devmap.c 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */

/* Devmaps primary use is as a backend map for XDP BPF helper call
 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
 * spent some effort to ensure the datapath with redirect maps does not use
 * any locking. This is a quick note on the details.
 *
 * We have three possible paths to get into the devmap control plane bpf
 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
 * will invoke an update, delete, or lookup operation. To ensure updates and
 * deletes appear atomic from the datapath side xchg() is used to modify the
 * netdev_map array. Then because the datapath does a lookup into the netdev_map
 * array (read-only) from an RCU critical section we use call_rcu() to wait for
 * an rcu grace period before free'ing the old data structures. This ensures the
 * datapath always has a valid copy. However, the datapath does a "flush"
 * operation that pushes any pending packets in the driver outside the RCU
 * critical section. Each bpf_dtab_netdev tracks these pending operations using
 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
 * until all bits are cleared indicating outstanding flush operations have
 * completed.
 *
 * BPF syscalls may race with BPF program calls on any of the update, delete
 * or lookup operations. As noted above the xchg() operation also keep the
 * netdev_map consistent in this case. From the devmap side BPF programs
 * calling into these operations are the same as multiple user space threads
 * making system calls.
37 38 39 40 41 42
 *
 * Finally, any of the above may race with a netdev_unregister notifier. The
 * unregister notifier must search for net devices in the map structure that
 * contain a reference to the net device and remove them. This is a two step
 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
 * check to see if the ifindex is the same as the net_device being removed.
43 44 45 46 47 48
 * When removing the dev a cmpxchg() is used to ensure the correct dev is
 * removed, in the case of a concurrent update or delete operation it is
 * possible that the initially referenced dev is no longer in the map. As the
 * notifier hook walks the map we know that new dev references can not be
 * added by the user because core infrastructure ensures dev_get_by_index()
 * calls will fail at this point.
49 50
 */
#include <linux/bpf.h>
51
#include <net/xdp.h>
52
#include <linux/filter.h>
53
#include <trace/events/xdp.h>
54

55 56 57
#define DEV_CREATE_FLAG_MASK \
	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)

58 59 60
#define DEV_MAP_BULK_SIZE 16
struct xdp_bulk_queue {
	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
61
	struct net_device *dev_rx;
62 63 64
	unsigned int count;
};

65
struct bpf_dtab_netdev {
66
	struct net_device *dev; /* must be first member, due to tracepoint */
67
	struct bpf_dtab *dtab;
68
	unsigned int bit;
69
	struct xdp_bulk_queue __percpu *bulkq;
70
	struct rcu_head rcu;
71 72 73 74 75
};

struct bpf_dtab {
	struct bpf_map map;
	struct bpf_dtab_netdev **netdev_map;
76
	unsigned long __percpu *flush_needed;
77
	struct list_head list;
78 79
};

80
static DEFINE_SPINLOCK(dev_map_lock);
81 82
static LIST_HEAD(dev_map_list);

83 84
static u64 dev_map_bitmap_size(const union bpf_attr *attr)
{
85
	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
86 87
}

88 89 90
static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
{
	struct bpf_dtab *dtab;
91
	int err = -EINVAL;
92 93
	u64 cost;

94 95 96
	if (!capable(CAP_NET_ADMIN))
		return ERR_PTR(-EPERM);

97 98
	/* check sanity of attributes */
	if (attr->max_entries == 0 || attr->key_size != 4 ||
99
	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
100 101 102 103 104 105
		return ERR_PTR(-EINVAL);

	dtab = kzalloc(sizeof(*dtab), GFP_USER);
	if (!dtab)
		return ERR_PTR(-ENOMEM);

106
	bpf_map_init_from_attr(&dtab->map, attr);
107 108 109

	/* make sure page count doesn't overflow */
	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
110
	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
111 112 113 114 115 116 117 118 119 120
	if (cost >= U32_MAX - PAGE_SIZE)
		goto free_dtab;

	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;

	/* if map size is larger than memlock limit, reject it early */
	err = bpf_map_precharge_memlock(dtab->map.pages);
	if (err)
		goto free_dtab;

