提交 8fdd21a2 编写于 作者: S Scott Wood 提交者: Avi Kivity

KVM: PPC: e500: refactor core-specific TLB code

The PID handling is e500v1/v2-specific, and is moved to e500.c.

The MMU sregs code and kvmppc_core_vcpu_translate will be shared with
e500mc, and is moved from e500.c to e500_tlb.c.

Partially based on patches from Liu Yu <yu.liu@freescale.com>.
Signed-off-by: NScott Wood <scottwood@freescale.com>
[agraf: fix bisectability]
Signed-off-by: NAlexander Graf <agraf@suse.de>
Signed-off-by: NAvi Kivity <avi@redhat.com>
上级 52e1718c
...@@ -426,6 +426,8 @@ struct kvm_vcpu_arch { ...@@ -426,6 +426,8 @@ struct kvm_vcpu_arch {
ulong fault_esr; ulong fault_esr;
ulong queued_dear; ulong queued_dear;
ulong queued_esr; ulong queued_esr;
u32 tlbcfg[4];
u32 mmucfg;
#endif #endif
gpa_t paddr_accessed; gpa_t paddr_accessed;
......
...@@ -22,9 +22,281 @@ ...@@ -22,9 +22,281 @@
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/kvm_ppc.h> #include <asm/kvm_ppc.h>
#include "../mm/mmu_decl.h"
#include "booke.h" #include "booke.h"
#include "e500.h" #include "e500.h"
struct id {
unsigned long val;
struct id **pentry;
};
#define NUM_TIDS 256
/*
* This table provide mappings from:
* (guestAS,guestTID,guestPR) --> ID of physical cpu
* guestAS [0..1]
* guestTID [0..255]
* guestPR [0..1]
* ID [1..255]
* Each vcpu keeps one vcpu_id_table.
*/
struct vcpu_id_table {
struct id id[2][NUM_TIDS][2];
};
/*
* This table provide reversed mappings of vcpu_id_table:
* ID --> address of vcpu_id_table item.
* Each physical core has one pcpu_id_table.
*/
struct pcpu_id_table {
struct id *entry[NUM_TIDS];
};
static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
/* This variable keeps last used shadow ID on local core.
* The valid range of shadow ID is [1..255] */
static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
/*
* Allocate a free shadow id and setup a valid sid mapping in given entry.
* A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static inline int local_sid_setup_one(struct id *entry)
{
unsigned long sid;
int ret = -1;
sid = ++(__get_cpu_var(pcpu_last_used_sid));
if (sid < NUM_TIDS) {
__get_cpu_var(pcpu_sids).entry[sid] = entry;
entry->val = sid;
entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
ret = sid;
}
/*
* If sid == NUM_TIDS, we've run out of sids. We return -1, and
* the caller will invalidate everything and start over.
*
* sid > NUM_TIDS indicates a race, which we disable preemption to
* avoid.
*/
WARN_ON(sid > NUM_TIDS);
return ret;
}
/*
* Check if given entry contain a valid shadow id mapping.
* An ID mapping is considered valid only if
* both vcpu and pcpu know this mapping.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static inline int local_sid_lookup(struct id *entry)
{
if (entry && entry->val != 0 &&
__get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
return entry->val;
return -1;
}
/* Invalidate all id mappings on local core -- call with preempt disabled */
static inline void local_sid_destroy_all(void)
{
__get_cpu_var(pcpu_last_used_sid) = 0;
memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
}
static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
{
vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
return vcpu_e500->idt;
}
static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kfree(vcpu_e500->idt);
vcpu_e500->idt = NULL;
}
/* Map guest pid to shadow.
* We use PID to keep shadow of current guest non-zero PID,
* and use PID1 to keep shadow of guest zero PID.
