提交 25c26f18 编写于 作者: C Chris Wilson

drm/i915/selftests: Measure dispatch latency

A useful metric of the system's health is how fast we can tell the GPU
to do various actions, so measure our latency.

v2: Refactor all the instruction building into emitters.
v3: Mark the error handling if not perfect, at least consistent.
Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: NMika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200519130802.4067-1-chris@chris-wilson.co.uk
上级 649c10ff
......@@ -24,16 +24,20 @@
#include <linux/prime_numbers.h>
#include <linux/pm_qos.h>
#include <linux/sort.h>
#include "gem/i915_gem_pm.h"
#include "gem/selftests/mock_context.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_user.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_requests.h"
#include "i915_random.h"
#include "i915_selftest.h"
#include "igt_flush_test.h"
#include "igt_live_test.h"
#include "igt_spinner.h"
#include "lib_sw_fence.h"
......@@ -1524,6 +1528,824 @@ struct perf_series {
struct intel_context *ce[];
};
static int cmp_u32(const void *A, const void *B)
{
const u32 *a = A, *b = B;
return *a - *b;
}
static u32 trifilter(u32 *a)
{
u64 sum;
#define TF_COUNT 5
sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
sum = mul_u32_u32(a[2], 2);
sum += a[1];
sum += a[3];
GEM_BUG_ON(sum > U32_MAX);
return sum;
#define TF_BIAS 2
}
static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
{
u64 ns = i915_cs_timestamp_ticks_to_ns(engine->i915, cycles);
return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
}
static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
{
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
*cs++ = offset;
*cs++ = 0;
return cs;
}
static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
{
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset;
*cs++ = 0;
*cs++ = value;
return cs;
}
static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
{
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
mode;
*cs++ = value;
*cs++ = offset;
*cs++ = 0;
return cs;
}
static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
{
return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
}
static void semaphore_set(u32 *sema, u32 value)
{
WRITE_ONCE(*sema, value);
wmb(); /* flush the update to the cache, and beyond */
}
static u32 *hwsp_scratch(const struct intel_context *ce)
{
return memset32(ce->engine->status_page.addr + 1000, 0, 21);
}
static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
{
return (i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(dw));
}
static int measure_semaphore_response(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
struct i915_request *rq;
u32 *cs;
int err;
int i;
/*
* Measure how many cycles it takes for the HW to detect the change
* in a semaphore value.
*
* A: read CS_TIMESTAMP from CPU
* poke semaphore
* B: read CS_TIMESTAMP on GPU
*
* Semaphore latency: B - A
*/
semaphore_set(sema, -1);
rq = i915_request_create(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, offset, 0);
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
cs = emit_store_dw(cs, offset, 0);
}
intel_ring_advance(rq, cs);
i915_request_add(rq);
if (wait_for(READ_ONCE(*sema) == 0, 50)) {
err = -EIO;
goto err;
}
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
preempt_disable();
cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
semaphore_set(sema, i);
preempt_enable();
if (wait_for(READ_ONCE(*sema) == 0, 50)) {
err = -EIO;
goto err;
}
elapsed[i - 1] = sema[i] - cycles;
}
cycles = trifilter(elapsed);
pr_info("%s: semaphore response %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_idle_dispatch(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
u32 *cs;
int err;
int i;
/*
* Measure how long it takes for us to submit a request while the
* engine is idle, but is resting in our context.
*
* A: read CS_TIMESTAMP from CPU
* submit request
* B: read CS_TIMESTAMP on GPU
*
* Submission latency: B - A
*/
for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
struct i915_request *rq;
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
return err;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
preempt_disable();
local_bh_disable();
elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
i915_request_add(rq);
local_bh_enable();
preempt_enable();
}
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 0; i < ARRAY_SIZE(elapsed); i++)
elapsed[i] = sema[i] - elapsed[i];
cycles = trifilter(elapsed);
pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_busy_dispatch(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT + 1], cycles;
u32 *cs;
int err;
int i;
/*
* Measure how long it takes for us to submit a request while the
* engine is busy, polling on a semaphore in our context. With
* direct submission, this will include the cost of a lite restore.
