提交 ac3c1c4f 编写于 作者: L Linus Torvalds

Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer changes from Ingo Molnar:
 "Various clocksource driver updates: extend the core with memory mapped
  hardware (mmio) support and add new (ARM) Moxart SoC and sun4i
  hardware support"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  clocksource: arch_timer: Add support for memory mapped timers
  clocksource: arch_timer: Push the read/write wrappers deeper
  Documentation: Add memory mapped ARM architected timer binding
  clocksource: arch_timer: Pass clock event to set_mode callback
  clocksource: arch_timer: Make register accessors less error-prone
  ARM: clocksource: moxart: documentation: Update device tree bindings document
  ARM: clocksource: moxart: Add bitops.h include
  ARM: clocksource: moxart: documentation: Fix device tree bindings document
  ARM: clocksource: Add support for MOXA ART SoCs
  clocksource: cadence_ttc: Reuse clocksource as sched_clock
  clocksource: cadence_ttc: Remove unused header
  clocksource: sun4i: Fix bug when switching from periodic to oneshot modes
  clocksource: sun4i: Cleanup parent clock setup
  clocksource: sun4i: Remove TIMER_SCAL variable
  clocksource: sun4i: Factor out some timer code
  clocksource: sun4i: Fix the next event code
  clocksource: sun4i: Don't forget to enable the clock we use
  clocksource: sun4i: Add clocksource and sched clock drivers
  clocksource: sun4i: rename AUTORELOAD define to RELOAD
  clocksource: sun4i: Wrap macros arguments in parenthesis
  ...
* ARM architected timer * ARM architected timer
ARM cores may have a per-core architected timer, which provides per-cpu timers. ARM cores may have a per-core architected timer, which provides per-cpu timers,
or a memory mapped architected timer, which provides up to 8 frames with a
physical and optional virtual timer per frame.
The timer is attached to a GIC to deliver its per-processor interrupts. The per-core architected timer is attached to a GIC to deliver its
per-processor interrupts via PPIs. The memory mapped timer is attached to a GIC
to deliver its interrupts via SPIs.
** Timer node properties: ** CP15 Timer node properties:
- compatible : Should at least contain one of - compatible : Should at least contain one of
"arm,armv7-timer" "arm,armv7-timer"
...@@ -26,3 +30,52 @@ Example: ...@@ -26,3 +30,52 @@ Example:
<1 10 0xf08>; <1 10 0xf08>;
clock-frequency = <100000000>; clock-frequency = <100000000>;
}; };
** Memory mapped timer node properties:
- compatible : Should at least contain "arm,armv7-timer-mem".
- clock-frequency : The frequency of the main counter, in Hz. Optional.
- reg : The control frame base address.
Note that #address-cells, #size-cells, and ranges shall be present to ensure
the CPU can address a frame's registers.
A timer node has up to 8 frame sub-nodes, each with the following properties:
- frame-number: 0 to 7.
- interrupts : Interrupt list for physical and virtual timers in that order.
The virtual timer interrupt is optional.
- reg : The first and second view base addresses in that order. The second view
base address is optional.
- status : "disabled" indicates the frame is not available for use. Optional.
Example:
timer@f0000000 {
compatible = "arm,armv7-timer-mem";
#address-cells = <1>;
#size-cells = <1>;
ranges;
reg = <0xf0000000 0x1000>;
clock-frequency = <50000000>;
frame@f0001000 {
frame-number = <0>
interrupts = <0 13 0x8>,
<0 14 0x8>;
reg = <0xf0001000 0x1000>,
<0xf0002000 0x1000>;
};
frame@f0003000 {
frame-number = <1>
interrupts = <0 15 0x8>;
reg = <0xf0003000 0x1000>;
status = "disabled";
};
};
MOXA ART timer
Required properties:
- compatible : Must be "moxa,moxart-timer"
- reg : Should contain registers location and length
- interrupts : Should contain the timer interrupt number
- clocks : Should contain phandle for the clock that drives the counter
Example:
timer: timer@98400000 {
compatible = "moxa,moxart-timer";
reg = <0x98400000 0x42>;
interrupts = <19 1>;
clocks = <&coreclk>;
};
...@@ -2125,6 +2125,13 @@ M: Russell King <linux@arm.linux.org.uk> ...@@ -2125,6 +2125,13 @@ M: Russell King <linux@arm.linux.org.uk>
S: Maintained S: Maintained
F: include/linux/clk.h F: include/linux/clk.h
CLOCKSOURCE, CLOCKEVENT DRIVERS
M: Daniel Lezcano <daniel.lezcano@linaro.org>
M: Thomas Gleixner <tglx@linutronix.de>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git timers/core
S: Supported
F: drivers/clocksource
CISCO FCOE HBA DRIVER CISCO FCOE HBA DRIVER
M: Hiral Patel <hiralpat@cisco.com> M: Hiral Patel <hiralpat@cisco.com>
M: Suma Ramars <sramars@cisco.com> M: Suma Ramars <sramars@cisco.com>
...@@ -7156,7 +7163,7 @@ S: Maintained ...@@ -7156,7 +7163,7 @@ S: Maintained
F: include/linux/mmc/dw_mmc.h F: include/linux/mmc/dw_mmc.h
F: drivers/mmc/host/dw_mmc* F: drivers/mmc/host/dw_mmc*
TIMEKEEPING, NTP TIMEKEEPING, CLOCKSOURCE CORE, NTP
M: John Stultz <john.stultz@linaro.org> M: John Stultz <john.stultz@linaro.org>
M: Thomas Gleixner <tglx@linutronix.de> M: Thomas Gleixner <tglx@linutronix.de>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git timers/core T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git timers/core
...@@ -7169,7 +7176,6 @@ F: include/uapi/linux/timex.h ...@@ -7169,7 +7176,6 @@ F: include/uapi/linux/timex.h
F: kernel/time/clocksource.c F: kernel/time/clocksource.c
F: kernel/time/time*.c F: kernel/time/time*.c
F: kernel/time/ntp.c F: kernel/time/ntp.c
F: drivers/clocksource
TLG2300 VIDEO4LINUX-2 DRIVER TLG2300 VIDEO4LINUX-2 DRIVER
M: Huang Shijie <shijie8@gmail.com> M: Huang Shijie <shijie8@gmail.com>
......
