, followed by the
 * actual length of the string. When the entry is an integer the first 2 bits
 * are both set to 1. The following 2 bits are used to specify what kind of
 * integer will be stored after this header. An overview of the different
 * types and encodings is as follows:
 *
 * |00pppppp| - 1 byte
 *      String value with length less than or equal to 63 bytes (6 bits).
 * |01pppppp|qqqqqqqq| - 2 bytes
 *      String value with length less than or equal to 16383 bytes (14 bits).
 * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
 *      String value with length greater than or equal to 16384 bytes.
 * |1100____| - 1 byte
 *      Integer encoded as int16_t (2 bytes).
 * |1101____| - 1 byte
 *      Integer encoded as int32_t (4 bytes).
 * |1110____| - 1 byte
 *      Integer encoded as int64_t (8 bytes).
61 62 63
 */

#include <stdio.h>
64
#include <stdlib.h>
65
#include <string.h>
66
#include <stdint.h>
67
#include <assert.h>
68
#include <limits.h>
69 70 71
#include "zmalloc.h"
#include "ziplist.h"

72 73
int ll2string(char *s, size_t len, long long value);

74
#define ZIP_END 255
75
#define ZIP_BIGLEN 254
76

77 78 79 80 81 82 83
/* Different encoding/length possibilities */
#define ZIP_STR_06B (0 << 6)
#define ZIP_STR_14B (1 << 6)
#define ZIP_STR_32B (2 << 6)
#define ZIP_INT_16B (0xc0 | 0<<4)
#define ZIP_INT_32B (0xc0 | 1<<4)
#define ZIP_INT_64B (0xc0 | 2<<4)
84

85 86 87
/* Macro's to determine type */
#define ZIP_IS_STR(enc) (((enc) & 0xc0) < 0xc0)
#define ZIP_IS_INT(enc) (!ZIP_IS_STR(enc) && ((enc) & 0x30) < 0x30)
88 89

/* Utility macros */
90 91 92 93 94 95 96 97 98 99
#define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
#define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
#define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
#define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
#define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+ZIPLIST_TAIL_OFFSET(zl))
#define ZIPLIST_ENTRY_END(zl)   ((zl)+ZIPLIST_BYTES(zl)-1)

/* We know a positive increment can only be 1 because entries can only be
 * pushed one at a time. */
100
#define ZIPLIST_INCR_LENGTH(zl,incr) { \
101
    if (ZIPLIST_LENGTH(zl) < UINT16_MAX) ZIPLIST_LENGTH(zl)+=incr; }
102

103 104 105 106 107
typedef struct zlentry {
    unsigned int prevrawlensize, prevrawlen;
    unsigned int lensize, len;
    unsigned int headersize;
    unsigned char encoding;
108
    unsigned char *p;
109 110
} zlentry;

111 112 113 114 115 116 117 118 119 120 121 122 123
/* Return the encoding pointer to by 'p'. */
static unsigned int zipEntryEncoding(unsigned char *p) {
    /* String encoding: 2 MSBs */
    unsigned char b = p[0] & 0xc0;
    if (b < 0xc0) {
        return b;
    } else {
        /* Integer encoding: 4 MSBs */
        return p[0] & 0xf0;
    }
    assert(NULL);
}

124
/* Return bytes needed to store integer encoded by 'encoding' */
125 126 127 128 129
static unsigned int zipIntSize(unsigned char encoding) {
    switch(encoding) {
    case ZIP_INT_16B: return sizeof(int16_t);
    case ZIP_INT_32B: return sizeof(int32_t);
    case ZIP_INT_64B: return sizeof(int64_t);
130 131 132 133 134 135 136
    }
    assert(NULL);
}

/* Decode the encoded length pointed by 'p'. If a pointer to 'lensize' is
 * provided, it is set to the number of bytes required to encode the length. */
static unsigned int zipDecodeLength(unsigned char *p, unsigned int *lensize) {
137
    unsigned char encoding = zipEntryEncoding(p);
138 139
    unsigned int len;

140 141 142 143
    if (ZIP_IS_STR(encoding)) {
        switch(encoding) {
        case ZIP_STR_06B:
            len = p[0] & 0x3f;
144
            if (lensize) *lensize = 1;
145 146
            break;
        case ZIP_STR_14B:
147
            len = ((p[0] & 0x3f) << 8) | p[1];
148 149 150 151
            if (lensize) *lensize = 2;
            break;
        case ZIP_STR_32B:
            len = (p[1] << 24) | (p[2] << 16) | (p[3] << 8) | p[4];
152
            if (lensize) *lensize = 5;
153 154 155
            break;
        default:
            assert(NULL);
156 157
        }
    } else {
158
        len = zipIntSize(encoding);
159 160 161 162 163 164 165
        if (lensize) *lensize = 1;
    }
    return len;
}

/* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
 * the amount of bytes required to encode such a length. */
166 167 168 169 170 171 172
static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
    unsigned char len = 1, buf[5];

    if (ZIP_IS_STR(encoding)) {
        /* Although encoding is given it may not be set for strings,
         * so we determine it here using the raw length. */
        if (rawlen <= 0x3f) {
173
            if (!p) return len;
174 175 176
            buf[0] = ZIP_STR_06B | rawlen;
        } else if (rawlen <= 0x3fff) {
            len += 1;
177
            if (!p) return len;
178 179
            buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
            buf[1] = rawlen & 0xff;
180 181 182
        } else {
            len += 4;
            if (!p) return len;
183 184 185 186 187
            buf[0] = ZIP_STR_32B;
            buf[1] = (rawlen >> 24) & 0xff;
            buf[2] = (rawlen >> 16) & 0xff;
            buf[3] = (rawlen >> 8) & 0xff;
            buf[4] = rawlen & 0xff;
188
        }
189 190 191 192
    } else {
        /* Implies integer encoding, so length is always 1. */
        if (!p) return len;
        buf[0] = encoding;
193 194
    }

195
    /* Store this length at p */
196 197 198 199
    memcpy(p,buf,len);
    return len;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/* Decode the length of the previous element stored at "p". */
static unsigned int zipPrevDecodeLength(unsigned char *p, unsigned int *lensize) {
    unsigned int len = *p;
    if (len < ZIP_BIGLEN) {
        if (lensize) *lensize = 1;
    } else {
        if (lensize) *lensize = 1+sizeof(len);
        memcpy(&len,p+1,sizeof(len));
    }
    return len;
}

/* Encode the length of the previous entry and write it to "p". Return the
 * number of bytes needed to encode this length if "p" is NULL. */
static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
    if (p == NULL) {
        return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
    } else {
        if (len < ZIP_BIGLEN) {
            p[0] = len;
            return 1;
        } else {
            p[0] = ZIP_BIGLEN;
            memcpy(p+1,&len,sizeof(len));
            return 1+sizeof(len);
        }
    }
}

229 230 231 232 233 234 235 236
/* Encode the length of the previous entry and write it to "p". This only
 * uses the larger encoding (required in __ziplistCascadeUpdate). */
static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
    if (p == NULL) return;
    p[0] = ZIP_BIGLEN;
    memcpy(p+1,&len,sizeof(len));
}

237 238 239 240
/* Return the difference in number of bytes needed to store the new length
 * "len" on the entry pointed to by "p". */
static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
    unsigned int prevlensize;
241 242
    zipPrevDecodeLength(p,&prevlensize);
    return zipPrevEncodeLength(NULL,len)-prevlensize;
243 244
}

245
/* Check if string pointed to by 'entry' can be encoded as an integer.
246 247
 * Stores the integer value in 'v' and its encoding in 'encoding'. */
static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
248 249
    long long value;
    char *eptr;
250
    char buf[32];
251

252
    if (entrylen >= 32 || entrylen == 0) return 0;
253
    if (entry[0] == '-' || (entry[0] >= '0' && entry[0] <= '9')) {
254 255 256 257 258 259 260
        int slen;

        /* Perform a back-and-forth conversion to make sure that
         * the string turned into an integer is not losing any info. */
        memcpy(buf,entry,entrylen);
        buf[entrylen] = '\0';
        value = strtoll(buf,&eptr,10);
261
        if (eptr[0] != '\0') return 0;
262 263 264 265 266
        slen = ll2string(buf,32,value);
        if (entrylen != (unsigned)slen || memcmp(buf,entry,slen)) return 0;

        /* Great, the string can be encoded. Check what's the smallest
         * of our encoding types that can hold this value. */
267
        if (value >= INT16_MIN && value <= INT16_MAX) {
268
            *encoding = ZIP_INT_16B;
269
        } else if (value >= INT32_MIN && value <= INT32_MAX) {
270
            *encoding = ZIP_INT_32B;
271
        } else {
272
            *encoding = ZIP_INT_64B;
273 274 275 276 277 278 279 280
        }
        *v = value;
        return 1;
    }
    return 0;
}

/* Store integer 'value' at 'p', encoded as 'encoding' */
281 282 283 284
static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
    int16_t i16;
    int32_t i32;
    int64_t i64;
285
    if (encoding == ZIP_INT_16B) {
286 287
        i16 = value;
        memcpy(p,&i16,sizeof(i16));
288
    } else if (encoding == ZIP_INT_32B) {
289 290
        i32 = value;
        memcpy(p,&i32,sizeof(i32));
291
    } else if (encoding == ZIP_INT_64B) {
292 293
        i64 = value;
        memcpy(p,&i64,sizeof(i64));
294 295 296 297 298 299
    } else {
        assert(NULL);
    }
}

/* Read integer encoded as 'encoding' from 'p' */
300 301 302 303
static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
    int16_t i16;
    int32_t i32;
    int64_t i64, ret;
304
    if (encoding == ZIP_INT_16B) {
305 306
        memcpy(&i16,p,sizeof(i16));
        ret = i16;
307
    } else if (encoding == ZIP_INT_32B) {
308 309
        memcpy(&i32,p,sizeof(i32));
        ret = i32;
310
    } else if (encoding == ZIP_INT_64B) {
311 312
        memcpy(&i64,p,sizeof(i64));
        ret = i64;
313 314 315 316 317 318
    } else {
        assert(NULL);
    }
    return ret;
}