* So that guest tlbe with TID=0 can be accessed at any time */
static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
{
preempt_disable();
vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
get_cur_as(&vcpu_e500->vcpu),
get_cur_pid(&vcpu_e500->vcpu),
get_cur_pr(&vcpu_e500->vcpu), 1);
vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
get_cur_as(&vcpu_e500->vcpu), 0,
get_cur_pr(&vcpu_e500->vcpu), 1);
preempt_enable();
}
/* Invalidate all mappings on vcpu */
static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
/* Update shadow pid when mappings are changed */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
/* Invalidate one ID mapping on vcpu */
static inline void kvmppc_e500_id_table_reset_one(
struct kvmppc_vcpu_e500 *vcpu_e500,
int as, int pid, int pr)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
BUG_ON(as >= 2);
BUG_ON(pid >= NUM_TIDS);
BUG_ON(pr >= 2);
idt->id[as][pid][pr].val = 0;
idt->id[as][pid][pr].pentry = NULL;
/* Update shadow pid when mappings are changed */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
/*
* Map guest (vcpu,AS,ID,PR) to physical core shadow id.
* This function first lookup if a valid mapping exists,
* if not, then creates a new one.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
unsigned int as, unsigned int gid,
unsigned int pr, int avoid_recursion)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
int sid;
BUG_ON(as >= 2);
BUG_ON(gid >= NUM_TIDS);
BUG_ON(pr >= 2);
sid = local_sid_lookup(&idt->id[as][gid][pr]);
while (sid <= 0) {
/* No mapping yet */
sid = local_sid_setup_one(&idt->id[as][gid][pr]);
if (sid <= 0) {
_tlbil_all();
local_sid_destroy_all();
}
/* Update shadow pid when mappings are changed */
if (!avoid_recursion)
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
return sid;
}
unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
}
void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (vcpu->arch.pid != pid) {
vcpu_e500->pid[0] = vcpu->arch.pid = pid;
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
}
/* gtlbe must not be mapped by more than one host tlbe */
void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
unsigned int pr, tid, ts, pid;
u32 val, eaddr;
unsigned long flags;
ts = get_tlb_ts(gtlbe);
tid = get_tlb_tid(gtlbe);
preempt_disable();
/* One guest ID may be mapped to two shadow IDs */
for (pr = 0; pr < 2; pr++) {
/*
* The shadow PID can have a valid mapping on at most one
* host CPU. In the common case, it will be valid on this
* CPU, in which case we do a local invalidation of the
* specific address.
*
* If the shadow PID is not valid on the current host CPU,
* we invalidate the entire shadow PID.
*/
pid = local_sid_lookup(&idt->id[ts][tid][pr]);
if (pid <= 0) {
kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
continue;
}
/*
* The guest is invalidating a 4K entry which is in a PID
* that has a valid shadow mapping on this host CPU. We
* search host TLB to invalidate it's shadow TLB entry,
* similar to __tlbil_va except that we need to look in AS1.