121 122
	err = -ENOMEM;

123
	/* A per cpu bitfield with a bit per possible net device */
124 125 126
	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
						__alignof__(unsigned long),
						GFP_KERNEL | __GFP_NOWARN);
127 128 129
	if (!dtab->flush_needed)
		goto free_dtab;

130
	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
131 132
					      sizeof(struct bpf_dtab_netdev *),
					      dtab->map.numa_node);
133 134 135
	if (!dtab->netdev_map)
		goto free_dtab;

136 137 138
	spin_lock(&dev_map_lock);
	list_add_tail_rcu(&dtab->list, &dev_map_list);
	spin_unlock(&dev_map_lock);
139

140
	return &dtab->map;
141
free_dtab:
142
	free_percpu(dtab->flush_needed);
143
	kfree(dtab);
144
	return ERR_PTR(err);
145 146 147 148 149
}

static void dev_map_free(struct bpf_map *map)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
150
	int i, cpu;
151 152 153 154 155 156 157 158

	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
	 * so the programs (can be more than one that used this map) were
	 * disconnected from events. Wait for outstanding critical sections in
	 * these programs to complete. The rcu critical section only guarantees
	 * no further reads against netdev_map. It does __not__ ensure pending
	 * flush operations (if any) are complete.
	 */
159 160 161 162 163

	spin_lock(&dev_map_lock);
	list_del_rcu(&dtab->list);
	spin_unlock(&dev_map_lock);

164 165
	synchronize_rcu();

166 167 168 169 170 171 172 173 174
	/* To ensure all pending flush operations have completed wait for flush
	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
	 * Because the above synchronize_rcu() ensures the map is disconnected
	 * from the program we can assume no new bits will be set.
	 */
	for_each_online_cpu(cpu) {
		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);

		while (!bitmap_empty(bitmap, dtab->map.max_entries))
175
			cond_resched();
176 177
	}

178 179 180 181 182 183 184 185 186 187 188
	for (i = 0; i < dtab->map.max_entries; i++) {
		struct bpf_dtab_netdev *dev;

		dev = dtab->netdev_map[i];
		if (!dev)
			continue;

		dev_put(dev->dev);
		kfree(dev);
	}

189
	free_percpu(dtab->flush_needed);
190 191 192 193 194 195 196 197
	bpf_map_area_free(dtab->netdev_map);
	kfree(dtab);
}

static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	u32 index = key ? *(u32 *)key : U32_MAX;
198
	u32 *next = next_key;
199 200 201 202 203 204 205 206 207 208 209 210

	if (index >= dtab->map.max_entries) {
		*next = 0;
		return 0;
	}

	if (index == dtab->map.max_entries - 1)
		return -ENOENT;
	*next = index + 1;
	return 0;
}

211
void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
212 213 214 215
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);

216
	__set_bit(bit, bitmap);
217 218
}

219
static int bq_xmit_all(struct bpf_dtab_netdev *obj,
220 221
		       struct xdp_bulk_queue *bq, u32 flags,
		       bool in_napi_ctx)
222 223
{
	struct net_device *dev = obj->dev;
224
	int sent = 0, drops = 0, err = 0;
225 226 227 228 229 230 231 232 233 234 235
	int i;

	if (unlikely(!bq->count))
		return 0;

	for (i = 0; i < bq->count; i++) {
		struct xdp_frame *xdpf = bq->q[i];

		prefetch(xdpf);
	}

236
	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
237
	if (sent < 0) {
238
		err = sent;
239 240
		sent = 0;
		goto error;
241
	}
242 243
	drops = bq->count - sent;
out:
244 245
	bq->count = 0;

246
	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
247
			      sent, drops, bq->dev_rx, dev, err);
248
	bq->dev_rx = NULL;
249
	return 0;
250 251 252 253 254 255 256 257
error:
	/* If ndo_xdp_xmit fails with an errno, no frames have been
	 * xmit'ed and it's our responsibility to them free all.
	 */
	for (i = 0; i < bq->count; i++) {
		struct xdp_frame *xdpf = bq->q[i];