...@@ -17,7 +17,8 @@ int arch_timer_arch_init(void); ...@@ -17,7 +17,8 @@ int arch_timer_arch_init(void);
* nicely work out which register we want, and chuck away the rest of * nicely work out which register we want, and chuck away the rest of
* the code. At least it does so with a recent GCC (4.6.3). * the code. At least it does so with a recent GCC (4.6.3).
*/ */
static inline void arch_timer_reg_write(const int access, const int reg, u32 val) static __always_inline
void arch_timer_reg_write_cp15(int access, enum arch_timer_reg reg, u32 val)
{ {
if (access == ARCH_TIMER_PHYS_ACCESS) { if (access == ARCH_TIMER_PHYS_ACCESS) {
switch (reg) { switch (reg) {
...@@ -28,9 +29,7 @@ static inline void arch_timer_reg_write(const int access, const int reg, u32 val ...@@ -28,9 +29,7 @@ static inline void arch_timer_reg_write(const int access, const int reg, u32 val
asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val)); asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
break; break;
} }
} } else if (access == ARCH_TIMER_VIRT_ACCESS) {
if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) { switch (reg) {
case ARCH_TIMER_REG_CTRL: case ARCH_TIMER_REG_CTRL:
asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val)); asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
...@@ -44,7 +43,8 @@ static inline void arch_timer_reg_write(const int access, const int reg, u32 val ...@@ -44,7 +43,8 @@ static inline void arch_timer_reg_write(const int access, const int reg, u32 val
isb(); isb();
} }
static inline u32 arch_timer_reg_read(const int access, const int reg) static __always_inline
u32 arch_timer_reg_read_cp15(int access, enum arch_timer_reg reg)
{ {
u32 val = 0; u32 val = 0;
...@@ -57,9 +57,7 @@ static inline u32 arch_timer_reg_read(const int access, const int reg) ...@@ -57,9 +57,7 @@ static inline u32 arch_timer_reg_read(const int access, const int reg)
asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val)); asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
break; break;
} }
} } else if (access == ARCH_TIMER_VIRT_ACCESS) {
if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) { switch (reg) {
case ARCH_TIMER_REG_CTRL: case ARCH_TIMER_REG_CTRL:
asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val)); asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
......
...@@ -26,7 +26,13 @@ ...@@ -26,7 +26,13 @@
#include <clocksource/arm_arch_timer.h> #include <clocksource/arm_arch_timer.h>
static inline void arch_timer_reg_write(int access, int reg, u32 val) /*
* These register accessors are marked inline so the compiler can
* nicely work out which register we want, and chuck away the rest of
* the code.
*/
static __always_inline
void arch_timer_reg_write_cp15(int access, enum arch_timer_reg reg, u32 val)
{ {
if (access == ARCH_TIMER_PHYS_ACCESS) { if (access == ARCH_TIMER_PHYS_ACCESS) {
switch (reg) { switch (reg) {
...@@ -36,8 +42,6 @@ static inline void arch_timer_reg_write(int access, int reg, u32 val) ...@@ -36,8 +42,6 @@ static inline void arch_timer_reg_write(int access, int reg, u32 val)
case ARCH_TIMER_REG_TVAL: case ARCH_TIMER_REG_TVAL:
asm volatile("msr cntp_tval_el0, %0" : : "r" (val)); asm volatile("msr cntp_tval_el0, %0" : : "r" (val));
break; break;
default:
BUILD_BUG();
} }
} else if (access == ARCH_TIMER_VIRT_ACCESS) { } else if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) { switch (reg) {
...@@ -47,17 +51,14 @@ static inline void arch_timer_reg_write(int access, int reg, u32 val) ...@@ -47,17 +51,14 @@ static inline void arch_timer_reg_write(int access, int reg, u32 val)
case ARCH_TIMER_REG_TVAL: case ARCH_TIMER_REG_TVAL:
asm volatile("msr cntv_tval_el0, %0" : : "r" (val)); asm volatile("msr cntv_tval_el0, %0" : : "r" (val));
break; break;
default:
BUILD_BUG();
} }
} else {
BUILD_BUG();
} }
isb(); isb();
} }
static inline u32 arch_timer_reg_read(int access, int reg) static __always_inline
u32 arch_timer_reg_read_cp15(int access, enum arch_timer_reg reg)
{ {
u32 val; u32 val;
...@@ -69,8 +70,6 @@ static inline u32 arch_timer_reg_read(int access, int reg) ...@@ -69,8 +70,6 @@ static inline u32 arch_timer_reg_read(int access, int reg)
case ARCH_TIMER_REG_TVAL: case ARCH_TIMER_REG_TVAL:
asm volatile("mrs %0, cntp_tval_el0" : "=r" (val)); asm volatile("mrs %0, cntp_tval_el0" : "=r" (val));
break; break;
default:
BUILD_BUG();
} }
} else if (access == ARCH_TIMER_VIRT_ACCESS) { } else if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) { switch (reg) {
...@@ -80,11 +79,7 @@ static inline u32 arch_timer_reg_read(int access, int reg) ...@@ -80,11 +79,7 @@ static inline u32 arch_timer_reg_read(int access, int reg)
case ARCH_TIMER_REG_TVAL: case ARCH_TIMER_REG_TVAL:
asm volatile("mrs %0, cntv_tval_el0" : "=r" (val)); asm volatile("mrs %0, cntv_tval_el0" : "=r" (val));
break; break;
default:
BUILD_BUG();
} }
} else {
BUILD_BUG();
} }
return val; return val;
......