319 320 321
/* Return a struct with all information about an entry. */
static zlentry zipEntry(unsigned char *p) {
    zlentry e;
322
    e.prevrawlen = zipPrevDecodeLength(p,&e.prevrawlensize);
323 324
    e.len = zipDecodeLength(p+e.prevrawlensize,&e.lensize);
    e.headersize = e.prevrawlensize+e.lensize;
325
    e.encoding = zipEntryEncoding(p+e.prevrawlensize);
326
    e.p = p;
327 328 329
    return e;
}

330
/* Return the total number of bytes used by the entry at "p". */
331
static unsigned int zipRawEntryLength(unsigned char *p) {
332 333
    zlentry e = zipEntry(p);
    return e.headersize + e.len;
334 335
}

336 337 338 339 340
/* Create a new empty ziplist. */
unsigned char *ziplistNew(void) {
    unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
    unsigned char *zl = zmalloc(bytes);
    ZIPLIST_BYTES(zl) = bytes;
341
    ZIPLIST_TAIL_OFFSET(zl) = ZIPLIST_HEADER_SIZE;
342 343 344 345 346
    ZIPLIST_LENGTH(zl) = 0;
    zl[bytes-1] = ZIP_END;
    return zl;
}

347
/* Resize the ziplist. */
348
static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
349
    zl = zrealloc(zl,len);
350 351 352 353 354
    ZIPLIST_BYTES(zl) = len;
    zl[len-1] = ZIP_END;
    return zl;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
/* When an entry is inserted, we need to set the prevlen field of the next
 * entry to equal the length of the inserted entry. It can occur that this
 * length cannot be encoded in 1 byte and the next entry needs to be grow
 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
 * because this only happens when an entry is already being inserted (which
 * causes a realloc and memmove). However, encoding the prevlen may require
 * that this entry is grown as well. This effect may cascade throughout
 * the ziplist when there are consecutive entries with a size close to
 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
 * consecutive entry.
 *
 * Note that this effect can also happen in reverse, where the bytes required
 * to encode the prevlen field can shrink. This effect is deliberately ignored,
 * because it can cause a "flapping" effect where a chain prevlen fields is
 * first grown and then shrunk again after consecutive inserts. Rather, the
 * field is allowed to stay larger than necessary, because a large prevlen
 * field implies the ziplist is holding large entries anyway.
 *
 * The pointer "p" points to the first entry that does NOT need to be
 * updated, i.e. consecutive fields MAY need an update. */
static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
    unsigned int curlen = ZIPLIST_BYTES(zl), rawlen, rawlensize;
    unsigned int offset, noffset, extra;
    unsigned char *np;
    zlentry cur, next;

    while (p[0] != ZIP_END) {
        cur = zipEntry(p);
        rawlen = cur.headersize + cur.len;
        rawlensize = zipPrevEncodeLength(NULL,rawlen);

        /* Abort if there is no next entry. */
        if (p[rawlen] == ZIP_END) break;
        next = zipEntry(p+rawlen);

        /* Abort when "prevlen" has not changed. */
        if (next.prevrawlen == rawlen) break;

        if (next.prevrawlensize < rawlensize) {
            /* The "prevlen" field of "next" needs more bytes to hold
             * the raw length of "cur". */
            offset = p-zl;
            extra = rawlensize-next.prevrawlensize;
            zl = ziplistResize(zl,curlen+extra);
            ZIPLIST_TAIL_OFFSET(zl) += extra;
            p = zl+offset;

            /* Move the tail to the back. */
            np = p+rawlen;
            noffset = np-zl;
            memmove(np+rawlensize,
                np+next.prevrawlensize,
                curlen-noffset-next.prevrawlensize-1);
            zipPrevEncodeLength(np,rawlen);

            /* Advance the cursor */
            p += rawlen;
        } else {
            if (next.prevrawlensize > rawlensize) {
                /* This would result in shrinking, which we want to avoid.
                 * So, set "rawlen" in the available bytes. */
                zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
            } else {
                zipPrevEncodeLength(p+rawlen,rawlen);
            }

            /* Stop here, as the raw length of "next" has not changed. */
            break;
        }
    }
    return zl;
}

428
/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
429
static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
430
    unsigned int i, totlen, deleted = 0;
431 432 433 434
    int offset, nextdiff = 0;
    zlentry first, tail;

    first = zipEntry(p);
435 436 437 438 439 440 441 442 443 444 445 446 447
    for (i = 0; p[0] != ZIP_END && i < num; i++) {
        p += zipRawEntryLength(p);
        deleted++;
    }

    totlen = p-first.p;
    if (totlen > 0) {
        if (p[0] != ZIP_END) {
            /* Tricky: storing the prevlen in this entry might reduce or
             * increase the number of bytes needed, compared to the current
             * prevlen. Note that we can always store this length because
             * it was previously stored by an entry that is being deleted. */
            nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
448
            zipPrevEncodeLength(p-nextdiff,first.prevrawlen);
449 450