*/
val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
eaddr = get_tlb_eaddr(gtlbe);
local_irq_save(flags);
mtspr(SPRN_MAS6, val);
asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
val = mfspr(SPRN_MAS1);
if (val & MAS1_VALID) {
mtspr(SPRN_MAS1, val & ~MAS1_VALID);
asm volatile("tlbwe");
}
local_irq_restore(flags);
}
preempt_enable();
}
void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kvmppc_e500_id_table_reset_all(vcpu_e500);
}
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
{
/* Recalc shadow pid since MSR changes */
kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
}
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu) void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{ {
} }
...@@ -36,13 +308,13 @@ void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu) ...@@ -36,13 +308,13 @@ void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{ {
kvmppc_booke_vcpu_load(vcpu, cpu); kvmppc_booke_vcpu_load(vcpu, cpu);
kvmppc_e500_tlb_load(vcpu, cpu);
/* Shadow PID may be expired on local core */
kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
} }
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{ {
kvmppc_e500_tlb_put(vcpu);
#ifdef CONFIG_SPE #ifdef CONFIG_SPE
if (vcpu->arch.shadow_msr & MSR_SPE) if (vcpu->arch.shadow_msr & MSR_SPE)
kvmppc_vcpu_disable_spe(vcpu); kvmppc_vcpu_disable_spe(vcpu);
...@@ -63,6 +335,23 @@ int kvmppc_core_check_processor_compat(void) ...@@ -63,6 +335,23 @@ int kvmppc_core_check_processor_compat(void)
return r; return r;
} }
static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
{
struct kvm_book3e_206_tlb_entry *tlbe;
/* Insert large initial mapping for guest. */
tlbe = get_entry(vcpu_e500, 1, 0);
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
tlbe->mas2 = 0;
tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
/* 4K map for serial output. Used by kernel wrapper. */
tlbe = get_entry(vcpu_e500, 1, 1);
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
}
int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
{ {
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
...@@ -78,32 +367,6 @@ int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) ...@@ -78,32 +367,6 @@ int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
return 0; return 0;
} }
/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int index;
gva_t eaddr;
u8 pid;
u8 as;
eaddr = tr->linear_address;
pid = (tr->linear_address >> 32) & 0xff;
as = (tr->linear_address >> 40) & 0x1;
index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
if (index < 0) {
tr->valid = 0;
return 0;
}
tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
/* XXX what does "writeable" and "usermode" even mean? */
tr->valid = 1;
return 0;
}
void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{ {
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
...@@ -117,19 +380,6 @@ void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) ...@@ -117,19 +380,6 @@ void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0; sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar; sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
sregs->u.e.mas0 = vcpu->arch.shared->mas0;
sregs->u.e.mas1 = vcpu->arch.shared->mas1;
sregs->u.e.mas2 = vcpu->arch.shared->mas2;
sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
sregs->u.e.mas4 = vcpu->arch.shared->mas4;
sregs->u.e.mas6 = vcpu->arch.shared->mas6;
sregs->u.e.mmucfg = mfspr(SPRN_MMUCFG);
sregs->u.e.tlbcfg[0] = vcpu_e500->tlb0cfg;
sregs->u.e.tlbcfg[1] = vcpu_e500->tlb1cfg;
sregs->u.e.tlbcfg[2] = 0;
sregs->u.e.tlbcfg[3] = 0;
sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL]; sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA]; sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND]; sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
...@@ -137,11 +387,13 @@ void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) ...@@ -137,11 +387,13 @@ void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR]; vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
kvmppc_get_sregs_ivor(vcpu, sregs); kvmppc_get_sregs_ivor(vcpu, sregs);
kvmppc_get_sregs_e500_tlb(vcpu, sregs);
} }
int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{ {
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int ret;
if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
vcpu_e500->svr = sregs->u.e.impl.fsl.svr; vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
...@@ -149,14 +401,9 @@ int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) ...@@ -149,14 +401,9 @@ int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar; vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
} }
if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) { ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
vcpu->arch.shared->mas0 = sregs->u.e.mas0; if (ret < 0)
vcpu->arch.shared->mas1 = sregs->u.e.mas1; return ret;
vcpu->arch.shared->mas2 = sregs->u.e.mas2;
vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
vcpu->arch.shared->mas4 = sregs->u.e.mas4;
vcpu->arch.shared->mas6 = sregs->u.e.mas6;
}
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0; return 0;
...@@ -195,9 +442,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) ...@@ -195,9 +442,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
if (err) if (err)
goto free_vcpu; goto free_vcpu;
if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
goto uninit_vcpu;
err = kvmppc_e500_tlb_init(vcpu_e500); err = kvmppc_e500_tlb_init(vcpu_e500);
if (err) if (err)
goto uninit_vcpu; goto uninit_id;
vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
if (!vcpu->arch.shared) if (!vcpu->arch.shared)
...@@ -207,6 +457,8 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) ...@@ -207,6 +457,8 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
uninit_tlb: uninit_tlb:
kvmppc_e500_tlb_uninit(vcpu_e500); kvmppc_e500_tlb_uninit(vcpu_e500);
uninit_id:
kvmppc_e500_id_table_free(vcpu_e500);
uninit_vcpu: uninit_vcpu:
kvm_vcpu_uninit(vcpu); kvm_vcpu_uninit(vcpu);
free_vcpu: free_vcpu:
...@@ -220,8 +472,9 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) ...@@ -220,8 +472,9 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
free_page((unsigned long)vcpu->arch.shared); free_page((unsigned long)vcpu->arch.shared);
kvm_vcpu_uninit(vcpu);
kvmppc_e500_tlb_uninit(vcpu_e500); kvmppc_e500_tlb_uninit(vcpu_e500);
kvmppc_e500_id_table_free(vcpu_e500);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu_e500); kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
} }
......