...@@ -18,6 +18,7 @@ obj-$(CONFIG_ARMADA_370_XP_TIMER) += time-armada-370-xp.o ...@@ -18,6 +18,7 @@ obj-$(CONFIG_ARMADA_370_XP_TIMER) += time-armada-370-xp.o
obj-$(CONFIG_ORION_TIMER) += time-orion.o obj-$(CONFIG_ORION_TIMER) += time-orion.o
obj-$(CONFIG_ARCH_BCM2835) += bcm2835_timer.o obj-$(CONFIG_ARCH_BCM2835) += bcm2835_timer.o
obj-$(CONFIG_ARCH_MARCO) += timer-marco.o obj-$(CONFIG_ARCH_MARCO) += timer-marco.o
obj-$(CONFIG_ARCH_MOXART) += moxart_timer.o
obj-$(CONFIG_ARCH_MXS) += mxs_timer.o obj-$(CONFIG_ARCH_MXS) += mxs_timer.o
obj-$(CONFIG_ARCH_PRIMA2) += timer-prima2.o obj-$(CONFIG_ARCH_PRIMA2) += timer-prima2.o
obj-$(CONFIG_SUN4I_TIMER) += sun4i_timer.o obj-$(CONFIG_SUN4I_TIMER) += sun4i_timer.o
......
...@@ -16,13 +16,39 @@ ...@@ -16,13 +16,39 @@
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/slab.h>
#include <asm/arch_timer.h> #include <asm/arch_timer.h>
#include <asm/virt.h> #include <asm/virt.h>
#include <clocksource/arm_arch_timer.h> #include <clocksource/arm_arch_timer.h>
#define CNTTIDR 0x08
#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
#define CNTVCT_LO 0x08
#define CNTVCT_HI 0x0c
#define CNTFRQ 0x10
#define CNTP_TVAL 0x28
#define CNTP_CTL 0x2c
#define CNTV_TVAL 0x38
#define CNTV_CTL 0x3c
#define ARCH_CP15_TIMER BIT(0)
#define ARCH_MEM_TIMER BIT(1)
static unsigned arch_timers_present __initdata;
static void __iomem *arch_counter_base;
struct arch_timer {
void __iomem *base;
struct clock_event_device evt;
};
#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
static u32 arch_timer_rate; static u32 arch_timer_rate;
enum ppi_nr { enum ppi_nr {
...@@ -38,19 +64,83 @@ static int arch_timer_ppi[MAX_TIMER_PPI]; ...@@ -38,19 +64,83 @@ static int arch_timer_ppi[MAX_TIMER_PPI];
static struct clock_event_device __percpu *arch_timer_evt; static struct clock_event_device __percpu *arch_timer_evt;
static bool arch_timer_use_virtual = true; static bool arch_timer_use_virtual = true;
static bool arch_timer_mem_use_virtual;
/* /*
* Architected system timer support. * Architected system timer support.
*/ */
static inline irqreturn_t timer_handler(const int access, static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
struct clock_event_device *clk)
{
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTV_TVAL);
break;
}
} else {
arch_timer_reg_write_cp15(access, reg, val);
}
}
static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
struct clock_event_device *clk)
{
u32 val;
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTV_TVAL);
break;
}
} else {
val = arch_timer_reg_read_cp15(access, reg);
}
return val;
}
static __always_inline irqreturn_t timer_handler(const int access,
struct clock_event_device *evt) struct clock_event_device *evt)
{ {
unsigned long ctrl; unsigned long ctrl;
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
ctrl |= ARCH_TIMER_CTRL_IT_MASK; ctrl |= ARCH_TIMER_CTRL_IT_MASK;
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
evt->event_handler(evt); evt->event_handler(evt);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -72,15 +162,30 @@ static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) ...@@ -72,15 +162,30 @@ static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
} }
static inline void timer_set_mode(const int access, int mode) static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}
static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}
static __always_inline void timer_set_mode(const int access, int mode,
struct clock_event_device *clk)
{ {
unsigned long ctrl; unsigned long ctrl;
switch (mode) { switch (mode) {
case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_SHUTDOWN:
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl &= ~ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
break; break;
default: default:
break; break;
...@@ -90,60 +195,108 @@ static inline void timer_set_mode(const int access, int mode) ...@@ -90,60 +195,108 @@ static inline void timer_set_mode(const int access, int mode)
static void arch_timer_set_mode_virt(enum clock_event_mode mode, static void arch_timer_set_mode_virt(enum clock_event_mode mode,
struct clock_event_device *clk) struct clock_event_device *clk)
{ {
timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
} }
static void arch_timer_set_mode_phys(enum clock_event_mode mode, static void arch_timer_set_mode_phys(enum clock_event_mode mode,
struct clock_event_device *clk) struct clock_event_device *clk)
{ {
timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
}
static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
struct clock_event_device *clk)
{
timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
} }
static inline void set_next_event(const int access, unsigned long evt) static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
struct clock_event_device *clk)
{
timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
}
static __always_inline void set_next_event(const int access, unsigned long evt,
struct clock_event_device *clk)
{ {
unsigned long ctrl; unsigned long ctrl;
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
} }