            /* Update offset for tail */
451 452 453 454 455 456 457 458
            ZIPLIST_TAIL_OFFSET(zl) -= totlen;

            /* When the tail contains more than one entry, we need to take
             * "nextdiff" in account as well. Otherwise, a change in the
             * size of prevlen doesn't have an effect on the *tail* offset. */
            tail = zipEntry(p);
            if (p[tail.headersize+tail.len] != ZIP_END)
                ZIPLIST_TAIL_OFFSET(zl) += nextdiff;
459 460 461 462 463 464 465 466 467

            /* Move tail to the front of the ziplist */
            memmove(first.p,p-nextdiff,ZIPLIST_BYTES(zl)-(p-zl)-1+nextdiff);
        } else {
            /* The entire tail was deleted. No need to move memory. */
            ZIPLIST_TAIL_OFFSET(zl) = (first.p-zl)-first.prevrawlen;
        }

        /* Resize and update length */
468
        offset = first.p-zl;
469 470
        zl = ziplistResize(zl, ZIPLIST_BYTES(zl)-totlen+nextdiff);
        ZIPLIST_INCR_LENGTH(zl,-deleted);
471 472 473 474 475 476
        p = zl+offset;

        /* When nextdiff != 0, the raw length of the next entry has changed, so
         * we need to cascade the update throughout the ziplist */
        if (nextdiff != 0)
            zl = __ziplistCascadeUpdate(zl,p);
477 478
    }
    return zl;
479 480
}

481
/* Insert item at "p". */
482
static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
483 484
    unsigned int curlen = ZIPLIST_BYTES(zl), reqlen, prevlen = 0;
    unsigned int offset, nextdiff = 0;
485
    unsigned char encoding = 0;
486
    long long value;
487
    zlentry entry, tail;
488

489 490 491 492
    /* Find out prevlen for the entry that is inserted. */
    if (p[0] != ZIP_END) {
        entry = zipEntry(p);
        prevlen = entry.prevrawlen;
493
    } else {
494 495 496
        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
        if (ptail[0] != ZIP_END) {
            prevlen = zipRawEntryLength(ptail);
497
        }
498 499
    }

500
    /* See if the entry can be encoded */
501
    if (zipTryEncoding(s,slen,&value,&encoding)) {
502 503
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
504
    } else {
505 506
        /* 'encoding' is untouched, however zipEncodeLength will use the
         * string length to figure out how to encode it. */
507
        reqlen = slen;
508
    }
509 510
    /* We need space for both the length of the previous entry and
     * the length of the payload. */
511
    reqlen += zipPrevEncodeLength(NULL,prevlen);
512 513 514 515 516
    reqlen += zipEncodeLength(NULL,encoding,slen);

    /* When the insert position is not equal to the tail, we need to
     * make sure that the next entry can hold this entry's length in
     * its prevlen field. */
P
Pieter Noordhuis 已提交
517
    nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
518 519 520 521 522 523 524 525 526 527

    /* Store offset because a realloc may change the address of zl. */
    offset = p-zl;
    zl = ziplistResize(zl,curlen+reqlen+nextdiff);
    p = zl+offset;

    /* Apply memory move when necessary and update tail offset. */
    if (p[0] != ZIP_END) {
        /* Subtract one because of the ZIP_END bytes */
        memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
528

529
        /* Encode this entry's raw length in the next entry. */
530
        zipPrevEncodeLength(p+reqlen,reqlen);
531

532
        /* Update offset for tail */
533 534 535 536 537 538 539 540
        ZIPLIST_TAIL_OFFSET(zl) += reqlen;

        /* When the tail contains more than one entry, we need to take
         * "nextdiff" in account as well. Otherwise, a change in the
         * size of prevlen doesn't have an effect on the *tail* offset. */
        tail = zipEntry(p+reqlen);
        if (p[reqlen+tail.headersize+tail.len] != ZIP_END)
            ZIPLIST_TAIL_OFFSET(zl) += nextdiff;
541
    } else {
542 543
        /* This element will be the new tail. */
        ZIPLIST_TAIL_OFFSET(zl) = p-zl;
544 545
    }

546 547 548 549 550 551 552 553
    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    if (nextdiff != 0) {
        offset = p-zl;
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }

554
    /* Write the entry */
555
    p += zipPrevEncodeLength(p,prevlen);
556
    p += zipEncodeLength(p,encoding,slen);
557
    if (ZIP_IS_STR(encoding)) {
558
        memcpy(p,s,slen);
559 560
    } else {
        zipSaveInteger(p,value,encoding);
561
    }
562
    ZIPLIST_INCR_LENGTH(zl,1);
563 564 565
    return zl;
}