...@@ -35,7 +35,9 @@ struct tlbe_priv { ...@@ -35,7 +35,9 @@ struct tlbe_priv {
struct tlbe_ref ref; /* TLB0 only -- TLB1 uses tlb_refs */ struct tlbe_ref ref; /* TLB0 only -- TLB1 uses tlb_refs */
}; };
#ifdef CONFIG_KVM_E500
struct vcpu_id_table; struct vcpu_id_table;
#endif
struct kvmppc_e500_tlb_params { struct kvmppc_e500_tlb_params {
int entries, ways, sets; int entries, ways, sets;
...@@ -70,23 +72,22 @@ struct kvmppc_vcpu_e500 { ...@@ -70,23 +72,22 @@ struct kvmppc_vcpu_e500 {
struct tlbe_ref *tlb_refs[E500_TLB_NUM]; struct tlbe_ref *tlb_refs[E500_TLB_NUM];
unsigned int host_tlb1_nv; unsigned int host_tlb1_nv;
u32 host_pid[E500_PID_NUM];
u32 pid[E500_PID_NUM];
u32 svr; u32 svr;
/* vcpu id table */
struct vcpu_id_table *idt;
u32 l1csr0; u32 l1csr0;
u32 l1csr1; u32 l1csr1;
u32 hid0; u32 hid0;
u32 hid1; u32 hid1;
u32 tlb0cfg;
u32 tlb1cfg;
u64 mcar; u64 mcar;
struct page **shared_tlb_pages; struct page **shared_tlb_pages;
int num_shared_tlb_pages; int num_shared_tlb_pages;
#ifdef CONFIG_KVM_E500
u32 pid[E500_PID_NUM];
/* vcpu id table */
struct vcpu_id_table *idt;
#endif
}; };
static inline struct kvmppc_vcpu_e500 *to_e500(struct kvm_vcpu *vcpu) static inline struct kvmppc_vcpu_e500 *to_e500(struct kvm_vcpu *vcpu)
...@@ -113,23 +114,25 @@ static inline struct kvmppc_vcpu_e500 *to_e500(struct kvm_vcpu *vcpu) ...@@ -113,23 +114,25 @@ static inline struct kvmppc_vcpu_e500 *to_e500(struct kvm_vcpu *vcpu)
(MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3 \ (MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3 \
| E500_TLB_USER_PERM_MASK | E500_TLB_SUPER_PERM_MASK) | E500_TLB_USER_PERM_MASK | E500_TLB_SUPER_PERM_MASK)
extern void kvmppc_e500_tlb_put(struct kvm_vcpu *);
extern void kvmppc_e500_tlb_load(struct kvm_vcpu *, int);
extern void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *);
extern void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *);
int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500,
ulong value); ulong value);
int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu); int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu);
int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu); int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu);
int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb); int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb);
int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb); int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb);
int kvmppc_e500_tlb_search(struct kvm_vcpu *, gva_t, unsigned int, int);
int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500); int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500);
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500); void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500);
void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
#ifdef CONFIG_KVM_E500
unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
unsigned int as, unsigned int gid,
unsigned int pr, int avoid_recursion);