static int arch_timer_set_next_event_virt(unsigned long evt, static int arch_timer_set_next_event_virt(unsigned long evt,
struct clock_event_device *unused) struct clock_event_device *clk)
{ {
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0; return 0;
} }
static int arch_timer_set_next_event_phys(unsigned long evt, static int arch_timer_set_next_event_phys(unsigned long evt,
struct clock_event_device *unused) struct clock_event_device *clk)
{ {
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0; return 0;
} }
static int arch_timer_setup(struct clock_event_device *clk) static int arch_timer_set_next_event_virt_mem(unsigned long evt,
struct clock_event_device *clk)
{ {
clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
clk->name = "arch_sys_timer"; return 0;
clk->rating = 450; }
if (arch_timer_use_virtual) {
clk->irq = arch_timer_ppi[VIRT_PPI]; static int arch_timer_set_next_event_phys_mem(unsigned long evt,
clk->set_mode = arch_timer_set_mode_virt; struct clock_event_device *clk)
clk->set_next_event = arch_timer_set_next_event_virt; {
set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
return 0;
}
static void __arch_timer_setup(unsigned type,
struct clock_event_device *clk)
{
clk->features = CLOCK_EVT_FEAT_ONESHOT;
if (type == ARCH_CP15_TIMER) {
clk->features |= CLOCK_EVT_FEAT_C3STOP;
clk->name = "arch_sys_timer";
clk->rating = 450;
clk->cpumask = cpumask_of(smp_processor_id());
if (arch_timer_use_virtual) {
clk->irq = arch_timer_ppi[VIRT_PPI];
clk->set_mode = arch_timer_set_mode_virt;
clk->set_next_event = arch_timer_set_next_event_virt;
} else {
clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
clk->set_mode = arch_timer_set_mode_phys;
clk->set_next_event = arch_timer_set_next_event_phys;
}
} else { } else {
clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; clk->name = "arch_mem_timer";
clk->set_mode = arch_timer_set_mode_phys; clk->rating = 400;
clk->set_next_event = arch_timer_set_next_event_phys; clk->cpumask = cpu_all_mask;
if (arch_timer_mem_use_virtual) {
clk->set_mode = arch_timer_set_mode_virt_mem;
clk->set_next_event =
arch_timer_set_next_event_virt_mem;
} else {
clk->set_mode = arch_timer_set_mode_phys_mem;
clk->set_next_event =
arch_timer_set_next_event_phys_mem;
}
} }
clk->cpumask = cpumask_of(smp_processor_id()); clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
clockevents_config_and_register(clk, arch_timer_rate, static int arch_timer_setup(struct clock_event_device *clk)
0xf, 0x7fffffff); {
__arch_timer_setup(ARCH_CP15_TIMER, clk);
if (arch_timer_use_virtual) if (arch_timer_use_virtual)
enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
...@@ -158,27 +311,41 @@ static int arch_timer_setup(struct clock_event_device *clk) ...@@ -158,27 +311,41 @@ static int arch_timer_setup(struct clock_event_device *clk)
return 0; return 0;
} }
static int arch_timer_available(void) static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
{ {
u32 freq; /* Who has more than one independent system counter? */
if (arch_timer_rate)
if (arch_timer_rate == 0) { return;
freq = arch_timer_get_cntfrq();
/* Check the timer frequency. */
if (freq == 0) {
pr_warn("Architected timer frequency not available\n");
return -EINVAL;
}
arch_timer_rate = freq; /* Try to determine the frequency from the device tree or CNTFRQ */
if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
if (cntbase)
arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
else
arch_timer_rate = arch_timer_get_cntfrq();
} }
pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", /* Check the timer frequency. */
if (arch_timer_rate == 0)
pr_warn("Architected timer frequency not available\n");
}
static void arch_timer_banner(unsigned type)
{
pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
type & ARCH_CP15_TIMER ? "cp15" : "",
type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
type & ARCH_MEM_TIMER ? "mmio" : "",
(unsigned long)arch_timer_rate / 1000000, (unsigned long)arch_timer_rate / 1000000,
(unsigned long)(arch_timer_rate / 10000) % 100, (unsigned long)(arch_timer_rate / 10000) % 100,
arch_timer_use_virtual ? "virt" : "phys"); type & ARCH_CP15_TIMER ?
return 0; arch_timer_use_virtual ? "virt" : "phys" :
"",
type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
type & ARCH_MEM_TIMER ?
arch_timer_mem_use_virtual ? "virt" : "phys" :
"");
} }
u32 arch_timer_get_rate(void) u32 arch_timer_get_rate(void)
...@@ -186,19 +353,35 @@ u32 arch_timer_get_rate(void) ...@@ -186,19 +353,35 @@ u32 arch_timer_get_rate(void)
return arch_timer_rate; return arch_timer_rate;
} }
u64 arch_timer_read_counter(void) static u64 arch_counter_get_cntvct_mem(void)
{ {
return arch_counter_get_cntvct(); u32 vct_lo, vct_hi, tmp_hi;
do {
vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
} while (vct_hi != tmp_hi);
return ((u64) vct_hi << 32) | vct_lo;
} }
/*
* Default to cp15 based access because arm64 uses this function for
* sched_clock() before DT is probed and the cp15 method is guaranteed
* to exist on arm64. arm doesn't use this before DT is probed so even
* if we don't have the cp15 accessors we won't have a problem.