*
* A: read CS_TIMESTAMP from CPU
* submit request
* B: read CS_TIMESTAMP on GPU
*
* Submission latency: B - A
*/
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
err = -EIO;
goto err;
}
preempt_disable();
local_bh_disable();
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
i915_request_add(rq);
local_bh_enable();
semaphore_set(sema, i - 1);
preempt_enable();
}
wait_for(READ_ONCE(sema[i - 1]), 500);
semaphore_set(sema, i - 1);
for (i = 1; i <= TF_COUNT; i++) {
GEM_BUG_ON(sema[i] == -1);
elapsed[i - 1] = sema[i] - elapsed[i];
}
cycles = trifilter(elapsed);
pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
{
const u32 offset =
i915_ggtt_offset(engine->status_page.vma) +
offset_in_page(sema);
struct i915_request *rq;
u32 *cs;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
cs = emit_semaphore_poll(cs, mode, value, offset);
intel_ring_advance(rq, cs);
i915_request_add(rq);
return 0;
}
static int measure_inter_request(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT + 1], cycles;
struct i915_sw_fence *submit;
int i, err;
/*
* Measure how long it takes to advance from one request into the
* next. Between each request we flush the GPU caches to memory,
* update the breadcrumbs, and then invalidate those caches.
* We queue up all the requests to be submitted in one batch so
* it should be one set of contiguous measurements.
*
* A: read CS_TIMESTAMP on GPU
* advance request
* B: read CS_TIMESTAMP on GPU
*
* Request latency: B - A
*/
err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
if (err)
return err;
submit = heap_fence_create(GFP_KERNEL);
if (!submit) {
semaphore_set(sema, 1);
return -ENOMEM;
}
intel_engine_flush_submission(ce->engine);
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct i915_request *rq;
u32 *cs;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_submit;
}
err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
submit,
GFP_KERNEL);
if (err < 0) {
i915_request_add(rq);
goto err_submit;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err_submit;
}
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
i915_request_add(rq);
}
local_bh_disable();
i915_sw_fence_commit(submit);
local_bh_enable();
intel_engine_flush_submission(ce->engine);
heap_fence_put(submit);
semaphore_set(sema, 1);
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[i + 1] - sema[i];
cycles = trifilter(elapsed);
pr_info("%s: inter-request latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err_submit:
i915_sw_fence_commit(submit);
heap_fence_put(submit);
semaphore_set(sema, 1);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_context_switch(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
struct i915_request *fence = NULL;
u32 elapsed[TF_COUNT + 1], cycles;
int i, j, err;
u32 *cs;
/*
* Measure how long it takes to advance from one request in one
* context to a request in another context. This allows us to
* measure how long the context save/restore take, along with all
* the inter-context setup we require.
*
* A: read CS_TIMESTAMP on GPU
* switch context
* B: read CS_TIMESTAMP on GPU
*
* Context switch latency: B - A
*/
err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
if (err)
return err;
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct intel_context *arr[] = {
ce, ce->engine->kernel_context
};
u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
for (j = 0; j < ARRAY_SIZE(arr); j++) {
struct i915_request *rq;
rq = i915_request_create(arr[j]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_fence;
}
if (fence) {
err = i915_request_await_dma_fence(rq,
&fence->fence);
if (err) {
i915_request_add(rq);
goto err_fence;
}
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err_fence;
}
cs = emit_timestamp_store(cs, ce, addr);
addr += sizeof(u32);
intel_ring_advance(rq, cs);
i915_request_put(fence);
fence = i915_request_get(rq);
i915_request_add(rq);
}
}
i915_request_put(fence);
intel_engine_flush_submission(ce->engine);
semaphore_set(sema, 1);
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
cycles = trifilter(elapsed);
pr_info("%s: context switch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err_fence:
i915_request_put(fence);
semaphore_set(sema, 1);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_preemption(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
u32 *cs;
int err;
int i;
/*
* We measure two latencies while triggering preemption. The first
* latency is how long it takes for us to submit a preempting request.
* The second latency is how it takes for us to return from the
* preemption back to the original context.