566
unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
567
    unsigned char *p;
568
    p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
569 570 571
    return __ziplistInsert(zl,p,s,slen);
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/* Returns an offset to use for iterating with ziplistNext. When the given
 * index is negative, the list is traversed back to front. When the list
 * doesn't contain an element at the provided index, NULL is returned. */
unsigned char *ziplistIndex(unsigned char *zl, int index) {
    unsigned char *p;
    zlentry entry;
    if (index < 0) {
        index = (-index)-1;
        p = ZIPLIST_ENTRY_TAIL(zl);
        if (p[0] != ZIP_END) {
            entry = zipEntry(p);
            while (entry.prevrawlen > 0 && index--) {
                p -= entry.prevrawlen;
                entry = zipEntry(p);
            }
        }
    } else {
        p = ZIPLIST_ENTRY_HEAD(zl);
        while (p[0] != ZIP_END && index--) {
            p += zipRawEntryLength(p);
        }
593
    }
P
Pieter Noordhuis 已提交
594
    return (p[0] == ZIP_END || index > 0) ? NULL : p;
595 596
}

597
/* Return pointer to next entry in ziplist. */
598 599
unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
    ((void) zl);
600 601 602 603 604 605 606 607 608 609

    /* "p" could be equal to ZIP_END, caused by ziplistDelete,
     * and we should return NULL. Otherwise, we should return NULL
     * when the *next* element is ZIP_END (there is no next entry). */
    if (p[0] == ZIP_END) {
        return NULL;
    } else {
        p = p+zipRawEntryLength(p);
        return (p[0] == ZIP_END) ? NULL : p;
    }
610 611
}

612
/* Return pointer to previous entry in ziplist. */
613 614 615 616 617 618 619 620 621 622 623 624 625
unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
    zlentry entry;

    /* Iterating backwards from ZIP_END should return the tail. When "p" is
     * equal to the first element of the list, we're already at the head,
     * and should return NULL. */
    if (p[0] == ZIP_END) {
        p = ZIPLIST_ENTRY_TAIL(zl);
        return (p[0] == ZIP_END) ? NULL : p;
    } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
        return NULL;
    } else {
        entry = zipEntry(p);
626
        assert(entry.prevrawlen > 0);
627 628
        return p-entry.prevrawlen;
    }
629 630
}

631 632 633 634
/* Get entry pointer to by 'p' and store in either 'e' or 'v' depending
 * on the encoding of the entry. 'e' is always set to NULL to be able
 * to find out whether the string pointer or the integer value was set.
 * Return 0 if 'p' points to the end of the zipmap, 1 otherwise. */
635
unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
636
    zlentry entry;
637
    if (p == NULL || p[0] == ZIP_END) return 0;
638
    if (sstr) *sstr = NULL;
639

640
    entry = zipEntry(p);
641
    if (ZIP_IS_STR(entry.encoding)) {
642 643
        if (sstr) {
            *slen = entry.len;
644
            *sstr = p+entry.headersize;
645 646
        }
    } else {
647 648
        if (sval) {
            *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
649
        }
650
    }
651
    return 1;
652 653
}

654
/* Insert an entry at "p". */
655
unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
656
    return __ziplistInsert(zl,p,s,slen);
657 658
}

659 660 661
/* Delete a single entry from the ziplist, pointed to by *p.
 * Also update *p in place, to be able to iterate over the
 * ziplist, while deleting entries. */
662
unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
663 664
    unsigned int offset = *p-zl;
    zl = __ziplistDelete(zl,*p,1);
665

666
    /* Store pointer to current element in p, because ziplistDelete will
667 668 669
     * do a realloc which might result in a different "zl"-pointer.
     * When the delete direction is back to front, we might delete the last
     * entry and end up with "p" pointing to ZIP_END, so check this. */
670
    *p = zl+offset;
671 672 673
    return zl;
}

674 675 676 677 678 679
/* Delete a range of entries from the ziplist. */
unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
    unsigned char *p = ziplistIndex(zl,index);
    return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
}

680
/* Compare entry pointer to by 'p' with 'entry'. Return 1 if equal. */
681
unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
682
    zlentry entry;
683 684
    unsigned char sencoding;
    long long zval, sval;
P
Pieter Noordhuis 已提交
685
    if (p[0] == ZIP_END) return 0;
686

687
    entry = zipEntry(p);
688
    if (ZIP_IS_STR(entry.encoding)) {
689
        /* Raw compare */
690
        if (entry.len == slen) {
691
            return memcmp(p+entry.headersize,sstr,slen) == 0;
692 693 694
        } else {
            return 0;
        }
695
    } else {
696
        /* Try to compare encoded values */
697
        if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
698
            if (entry.encoding == sencoding) {
699 700
                zval = zipLoadInteger(p+entry.headersize,entry.encoding);
                return zval == sval;
701
            }
702
        }
703
    }
704
    return 0;
705 706
}

707 708 709
/* Return length of ziplist. */
unsigned int ziplistLen(unsigned char *zl) {
    unsigned int len = 0;
710
    if (ZIPLIST_LENGTH(zl) < UINT16_MAX) {
711 712 713 714 715 716 717 718 719
        len = ZIPLIST_LENGTH(zl);
    } else {
        unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
        while (*p != ZIP_END) {
            p += zipRawEntryLength(p);
            len++;
        }

        /* Re-store length if small enough */
720
        if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = len;
721 722 723 724
    }
    return len;
}

725 726 727 728 729
/* Return size in bytes of ziplist. */
unsigned int ziplistSize(unsigned char *zl) {
    return ZIPLIST_BYTES(zl);
}