*/
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
static cycle_t arch_counter_read(struct clocksource *cs) static cycle_t arch_counter_read(struct clocksource *cs)
{ {
return arch_counter_get_cntvct(); return arch_timer_read_counter();
} }
static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{ {
return arch_counter_get_cntvct(); return arch_timer_read_counter();
} }
static struct clocksource clocksource_counter = { static struct clocksource clocksource_counter = {
...@@ -221,6 +404,23 @@ struct timecounter *arch_timer_get_timecounter(void) ...@@ -221,6 +404,23 @@ struct timecounter *arch_timer_get_timecounter(void)
return &timecounter; return &timecounter;
} }
static void __init arch_counter_register(unsigned type)
{
u64 start_count;
/* Register the CP15 based counter if we have one */
if (type & ARCH_CP15_TIMER)
arch_timer_read_counter = arch_counter_get_cntvct;
else
arch_timer_read_counter = arch_counter_get_cntvct_mem;
start_count = arch_timer_read_counter();
clocksource_register_hz(&clocksource_counter, arch_timer_rate);
cyclecounter.mult = clocksource_counter.mult;
cyclecounter.shift = clocksource_counter.shift;
timecounter_init(&timecounter, &cyclecounter, start_count);
}
static void arch_timer_stop(struct clock_event_device *clk) static void arch_timer_stop(struct clock_event_device *clk)
{ {
pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
...@@ -265,22 +465,12 @@ static int __init arch_timer_register(void) ...@@ -265,22 +465,12 @@ static int __init arch_timer_register(void)
int err; int err;
int ppi; int ppi;
err = arch_timer_available();
if (err)
goto out;
arch_timer_evt = alloc_percpu(struct clock_event_device); arch_timer_evt = alloc_percpu(struct clock_event_device);
if (!arch_timer_evt) { if (!arch_timer_evt) {
err = -ENOMEM; err = -ENOMEM;
goto out; goto out;
} }
clocksource_register_hz(&clocksource_counter, arch_timer_rate);
cyclecounter.mult = clocksource_counter.mult;
cyclecounter.shift = clocksource_counter.shift;
timecounter_init(&timecounter, &cyclecounter,
arch_counter_get_cntvct());
if (arch_timer_use_virtual) { if (arch_timer_use_virtual) {
ppi = arch_timer_ppi[VIRT_PPI]; ppi = arch_timer_ppi[VIRT_PPI];
err = request_percpu_irq(ppi, arch_timer_handler_virt, err = request_percpu_irq(ppi, arch_timer_handler_virt,
...@@ -331,24 +521,77 @@ static int __init arch_timer_register(void) ...@@ -331,24 +521,77 @@ static int __init arch_timer_register(void)
return err; return err;
} }
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
int ret;
irq_handler_t func;
struct arch_timer *t;
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t)
return -ENOMEM;
t->base = base;
t->evt.irq = irq;
__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
if (arch_timer_mem_use_virtual)
func = arch_timer_handler_virt_mem;
else
func = arch_timer_handler_phys_mem;
ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
if (ret) {
pr_err("arch_timer: Failed to request mem timer irq\n");
kfree(t);
}
return ret;
}
static const struct of_device_id arch_timer_of_match[] __initconst = {
{ .compatible = "arm,armv7-timer", },
{ .compatible = "arm,armv8-timer", },
{},
};
static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
{ .compatible = "arm,armv7-timer-mem", },
{},
};
static void __init arch_timer_common_init(void)
{
unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
/* Wait until both nodes are probed if we have two timers */
if ((arch_timers_present & mask) != mask) {
if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
!(arch_timers_present & ARCH_MEM_TIMER))
return;
if (of_find_matching_node(NULL, arch_timer_of_match) &&
!(arch_timers_present & ARCH_CP15_TIMER))
return;
}
arch_timer_banner(arch_timers_present);
arch_counter_register(arch_timers_present);
arch_timer_arch_init();
}
static void __init arch_timer_init(struct device_node *np) static void __init arch_timer_init(struct device_node *np)
{ {
u32 freq;
int i; int i;
if (arch_timer_get_rate()) { if (arch_timers_present & ARCH_CP15_TIMER) {
pr_warn("arch_timer: multiple nodes in dt, skipping\n"); pr_warn("arch_timer: multiple nodes in dt, skipping\n");
return; return;
} }
/* Try to determine the frequency from the device tree or CNTFRQ */ arch_timers_present |= ARCH_CP15_TIMER;
if (!of_property_read_u32(np, "clock-frequency", &freq))
arch_timer_rate = freq;
for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
arch_timer_ppi[i] = irq_of_parse_and_map(np, i); arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
arch_timer_detect_rate(NULL, np);
of_node_put(np);
/* /*
* If HYP mode is available, we know that the physical timer * If HYP mode is available, we know that the physical timer
...@@ -369,7 +612,73 @@ static void __init arch_timer_init(struct device_node *np) ...@@ -369,7 +612,73 @@ static void __init arch_timer_init(struct device_node *np)
} }
arch_timer_register(); arch_timer_register();
arch_timer_arch_init(); arch_timer_common_init();
} }
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init); CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init); CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
static void __init arch_timer_mem_init(struct device_node *np)
{
struct device_node *frame, *best_frame = NULL;
void __iomem *cntctlbase, *base;
unsigned int irq;
u32 cnttidr;
arch_timers_present |= ARCH_MEM_TIMER;
cntctlbase = of_iomap(np, 0);
if (!cntctlbase) {
pr_err("arch_timer: Can't find CNTCTLBase\n");
return;
}
cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
iounmap(cntctlbase);
/*
* Try to find a virtual capable frame. Otherwise fall back to a
* physical capable frame.