*
* A: read CS_TIMESTAMP from CPU
* submit preemption
* B: read CS_TIMESTAMP on GPU (in preempting context)
* context switch
* C: read CS_TIMESTAMP on GPU (in original context)
*
* Preemption dispatch latency: B - A
* Preemption switch latency: C - B
*/
if (!intel_engine_has_preemption(ce->engine))
return 0;
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
u32 addr = offset + 2 * i * sizeof(u32);
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, addr, -1);
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
intel_ring_advance(rq, cs);
i915_request_add(rq);
if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
err = -EIO;
goto err;
}
rq = i915_request_create(ce->engine->kernel_context);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 8);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_timestamp_store(cs, ce, addr);
cs = emit_store_dw(cs, offset, i);
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
i915_request_add(rq);
}
if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
err = -EIO;
goto err;
}
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
cycles = trifilter(elapsed);
pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
cycles = trifilter(elapsed);
pr_info("%s: preemption switch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
struct signal_cb {
struct dma_fence_cb base;
bool seen;
};
static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
struct signal_cb *s = container_of(cb, typeof(*s), base);
smp_store_mb(s->seen, true); /* be safe, be strong */
}
static int measure_completion(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
u32 *cs;
int err;
int i;
/*
* Measure how long it takes for the signal (interrupt) to be
* sent from the GPU to be processed by the CPU.
*
* A: read CS_TIMESTAMP on GPU
* signal
* B: read CS_TIMESTAMP from CPU
*
* Completion latency: B - A
*/
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct signal_cb cb = { .seen = false };
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
local_bh_disable();
i915_request_add(rq);
local_bh_enable();
if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
err = -EIO;
goto err;
}
preempt_disable();
semaphore_set(sema, i);
while (!READ_ONCE(cb.seen))
cpu_relax();
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
preempt_enable();
}
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
GEM_BUG_ON(sema[i + 1] == -1);
elapsed[i] = elapsed[i] - sema[i + 1];
}
cycles = trifilter(elapsed);
pr_info("%s: completion latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static void rps_pin(struct intel_gt *gt)
{
/* Pin the frequency to max */
atomic_inc(&gt->rps.num_waiters);
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
mutex_lock(&gt->rps.lock);
intel_rps_set(&gt->rps, gt->rps.max_freq);
mutex_unlock(&gt->rps.lock);
}
static void rps_unpin(struct intel_gt *gt)
{
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
atomic_dec(&gt->rps.num_waiters);
}
static void engine_heartbeat_disable(struct intel_engine_cs *engine)
{
engine->props.heartbeat_interval_ms = 0;
intel_engine_pm_get(engine);
intel_engine_park_heartbeat(engine);
}
static void engine_heartbeat_enable(struct intel_engine_cs *engine)
{
intel_engine_pm_put(engine);
engine->props.heartbeat_interval_ms =
engine->defaults.heartbeat_interval_ms;
}
static int perf_request_latency(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
struct pm_qos_request qos;
int err = 0;
if (INTEL_GEN(i915) < 8) /* per-engine CS timestamp, semaphores */
return 0;
cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
for_each_uabi_engine(engine, i915) {
struct intel_context *ce;
ce = intel_context_create(engine);
if (IS_ERR(ce))
goto out;
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
goto out;
}
engine_heartbeat_disable(engine);
rps_pin(engine->gt);
if (err == 0)
err = measure_semaphore_response(ce);
if (err == 0)
err = measure_idle_dispatch(ce);
if (err == 0)
err = measure_busy_dispatch(ce);
if (err == 0)
err = measure_inter_request(ce);
if (err == 0)
err = measure_context_switch(ce);
if (err == 0)
err = measure_preemption(ce);
if (err == 0)
err = measure_completion(ce);
rps_unpin(engine->gt);
engine_heartbeat_enable(engine);
intel_context_unpin(ce);
intel_context_put(ce);
if (err)
goto out;
}
out:
if (igt_flush_test(i915))
err = -EIO;
cpu_latency_qos_remove_request(&qos);
return err;
}
static int s_sync0(void *arg)
{
struct perf_series *ps = arg;
......@@ -2042,6 +2864,7 @@ static int perf_parallel_engines(void *arg)
int i915_request_perf_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(perf_request_latency),
SUBTEST(perf_series_engines),
SUBTEST(perf_parallel_engines),
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册