		/* RX path under NAPI protection, can return frames faster */
258 259 260 261
		if (likely(in_napi_ctx))
			xdp_return_frame_rx_napi(xdpf);
		else
			xdp_return_frame(xdpf);
262 263 264
		drops++;
	}
	goto out;
265 266
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
 * from the driver before returning from its napi->poll() routine. The poll()
 * routine is called either from busy_poll context or net_rx_action signaled
 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
 * is zeroed before completing to ensure all flush operations have completed.
 */
void __dev_map_flush(struct bpf_map *map)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
	u32 bit;

	for_each_set_bit(bit, bitmap, map->max_entries) {
		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
282
		struct xdp_bulk_queue *bq;
283 284 285 286 287 288 289 290

		/* This is possible if the dev entry is removed by user space
		 * between xdp redirect and flush op.
		 */
		if (unlikely(!dev))
			continue;

		__clear_bit(bit, bitmap);
291 292

		bq = this_cpu_ptr(dev->bulkq);
293
		bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
294 295 296
	}
}

297 298 299 300
/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
 * update happens in parallel here a dev_put wont happen until after reading the
 * ifindex.
 */
301
struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
302 303
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
304
	struct bpf_dtab_netdev *obj;
305

306
	if (key >= map->max_entries)
307 308
		return NULL;

309 310 311 312
	obj = READ_ONCE(dtab->netdev_map[key]);
	return obj;
}

313 314 315
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 * Thus, safe percpu variable access.
 */
316 317 318
static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
		      struct net_device *dev_rx)

319 320 321 322
{
	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);

	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
323
		bq_xmit_all(obj, bq, 0, true);
324

325 326 327 328 329 330 331
	/* Ingress dev_rx will be the same for all xdp_frame's in
	 * bulk_queue, because bq stored per-CPU and must be flushed
	 * from net_device drivers NAPI func end.
	 */
	if (!bq->dev_rx)
		bq->dev_rx = dev_rx;

332 333 334 335
	bq->q[bq->count++] = xdpf;
	return 0;
}

336 337
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
		    struct net_device *dev_rx)
338 339 340
{
	struct net_device *dev = dst->dev;
	struct xdp_frame *xdpf;
341
	int err;
342 343 344 345

	if (!dev->netdev_ops->ndo_xdp_xmit)
		return -EOPNOTSUPP;

346 347 348 349
	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
	if (unlikely(err))
		return err;

350 351 352 353
	xdpf = convert_to_xdp_frame(xdp);
	if (unlikely(!xdpf))
		return -EOVERFLOW;

354
	return bq_enqueue(dst, xdpf, dev_rx);
355 356
}

357 358 359 360 361
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
			     struct bpf_prog *xdp_prog)
{
	int err;

362
	err = xdp_ok_fwd_dev(dst->dev, skb->len);
363 364 365 366 367 368 369 370
	if (unlikely(err))
		return err;
	skb->dev = dst->dev;
	generic_xdp_tx(skb, xdp_prog);

	return 0;
}

371 372
static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
{
373
	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
374
	struct net_device *dev = obj ? obj->dev : NULL;
375 376 377 378 379

	return dev ? &dev->ifindex : NULL;
}

static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
380
{
381
	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
382
		struct xdp_bulk_queue *bq;
383
		unsigned long *bitmap;
384

385 386 387
		int cpu;

		for_each_online_cpu(cpu) {
388 389
			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
			__clear_bit(dev->bit, bitmap);
390

391
			bq = per_cpu_ptr(dev->bulkq, cpu);
392
			bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
393 394 395 396
		}
	}
}

397 398
static void __dev_map_entry_free(struct rcu_head *rcu)
{
399
	struct bpf_dtab_netdev *dev;
400

401 402
	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
	dev_map_flush_old(dev);
403
	free_percpu(dev->bulkq);
404 405
	dev_put(dev->dev);
	kfree(dev);
406 407 408 409 410 411 412 413 414 415 416
}

static int dev_map_delete_elem(struct bpf_map *map, void *key)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	struct bpf_dtab_netdev *old_dev;
	int k = *(u32 *)key;

	if (k >= map->max_entries)
		return -EINVAL;