*/
for_each_available_child_of_node(np, frame) {
int n;
if (of_property_read_u32(frame, "frame-number", &n)) {
pr_err("arch_timer: Missing frame-number\n");
of_node_put(best_frame);
of_node_put(frame);
return;
}
if (cnttidr & CNTTIDR_VIRT(n)) {
of_node_put(best_frame);
best_frame = frame;
arch_timer_mem_use_virtual = true;
break;
}
of_node_put(best_frame);
best_frame = of_node_get(frame);
}
base = arch_counter_base = of_iomap(best_frame, 0);
if (!base) {
pr_err("arch_timer: Can't map frame's registers\n");
of_node_put(best_frame);
return;
}
if (arch_timer_mem_use_virtual)
irq = irq_of_parse_and_map(best_frame, 1);
else
irq = irq_of_parse_and_map(best_frame, 0);
of_node_put(best_frame);
if (!irq) {
pr_err("arch_timer: Frame missing %s irq",
arch_timer_mem_use_virtual ? "virt" : "phys");
return;
}
arch_timer_detect_rate(base, np);
arch_timer_mem_register(base, irq);
arch_timer_common_init();
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
arch_timer_mem_init);
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/clk-provider.h> #include <linux/sched_clock.h>
/* /*
* This driver configures the 2 16-bit count-up timers as follows: * This driver configures the 2 16-bit count-up timers as follows:
...@@ -95,6 +95,8 @@ struct ttc_timer_clockevent { ...@@ -95,6 +95,8 @@ struct ttc_timer_clockevent {
#define to_ttc_timer_clkevent(x) \ #define to_ttc_timer_clkevent(x) \
container_of(x, struct ttc_timer_clockevent, ce) container_of(x, struct ttc_timer_clockevent, ce)
static void __iomem *ttc_sched_clock_val_reg;
/** /**
* ttc_set_interval - Set the timer interval value * ttc_set_interval - Set the timer interval value
* *
...@@ -156,6 +158,11 @@ static cycle_t __ttc_clocksource_read(struct clocksource *cs) ...@@ -156,6 +158,11 @@ static cycle_t __ttc_clocksource_read(struct clocksource *cs)
TTC_COUNT_VAL_OFFSET); TTC_COUNT_VAL_OFFSET);
} }
static u32 notrace ttc_sched_clock_read(void)
{
return __raw_readl(ttc_sched_clock_val_reg);
}
/** /**
* ttc_set_next_event - Sets the time interval for next event * ttc_set_next_event - Sets the time interval for next event
* *
...@@ -297,6 +304,10 @@ static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base) ...@@ -297,6 +304,10 @@ static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base)
kfree(ttccs); kfree(ttccs);
return; return;
} }
ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
setup_sched_clock(ttc_sched_clock_read, 16,
clk_get_rate(ttccs->ttc.clk) / PRESCALE);
} }
static int ttc_rate_change_clockevent_cb(struct notifier_block *nb, static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
......
/*
* MOXA ART SoCs timer handling.
*
* Copyright (C) 2013 Jonas Jensen
*
* Jonas Jensen <jonas.jensen@gmail.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqreturn.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/io.h>
#include <linux/clocksource.h>
#include <linux/bitops.h>
#define TIMER1_BASE 0x00
#define TIMER2_BASE 0x10
#define TIMER3_BASE 0x20
#define REG_COUNT 0x0 /* writable */
#define REG_LOAD 0x4
#define REG_MATCH1 0x8
#define REG_MATCH2 0xC
#define TIMER_CR 0x30
#define TIMER_INTR_STATE 0x34
#define TIMER_INTR_MASK 0x38
/*
* TIMER_CR flags:
*
* TIMEREG_CR_*_CLOCK 0: PCLK, 1: EXT1CLK
* TIMEREG_CR_*_INT overflow interrupt enable bit
*/
#define TIMEREG_CR_1_ENABLE BIT(0)
#define TIMEREG_CR_1_CLOCK BIT(1)
#define TIMEREG_CR_1_INT BIT(2)
#define TIMEREG_CR_2_ENABLE BIT(3)
#define TIMEREG_CR_2_CLOCK BIT(4)
#define TIMEREG_CR_2_INT BIT(5)
#define TIMEREG_CR_3_ENABLE BIT(6)
#define TIMEREG_CR_3_CLOCK BIT(7)
#define TIMEREG_CR_3_INT BIT(8)
#define TIMEREG_CR_COUNT_UP BIT(9)
#define TIMER1_ENABLE (TIMEREG_CR_2_ENABLE | TIMEREG_CR_1_ENABLE)
#define TIMER1_DISABLE (TIMEREG_CR_2_ENABLE)
static void __iomem *base;
static unsigned int clock_count_per_tick;
static void moxart_clkevt_mode(enum clock_event_mode mode,
struct clock_event_device *clk)
{
switch (mode) {
case CLOCK_EVT_MODE_RESUME:
case CLOCK_EVT_MODE_ONESHOT:
writel(TIMER1_DISABLE, base + TIMER_CR);
writel(~0, base + TIMER1_BASE + REG_LOAD);
break;
case CLOCK_EVT_MODE_PERIODIC:
writel(clock_count_per_tick, base + TIMER1_BASE + REG_LOAD);
writel(TIMER1_ENABLE, base + TIMER_CR);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
default:
writel(TIMER1_DISABLE, base + TIMER_CR);
break;
}
}
static int moxart_clkevt_next_event(unsigned long cycles,
struct clock_event_device *unused)
{
u32 u;
writel(TIMER1_DISABLE, base + TIMER_CR);
u = readl(base + TIMER1_BASE + REG_COUNT) - cycles;
writel(u, base + TIMER1_BASE + REG_MATCH1);
writel(TIMER1_ENABLE, base + TIMER_CR);