730
void ziplistRepr(unsigned char *zl) {
731
    unsigned char *p;
732
    int index = 0;
733
    zlentry entry;
734

735 736 737 738 739 740 741
    printf(
        "{total bytes %d} "
        "{length %u}\n"
        "{tail offset %u}\n",
        ZIPLIST_BYTES(zl),
        ZIPLIST_LENGTH(zl),
        ZIPLIST_TAIL_OFFSET(zl));
742
    p = ZIPLIST_ENTRY_HEAD(zl);
743
    while(*p != ZIP_END) {
744
        entry = zipEntry(p);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        printf(
            "{"
                "addr 0x%08lx, "
                "index %2d, "
                "offset %5ld, "
                "rl: %5u, "
                "hs %2u, "
                "pl: %5u, "
                "pls: %2u, "
                "payload %5u"
            "} ",
            (long unsigned int)p,
            index,
            p-zl,
            entry.headersize+entry.len,
            entry.headersize,
            entry.prevrawlen,
            entry.prevrawlensize,
            entry.len);
764
        p += entry.headersize;
765
        if (ZIP_IS_STR(entry.encoding)) {
766 767 768 769 770 771
            if (entry.len > 40) {
                fwrite(p,40,1,stdout);
                printf("...");
            } else {
                fwrite(p,entry.len,1,stdout);
            }
772
        } else {
773
            printf("%lld", (long long) zipLoadInteger(p,entry.encoding));
774
        }
775
        printf("\n");
776
        p += entry.len;
777
        index++;
778 779 780 781 782
    }
    printf("{end}\n\n");
}

#ifdef ZIPLIST_TEST_MAIN
783
#include <sys/time.h>
784

785 786
unsigned char *createList() {
    unsigned char *zl = ziplistNew();
787 788 789 790
    zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
    zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
    zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
    zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
791 792 793
    return zl;
}

794 795 796 797 798
unsigned char *createIntList() {
    unsigned char *zl = ziplistNew();
    char buf[32];

    sprintf(buf, "100");
799
    zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
800
    sprintf(buf, "128000");
801
    zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
802
    sprintf(buf, "-100");
803
    zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
804
    sprintf(buf, "4294967296");
805
    zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
806
    sprintf(buf, "non integer");
807
    zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
808
    sprintf(buf, "much much longer non integer");
809
    zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
810 811 812
    return zl;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
long long usec(void) {
    struct timeval tv;
    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
}

void stress(int pos, int num, int maxsize, int dnum) {
    int i,j,k;
    unsigned char *zl;
    char posstr[2][5] = { "HEAD", "TAIL" };
    long long start;
    for (i = 0; i < maxsize; i+=dnum) {
        zl = ziplistNew();
        for (j = 0; j < i; j++) {
            zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
        }

        /* Do num times a push+pop from pos */
        start = usec();
        for (k = 0; k < num; k++) {
            zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
            zl = ziplistDeleteRange(zl,0,1);
        }
        printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
            i,ZIPLIST_BYTES(zl),num,posstr[pos],usec()-start);
        zfree(zl);
    }
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
void pop(unsigned char *zl, int where) {
    unsigned char *p, *vstr;
    unsigned int vlen;
    long long vlong;

    p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
    if (ziplistGet(p,&vstr,&vlen,&vlong)) {
        if (where == ZIPLIST_HEAD)
            printf("Pop head: ");
        else
            printf("Pop tail: ");

        if (vstr)
            fwrite(vstr,vlen,1,stdout);
        else
            printf("%lld", vlong);

        printf("\n");
        ziplistDeleteRange(zl,-1,1);
    } else {
        printf("ERROR: Could not pop\n");
        exit(1);
    }
}

867
int main(int argc, char **argv) {
P
Pieter Noordhuis 已提交
868
    unsigned char *zl, *p;
869
    unsigned char *entry;
870
    unsigned int elen;
871
    long long value;
872

873 874 875 876
    /* If an argument is given, use it as the random seed. */
    if (argc == 2)
        srand(atoi(argv[1]));

877 878 879
    zl = createIntList();
    ziplistRepr(zl);

880
    zl = createList();
881 882
    ziplistRepr(zl);

883
    pop(zl,ZIPLIST_TAIL);
884 885
    ziplistRepr(zl);

886
    pop(zl,ZIPLIST_HEAD);
887 888
    ziplistRepr(zl);

889
    pop(zl,ZIPLIST_TAIL);
890 891
    ziplistRepr(zl);

892
    pop(zl,ZIPLIST_TAIL);
893 894
    ziplistRepr(zl);