#endif
/* TLB helper functions */ /* TLB helper functions */
static inline unsigned int static inline unsigned int
get_tlb_size(const struct kvm_book3e_206_tlb_entry *tlbe) get_tlb_size(const struct kvm_book3e_206_tlb_entry *tlbe)
...@@ -183,6 +186,12 @@ get_tlb_iprot(const struct kvm_book3e_206_tlb_entry *tlbe) ...@@ -183,6 +186,12 @@ get_tlb_iprot(const struct kvm_book3e_206_tlb_entry *tlbe)
return (tlbe->mas1 >> 30) & 0x1; return (tlbe->mas1 >> 30) & 0x1;
} }
static inline unsigned int
get_tlb_tsize(const struct kvm_book3e_206_tlb_entry *tlbe)
{
return (tlbe->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
}
static inline unsigned int get_cur_pid(struct kvm_vcpu *vcpu) static inline unsigned int get_cur_pid(struct kvm_vcpu *vcpu)
{ {
return vcpu->arch.pid & 0xff; return vcpu->arch.pid & 0xff;
...@@ -248,4 +257,31 @@ static inline int tlbe_is_host_safe(const struct kvm_vcpu *vcpu, ...@@ -248,4 +257,31 @@ static inline int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
return 1; return 1;
} }
static inline struct kvm_book3e_206_tlb_entry *get_entry(
struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int entry)
{
int offset = vcpu_e500->gtlb_offset[tlbsel];
return &vcpu_e500->gtlb_arch[offset + entry];
}
void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe);
void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500);
#ifdef CONFIG_KVM_E500
unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe);
static inline unsigned int get_tlbmiss_tid(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int tidseld = (vcpu->arch.shared->mas4 >> 16) & 0xf;
return vcpu_e500->pid[tidseld];
}
/* Force TS=1 for all guest mappings. */
#define get_tlb_sts(gtlbe) (MAS1_TS)
#endif /* CONFIG_KVM_E500 */
#endif /* KVM_E500_H */ #endif /* KVM_E500_H */
...@@ -174,9 +174,9 @@ int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) ...@@ -174,9 +174,9 @@ int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
kvmppc_set_gpr(vcpu, rt, val); kvmppc_set_gpr(vcpu, rt, val);
break; break;
case SPRN_TLB0CFG: case SPRN_TLB0CFG:
kvmppc_set_gpr(vcpu, rt, vcpu_e500->tlb0cfg); break; kvmppc_set_gpr(vcpu, rt, vcpu->arch.tlbcfg[0]); break;
case SPRN_TLB1CFG: case SPRN_TLB1CFG:
kvmppc_set_gpr(vcpu, rt, vcpu_e500->tlb1cfg); break; kvmppc_set_gpr(vcpu, rt, vcpu->arch.tlbcfg[1]); break;
case SPRN_L1CSR0: case SPRN_L1CSR0:
kvmppc_set_gpr(vcpu, rt, vcpu_e500->l1csr0); break; kvmppc_set_gpr(vcpu, rt, vcpu_e500->l1csr0); break;
case SPRN_L1CSR1: case SPRN_L1CSR1:
...@@ -192,7 +192,7 @@ int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) ...@@ -192,7 +192,7 @@ int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
kvmppc_set_gpr(vcpu, rt, 0); break; kvmppc_set_gpr(vcpu, rt, 0); break;
case SPRN_MMUCFG: case SPRN_MMUCFG:
kvmppc_set_gpr(vcpu, rt, mfspr(SPRN_MMUCFG)); break; kvmppc_set_gpr(vcpu, rt, vcpu->arch.mmucfg); break;
/* extra exceptions */ /* extra exceptions */
case SPRN_IVOR32: case SPRN_IVOR32:
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册