417 418
	/* Use call_rcu() here to ensure any rcu critical sections have
	 * completed, but this does not guarantee a flush has happened
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	 * yet. Because driver side rcu_read_lock/unlock only protects the
	 * running XDP program. However, for pending flush operations the
	 * dev and ctx are stored in another per cpu map. And additionally,
	 * the driver tear down ensures all soft irqs are complete before
	 * removing the net device in the case of dev_put equals zero.
	 */
	old_dev = xchg(&dtab->netdev_map[k], NULL);
	if (old_dev)
		call_rcu(&old_dev->rcu, __dev_map_entry_free);
	return 0;
}

static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
				u64 map_flags)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	struct net *net = current->nsproxy->net_ns;
436
	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
437 438 439 440 441 442 443 444 445 446 447 448 449 450
	struct bpf_dtab_netdev *dev, *old_dev;
	u32 i = *(u32 *)key;
	u32 ifindex = *(u32 *)value;

	if (unlikely(map_flags > BPF_EXIST))
		return -EINVAL;
	if (unlikely(i >= dtab->map.max_entries))
		return -E2BIG;
	if (unlikely(map_flags == BPF_NOEXIST))
		return -EEXIST;

	if (!ifindex) {
		dev = NULL;
	} else {
451
		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
452 453 454
		if (!dev)
			return -ENOMEM;

455 456 457 458 459 460 461
		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
						sizeof(void *), gfp);
		if (!dev->bulkq) {
			kfree(dev);
			return -ENOMEM;
		}

462 463
		dev->dev = dev_get_by_index(net, ifindex);
		if (!dev->dev) {
464
			free_percpu(dev->bulkq);
465 466 467 468
			kfree(dev);
			return -EINVAL;
		}

469
		dev->bit = i;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		dev->dtab = dtab;
	}

	/* Use call_rcu() here to ensure rcu critical sections have completed
	 * Remembering the driver side flush operation will happen before the
	 * net device is removed.
	 */
	old_dev = xchg(&dtab->netdev_map[i], dev);
	if (old_dev)
		call_rcu(&old_dev->rcu, __dev_map_entry_free);

	return 0;
}

const struct bpf_map_ops dev_map_ops = {
	.map_alloc = dev_map_alloc,
	.map_free = dev_map_free,
	.map_get_next_key = dev_map_get_next_key,
	.map_lookup_elem = dev_map_lookup_elem,
	.map_update_elem = dev_map_update_elem,
	.map_delete_elem = dev_map_delete_elem,
};
492 493 494 495 496 497 498 499 500 501

static int dev_map_notification(struct notifier_block *notifier,
				ulong event, void *ptr)
{
	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
	struct bpf_dtab *dtab;
	int i;

	switch (event) {
	case NETDEV_UNREGISTER:
502 503 504 505 506 507 508
		/* This rcu_read_lock/unlock pair is needed because
		 * dev_map_list is an RCU list AND to ensure a delete
		 * operation does not free a netdev_map entry while we
		 * are comparing it against the netdev being unregistered.
		 */
		rcu_read_lock();
		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
509
			for (i = 0; i < dtab->map.max_entries; i++) {
510
				struct bpf_dtab_netdev *dev, *odev;
511

512
				dev = READ_ONCE(dtab->netdev_map[i]);
513 514 515
				if (!dev ||
				    dev->dev->ifindex != netdev->ifindex)
					continue;
516 517
				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
				if (dev == odev)
518 519 520 521
					call_rcu(&dev->rcu,
						 __dev_map_entry_free);
			}
		}
522
		rcu_read_unlock();
523 524 525 526 527 528 529 530 531 532 533 534 535
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block dev_map_notifier = {
	.notifier_call = dev_map_notification,
};

static int __init dev_map_init(void)
{
536 537 538
	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
		     offsetof(struct _bpf_dtab_netdev, dev));
539 540 541 542 543
	register_netdevice_notifier(&dev_map_notifier);
	return 0;
}

subsys_initcall(dev_map_init);