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
    printf("Get element at index 3:\n");
    {
        zl = createList();
        p = ziplistIndex(zl, 3);
        if (!ziplistGet(p, &entry, &elen, &value)) {
            printf("ERROR: Could not access index 3\n");
            return 1;
        }
        if (entry) {
            fwrite(entry,elen,1,stdout);
            printf("\n");
        } else {
            printf("%lld\n", value);
        }
        printf("\n");
    }

    printf("Get element at index 4 (out of range):\n");
    {
        zl = createList();
        p = ziplistIndex(zl, 4);
        if (p == NULL) {
            printf("No entry\n");
        } else {
            printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
            return 1;
        }
        printf("\n");
    }

    printf("Get element at index -1 (last element):\n");
    {
        zl = createList();
        p = ziplistIndex(zl, -1);
        if (!ziplistGet(p, &entry, &elen, &value)) {
            printf("ERROR: Could not access index -1\n");
            return 1;
        }
        if (entry) {
            fwrite(entry,elen,1,stdout);
            printf("\n");
        } else {
            printf("%lld\n", value);
        }
        printf("\n");
    }

    printf("Get element at index -4 (first element):\n");
    {
        zl = createList();
        p = ziplistIndex(zl, -4);
        if (!ziplistGet(p, &entry, &elen, &value)) {
            printf("ERROR: Could not access index -4\n");
            return 1;
        }
        if (entry) {
            fwrite(entry,elen,1,stdout);
            printf("\n");
        } else {
            printf("%lld\n", value);
        }
        printf("\n");
    }

    printf("Get element at index -5 (reverse out of range):\n");
    {
        zl = createList();
        p = ziplistIndex(zl, -5);
        if (p == NULL) {
            printf("No entry\n");
        } else {
            printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
            return 1;
        }
        printf("\n");
    }

972 973 974 975
    printf("Iterate list from 0 to end:\n");
    {
        zl = createList();
        p = ziplistIndex(zl, 0);
976
        while (ziplistGet(p, &entry, &elen, &value)) {
977
            printf("Entry: ");
978 979 980 981 982
            if (entry) {
                fwrite(entry,elen,1,stdout);
            } else {
                printf("%lld", value);
            }
983
            p = ziplistNext(zl,p);
984
            printf("\n");
985 986 987 988 989 990 991 992
        }
        printf("\n");
    }

    printf("Iterate list from 1 to end:\n");
    {
        zl = createList();
        p = ziplistIndex(zl, 1);
993
        while (ziplistGet(p, &entry, &elen, &value)) {
994
            printf("Entry: ");
995 996 997 998 999
            if (entry) {
                fwrite(entry,elen,1,stdout);
            } else {
                printf("%lld", value);
            }
1000
            p = ziplistNext(zl,p);
1001
            printf("\n");
1002 1003 1004 1005 1006 1007 1008 1009
        }
        printf("\n");
    }

    printf("Iterate list from 2 to end:\n");
    {
        zl = createList();
        p = ziplistIndex(zl, 2);
1010
        while (ziplistGet(p, &entry, &elen, &value)) {
1011
            printf("Entry: ");
1012 1013 1014 1015 1016
            if (entry) {
                fwrite(entry,elen,1,stdout);
            } else {
                printf("%lld", value);
            }
1017
            p = ziplistNext(zl,p);
1018
            printf("\n");
1019 1020 1021 1022 1023 1024 1025
        }
        printf("\n");
    }

    printf("Iterate starting out of range:\n");
    {
        zl = createList();
1026 1027
        p = ziplistIndex(zl, 4);
        if (!ziplistGet(p, &entry, &elen, &value)) {
1028 1029 1030 1031
            printf("No entry\n");
        } else {
            printf("ERROR\n");
        }
1032 1033 1034
        printf("\n");
    }

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    printf("Iterate from back to front:\n");
    {
        zl = createList();
        p = ziplistIndex(zl, -1);
        while (ziplistGet(p, &entry, &elen, &value)) {
            printf("Entry: ");
            if (entry) {
                fwrite(entry,elen,1,stdout);
            } else {
                printf("%lld", value);
            }
1046
            p = ziplistPrev(zl,p);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            printf("\n");
        }
        printf("\n");
    }

    printf("Iterate from back to front, deleting all items:\n");
    {
        zl = createList();
        p = ziplistIndex(zl, -1);
        while (ziplistGet(p, &entry, &elen, &value)) {
            printf("Entry: ");
            if (entry) {
                fwrite(entry,elen,1,stdout);
            } else {
                printf("%lld", value);
            }
1063 1064
            zl = ziplistDelete(zl,&p);
            p = ziplistPrev(zl,p);
1065 1066 1067 1068 1069
            printf("\n");
        }
        printf("\n");
    }

1070 1071 1072
    printf("Delete inclusive range 0,0:\n");
    {
        zl = createList();
1073
        zl = ziplistDeleteRange(zl, 0, 1);
1074 1075 1076 1077 1078 1079
        ziplistRepr(zl);
    }

    printf("Delete inclusive range 0,1:\n");
    {
        zl = createList();
1080
        zl = ziplistDeleteRange(zl, 0, 2);
1081 1082 1083 1084 1085 1086
        ziplistRepr(zl);
    }

    printf("Delete inclusive range 1,2:\n");
    {
        zl = createList();
1087
        zl = ziplistDeleteRange(zl, 1, 2);
1088 1089 1090 1091 1092 1093
        ziplistRepr(zl);
    }

    printf("Delete with start index out of range:\n");
    {
        zl = createList();
1094
        zl = ziplistDeleteRange(zl, 5, 1);
1095 1096 1097 1098 1099 1100
        ziplistRepr(zl);
    }

    printf("Delete with num overflow:\n");
    {
        zl = createList();
1101
        zl = ziplistDeleteRange(zl, 1, 5);
1102
        ziplistRepr(zl);
1103 1104
    }