return 0;
}
static struct clock_event_device moxart_clockevent = {
.name = "moxart_timer",
.rating = 200,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = moxart_clkevt_mode,
.set_next_event = moxart_clkevt_next_event,
};
static irqreturn_t moxart_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction moxart_timer_irq = {
.name = "moxart-timer",
.flags = IRQF_TIMER,
.handler = moxart_timer_interrupt,
.dev_id = &moxart_clockevent,
};
static void __init moxart_timer_init(struct device_node *node)
{
int ret, irq;
unsigned long pclk;
struct clk *clk;
base = of_iomap(node, 0);
if (!base)
panic("%s: of_iomap failed\n", node->full_name);
irq = irq_of_parse_and_map(node, 0);
if (irq <= 0)
panic("%s: irq_of_parse_and_map failed\n", node->full_name);
ret = setup_irq(irq, &moxart_timer_irq);
if (ret)
panic("%s: setup_irq failed\n", node->full_name);
clk = of_clk_get(node, 0);
if (IS_ERR(clk))
panic("%s: of_clk_get failed\n", node->full_name);
pclk = clk_get_rate(clk);
if (clocksource_mmio_init(base + TIMER2_BASE + REG_COUNT,
"moxart_timer", pclk, 200, 32,
clocksource_mmio_readl_down))
panic("%s: clocksource_mmio_init failed\n", node->full_name);
clock_count_per_tick = DIV_ROUND_CLOSEST(pclk, HZ);
writel(~0, base + TIMER2_BASE + REG_LOAD);
writel(TIMEREG_CR_2_ENABLE, base + TIMER_CR);
moxart_clockevent.cpumask = cpumask_of(0);
moxart_clockevent.irq = irq;
/*
* documentation is not publicly available:
* min_delta / max_delta obtained by trial-and-error,
* max_delta 0xfffffffe should be ok because count
* register size is u32
*/
clockevents_config_and_register(&moxart_clockevent, pclk,
0x4, 0xfffffffe);
}
CLOCKSOURCE_OF_DECLARE(moxart, "moxa,moxart-timer", moxart_timer_init);
...@@ -19,42 +19,83 @@ ...@@ -19,42 +19,83 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <linux/irqreturn.h> #include <linux/irqreturn.h>
#include <linux/sched_clock.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#define TIMER_IRQ_EN_REG 0x00 #define TIMER_IRQ_EN_REG 0x00
#define TIMER_IRQ_EN(val) (1 << val) #define TIMER_IRQ_EN(val) BIT(val)
#define TIMER_IRQ_ST_REG 0x04 #define TIMER_IRQ_ST_REG 0x04
#define TIMER_CTL_REG(val) (0x10 * val + 0x10) #define TIMER_CTL_REG(val) (0x10 * val + 0x10)
#define TIMER_CTL_ENABLE (1 << 0) #define TIMER_CTL_ENABLE BIT(0)
#define TIMER_CTL_AUTORELOAD (1 << 1) #define TIMER_CTL_RELOAD BIT(1)
#define TIMER_CTL_ONESHOT (1 << 7) #define TIMER_CTL_CLK_SRC(val) (((val) & 0x3) << 2)
#define TIMER_INTVAL_REG(val) (0x10 * val + 0x14) #define TIMER_CTL_CLK_SRC_OSC24M (1)
#define TIMER_CNTVAL_REG(val) (0x10 * val + 0x18) #define TIMER_CTL_CLK_PRES(val) (((val) & 0x7) << 4)
#define TIMER_CTL_ONESHOT BIT(7)
#define TIMER_SCAL 16 #define TIMER_INTVAL_REG(val) (0x10 * (val) + 0x14)
#define TIMER_CNTVAL_REG(val) (0x10 * (val) + 0x18)
static void __iomem *timer_base; static void __iomem *timer_base;
static u32 ticks_per_jiffy;
/*
* When we disable a timer, we need to wait at least for 2 cycles of
* the timer source clock. We will use for that the clocksource timer
* that is already setup and runs at the same frequency than the other
* timers, and we never will be disabled.
*/
static void sun4i_clkevt_sync(void)
{
u32 old = readl(timer_base + TIMER_CNTVAL_REG(1));
while ((old - readl(timer_base + TIMER_CNTVAL_REG(1))) < 3)
cpu_relax();
}
static void sun4i_clkevt_time_stop(u8 timer)
{
u32 val = readl(timer_base + TIMER_CTL_REG(timer));
writel(val & ~TIMER_CTL_ENABLE, timer_base + TIMER_CTL_REG(timer));
sun4i_clkevt_sync();
}
static void sun4i_clkevt_time_setup(u8 timer, unsigned long delay)
{
writel(delay, timer_base + TIMER_INTVAL_REG(timer));
}
static void sun4i_clkevt_time_start(u8 timer, bool periodic)
{
u32 val = readl(timer_base + TIMER_CTL_REG(timer));
if (periodic)
val &= ~TIMER_CTL_ONESHOT;
else
val |= TIMER_CTL_ONESHOT;
writel(val | TIMER_CTL_ENABLE | TIMER_CTL_RELOAD,
timer_base + TIMER_CTL_REG(timer));
}
static void sun4i_clkevt_mode(enum clock_event_mode mode, static void sun4i_clkevt_mode(enum clock_event_mode mode,
struct clock_event_device *clk) struct clock_event_device *clk)
{ {
u32 u = readl(timer_base + TIMER_CTL_REG(0));
switch (mode) { switch (mode) {
case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_PERIODIC:
u &= ~(TIMER_CTL_ONESHOT); sun4i_clkevt_time_stop(0);
writel(u | TIMER_CTL_ENABLE, timer_base + TIMER_CTL_REG(0)); sun4i_clkevt_time_setup(0, ticks_per_jiffy);
sun4i_clkevt_time_start(0, true);
break; break;
case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_ONESHOT:
writel(u | TIMER_CTL_ONESHOT, timer_base + TIMER_CTL_REG(0)); sun4i_clkevt_time_stop(0);
sun4i_clkevt_time_start(0, false);
break; break;
case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_SHUTDOWN:
default: default:
writel(u & ~(TIMER_CTL_ENABLE), timer_base + TIMER_CTL_REG(0)); sun4i_clkevt_time_stop(0);
break; break;
} }
} }
...@@ -62,10 +103,9 @@ static void sun4i_clkevt_mode(enum clock_event_mode mode, ...@@ -62,10 +103,9 @@ static void sun4i_clkevt_mode(enum clock_event_mode mode,
static int sun4i_clkevt_next_event(unsigned long evt, static int sun4i_clkevt_next_event(unsigned long evt,
struct clock_event_device *unused) struct clock_event_device *unused)
{ {
u32 u = readl(timer_base + TIMER_CTL_REG(0)); sun4i_clkevt_time_stop(0);
writel(evt, timer_base + TIMER_CNTVAL_REG(0)); sun4i_clkevt_time_setup(0, evt);
writel(u | TIMER_CTL_ENABLE | TIMER_CTL_AUTORELOAD, sun4i_clkevt_time_start(0, false);
timer_base + TIMER_CTL_REG(0));
return 0; return 0;
} }
...@@ -96,6 +136,11 @@ static struct irqaction sun4i_timer_irq = { ...@@ -96,6 +136,11 @@ static struct irqaction sun4i_timer_irq = {
.dev_id = &sun4i_clockevent, .dev_id = &sun4i_clockevent,
}; };
static u32 sun4i_timer_sched_read(void)
{
return ~readl(timer_base + TIMER_CNTVAL_REG(1));
}
static void __init sun4i_timer_init(struct device_node *node) static void __init sun4i_timer_init(struct device_node *node)
{ {
unsigned long rate = 0; unsigned long rate = 0;
...@@ -114,22 +159,23 @@ static void __init sun4i_timer_init(struct device_node *node) ...@@ -114,22 +159,23 @@ static void __init sun4i_timer_init(struct device_node *node)
clk = of_clk_get(node, 0); clk = of_clk_get(node, 0);
if (IS_ERR(clk)) if (IS_ERR(clk))
panic("Can't get timer clock"); panic("Can't get timer clock");
clk_prepare_enable(clk);
rate = clk_get_rate(clk); rate = clk_get_rate(clk);
writel(rate / (TIMER_SCAL * HZ), writel(~0, timer_base + TIMER_INTVAL_REG(1));
timer_base + TIMER_INTVAL_REG(0)); writel(TIMER_CTL_ENABLE | TIMER_CTL_RELOAD |
TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M),
timer_base + TIMER_CTL_REG(1));
setup_sched_clock(sun4i_timer_sched_read, 32, rate);
clocksource_mmio_init(timer_base + TIMER_CNTVAL_REG(1), node->name,
rate, 300, 32, clocksource_mmio_readl_down);
/* set clock source to HOSC, 16 pre-division */ ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
val = readl(timer_base + TIMER_CTL_REG(0));
val &= ~(0x07 << 4);
val &= ~(0x03 << 2);
val |= (4 << 4) | (1 << 2);
writel(val, timer_base + TIMER_CTL_REG(0));
/* set mode to auto reload */ writel(TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M),
val = readl(timer_base + TIMER_CTL_REG(0)); timer_base + TIMER_CTL_REG(0));
writel(val | TIMER_CTL_AUTORELOAD, timer_base + TIMER_CTL_REG(0));
ret = setup_irq(irq, &sun4i_timer_irq); ret = setup_irq(irq, &sun4i_timer_irq);
if (ret) if (ret)
...@@ -141,8 +187,8 @@ static void __init sun4i_timer_init(struct device_node *node) ...@@ -141,8 +187,8 @@ static void __init sun4i_timer_init(struct device_node *node)
sun4i_clockevent.cpumask = cpumask_of(0); sun4i_clockevent.cpumask = cpumask_of(0);
clockevents_config_and_register(&sun4i_clockevent, rate / TIMER_SCAL, clockevents_config_and_register(&sun4i_clockevent, rate, 0x1,
0x1, 0xff); 0xffffffff);
} }
CLOCKSOURCE_OF_DECLARE(sun4i, "allwinner,sun4i-timer", CLOCKSOURCE_OF_DECLARE(sun4i, "allwinner,sun4i-timer",
sun4i_timer_init); sun4i_timer_init);
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <asm/sched_clock.h> #include <linux/sched_clock.h>
#define TIMER_CTRL 0x00 #define TIMER_CTRL 0x00
#define TIMER0_EN BIT(0) #define TIMER0_EN BIT(0)
......
...@@ -23,16 +23,20 @@ ...@@ -23,16 +23,20 @@
#define ARCH_TIMER_CTRL_IT_MASK (1 << 1) #define ARCH_TIMER_CTRL_IT_MASK (1 << 1)
#define ARCH_TIMER_CTRL_IT_STAT (1 << 2) #define ARCH_TIMER_CTRL_IT_STAT (1 << 2)
#define ARCH_TIMER_REG_CTRL 0 enum arch_timer_reg {
#define ARCH_TIMER_REG_TVAL 1 ARCH_TIMER_REG_CTRL,
ARCH_TIMER_REG_TVAL,
};
#define ARCH_TIMER_PHYS_ACCESS 0 #define ARCH_TIMER_PHYS_ACCESS 0
#define ARCH_TIMER_VIRT_ACCESS 1 #define ARCH_TIMER_VIRT_ACCESS 1
#define ARCH_TIMER_MEM_PHYS_ACCESS 2
#define ARCH_TIMER_MEM_VIRT_ACCESS 3
#ifdef CONFIG_ARM_ARCH_TIMER #ifdef CONFIG_ARM_ARCH_TIMER
extern u32 arch_timer_get_rate(void); extern u32 arch_timer_get_rate(void);
extern u64 arch_timer_read_counter(void); extern u64 (*arch_timer_read_counter)(void);
extern struct timecounter *arch_timer_get_timecounter(void); extern struct timecounter *arch_timer_get_timecounter(void);
#else #else
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册