1105 1106 1107
    printf("Delete foo while iterating:\n");
    {
        zl = createList();
1108 1109 1110
        p = ziplistIndex(zl,0);
        while (ziplistGet(p,&entry,&elen,&value)) {
            if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1111
                printf("Delete foo\n");
1112
                zl = ziplistDelete(zl,&p);
1113 1114
            } else {
                printf("Entry: ");
1115 1116 1117
                if (entry) {
                    fwrite(entry,elen,1,stdout);
                } else {
1118
                    printf("%lld",value);
1119
                }
1120
                p = ziplistNext(zl,p);
1121
                printf("\n");
1122 1123 1124 1125
            }
        }
        printf("\n");
        ziplistRepr(zl);
1126 1127
    }

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    printf("Regression test for >255 byte strings:\n");
    {
        char v1[257],v2[257];
        memset(v1,'x',256);
        memset(v2,'y',256);
        zl = ziplistNew();
        zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
        zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);

        /* Pop values again and compare their value. */
        p = ziplistIndex(zl,0);
        assert(ziplistGet(p,&entry,&elen,&value));
        assert(strncmp(v1,entry,elen) == 0);
        p = ziplistIndex(zl,1);
        assert(ziplistGet(p,&entry,&elen,&value));
        assert(strncmp(v2,entry,elen) == 0);
        printf("SUCCESS\n\n");
    }

1147 1148 1149 1150 1151 1152 1153
    printf("Create long list and check indices:\n");
    {
        zl = ziplistNew();
        char buf[32];
        int i,len;
        for (i = 0; i < 1000; i++) {
            len = sprintf(buf,"%d",i);
1154
            zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        }
        for (i = 0; i < 1000; i++) {
            p = ziplistIndex(zl,i);
            assert(ziplistGet(p,NULL,NULL,&value));
            assert(i == value);

            p = ziplistIndex(zl,-i-1);
            assert(ziplistGet(p,NULL,NULL,&value));
            assert(999-i == value);
        }
        printf("SUCCESS\n\n");
    }

1168 1169 1170
    printf("Compare strings with ziplist entries:\n");
    {
        zl = createList();
1171 1172
        p = ziplistIndex(zl,0);
        if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1173
            printf("ERROR: not \"hello\"\n");
P
Pieter Noordhuis 已提交
1174
            return 1;
1175
        }
1176
        if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1177
            printf("ERROR: \"hella\"\n");
P
Pieter Noordhuis 已提交
1178
            return 1;
1179 1180
        }

1181 1182
        p = ziplistIndex(zl,3);
        if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1183
            printf("ERROR: not \"1024\"\n");
P
Pieter Noordhuis 已提交
1184
            return 1;
1185
        }
1186
        if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1187
            printf("ERROR: \"1025\"\n");
P
Pieter Noordhuis 已提交
1188
            return 1;
1189
        }
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        printf("SUCCESS\n\n");
    }

    printf("Stress with random payloads of different encoding:\n");
    {
        int i, idx, where, len;
        long long v;
        unsigned char *p;
        char buf[0x4041]; /* max length of generated string */
        zl = ziplistNew();
        for (i = 0; i < 100000; i++) {
            where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
            if (rand() & 1) {
                /* equally likely create a 16, 32 or 64 bit int */
                v = (rand() & INT16_MAX) + ((1ll << 32) >> ((rand() % 3)*16));
                v *= 2*(rand() & 1)-1; /* randomly flip sign */
                sprintf(buf, "%lld", v);
                zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), where);
            } else {
                /* equally likely generate 6, 14 or >14 bit length */
                v = rand() & 0x3f;
                v += 0x4000 >> ((rand() % 3)*8);
                memset(buf, 'x', v);
                zl = ziplistPush(zl, (unsigned char*)buf, v, where);
            }

            /* delete a random element */
            if ((len = ziplistLen(zl)) >= 10) {
                idx = rand() % len;
                // printf("Delete index %d\n", idx);
                // ziplistRepr(zl);
                ziplistDeleteRange(zl, idx, 1);
                // ziplistRepr(zl);
                len--;
            }

            /* iterate from front to back */
            idx = 0;
            p = ziplistIndex(zl, 0);
            while((p = ziplistNext(zl,p)))
                idx++;
            assert(len == idx+1);

            /* iterate from back to front */
            idx = 0;
            p = ziplistIndex(zl, -1);
            while((p = ziplistPrev(zl,p)))
                idx++;
            assert(len == idx+1);
        }
        printf("SUCCESS\n\n");
1241 1242
    }

1243 1244 1245 1246 1247 1248
    printf("Stress with variable ziplist size:\n");
    {
        stress(ZIPLIST_HEAD,100000,16384,256);
        stress(ZIPLIST_TAIL,100000,16384,256);
    }

1249 1250
    return 0;
}
1251

1252
#endif