Kconfig 9.9 KB
Newer Older
1
# $Id: Kconfig,v 1.11 2005/11/07 11:14:19 gleixner Exp $
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12

menu "Memory Technology Devices (MTD)"

config MTD
	tristate "Memory Technology Device (MTD) support"
	help
	  Memory Technology Devices are flash, RAM and similar chips, often
	  used for solid state file systems on embedded devices. This option
	  will provide the generic support for MTD drivers to register
	  themselves with the kernel and for potential users of MTD devices
	  to enumerate the devices which are present and obtain a handle on
13
	  them. It will also allow you to select individual drivers for
L
Linus Torvalds 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	  particular hardware and users of MTD devices. If unsure, say N.

config MTD_DEBUG
	bool "Debugging"
	depends on MTD
	help
	  This turns on low-level debugging for the entire MTD sub-system.
	  Normally, you should say 'N'.

config MTD_DEBUG_VERBOSE
	int "Debugging verbosity (0 = quiet, 3 = noisy)"
	depends on MTD_DEBUG
	default "0"
	help
	  Determines the verbosity level of the MTD debugging messages.

config MTD_CONCAT
	tristate "MTD concatenating support"
	depends on MTD
	help
	  Support for concatenating several MTD devices into a single
	  (virtual) one. This allows you to have -for example- a JFFS(2)
	  file system spanning multiple physical flash chips. If unsure,
	  say 'Y'.

config MTD_PARTITIONS
	bool "MTD partitioning support"
	depends on MTD
	help
	  If you have a device which needs to divide its flash chip(s) up
	  into multiple 'partitions', each of which appears to the user as
	  a separate MTD device, you require this option to be enabled. If
	  unsure, say 'Y'.

	  Note, however, that you don't need this option for the DiskOnChip
	  devices. Partitioning on NFTL 'devices' is a different - that's the
	  'normal' form of partitioning used on a block device.

config MTD_REDBOOT_PARTS
	tristate "RedBoot partition table parsing"
	depends on MTD_PARTITIONS
	---help---
	  RedBoot is a ROM monitor and bootloader which deals with multiple
	  'images' in flash devices by putting a table one of the erase
	  blocks on the device, similar to a partition table, which gives
	  the offsets, lengths and names of all the images stored in the
	  flash.

	  If you need code which can detect and parse this table, and register
	  MTD 'partitions' corresponding to each image in the table, enable
64
	  this option.
L
Linus Torvalds 已提交
65 66

	  You will still need the parsing functions to be called by the driver
67 68
	  for your particular device. It won't happen automatically. The
	  SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	  example.

config MTD_REDBOOT_DIRECTORY_BLOCK
	int "Location of RedBoot partition table"
	depends on MTD_REDBOOT_PARTS
	default "-1"
	---help---
	  This option is the Linux counterpart to the
	  CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time
	  option.

	  The option specifies which Flash sectors holds the RedBoot
	  partition table.  A zero or positive value gives an absolete
	  erase block number. A negative value specifies a number of
	  sectors before the end of the device.
84

L
Linus Torvalds 已提交
85 86
	  For example "2" means block number 2, "-1" means the last
	  block and "-2" means the penultimate block.
87

L
Linus Torvalds 已提交
88
config MTD_REDBOOT_PARTS_UNALLOCATED
89
	bool "Include unallocated flash regions"
L
Linus Torvalds 已提交
90 91 92 93 94 95
	depends on MTD_REDBOOT_PARTS
	help
	  If you need to register each unallocated flash region as a MTD
	  'partition', enable this option.

config MTD_REDBOOT_PARTS_READONLY
96
	bool "Force read-only for RedBoot system images"
L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107
	depends on MTD_REDBOOT_PARTS
	help
	  If you need to force read-only for 'RedBoot', 'RedBoot Config' and
	  'FIS directory' images, enable this option.

config MTD_CMDLINE_PARTS
	bool "Command line partition table parsing"
	depends on MTD_PARTITIONS = "y"
	---help---
	  Allow generic configuration of the MTD paritition tables via the kernel
	  command line. Multiple flash resources are supported for hardware where
108
	  different kinds of flash memory are available.
L
Linus Torvalds 已提交
109 110

	  You will still need the parsing functions to be called by the driver
111 112
	  for your particular device. It won't happen automatically. The
	  SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120
	  example.

	  The format for the command line is as follows:

	  mtdparts=<mtddef>[;<mtddef]
	  <mtddef>  := <mtd-id>:<partdef>[,<partdef>]
	  <partdef> := <size>[@offset][<name>][ro]
	  <mtd-id>  := unique id used in mapping driver/device
121
	  <size>    := standard linux memsize OR "-" to denote all
L
Linus Torvalds 已提交
122 123 124
	  remaining space
	  <name>    := (NAME)

125 126
	  Due to the way Linux handles the command line, no spaces are
	  allowed in the partition definition, including mtd id's and partition
L
Linus Torvalds 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	  names.

	  Examples:

	  1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
	  mtdparts=sa1100:-

	  Same flash, but 2 named partitions, the first one being read-only:
	  mtdparts=sa1100:256k(ARMboot)ro,-(root)

	  If unsure, say 'N'.

config MTD_AFS_PARTS
	tristate "ARM Firmware Suite partition parsing"
	depends on ARM && MTD_PARTITIONS
	---help---
	  The ARM Firmware Suite allows the user to divide flash devices into
	  multiple 'images'. Each such image has a header containing its name
	  and offset/size etc.

	  If you need code which can detect and parse these tables, and
	  register MTD 'partitions' corresponding to each image detected,
	  enable this option.

	  You will still need the parsing functions to be called by the driver
	  for your particular device. It won't happen automatically. The
	  'armflash' map driver (CONFIG_MTD_ARMFLASH) does this, for example.

comment "User Modules And Translation Layers"
	depends on MTD

config MTD_CHAR
	tristate "Direct char device access to MTD devices"
	depends on MTD
	help
	  This provides a character device for each MTD device present in
	  the system, allowing the user to read and write directly to the
	  memory chips, and also use ioctl() to obtain information about
	  the device, or to erase parts of it.

config MTD_BLOCK
	tristate "Caching block device access to MTD devices"
	depends on MTD
	---help---
	  Although most flash chips have an erase size too large to be useful
	  as block devices, it is possible to use MTD devices which are based
	  on RAM chips in this manner. This block device is a user of MTD
	  devices performing that function.

	  At the moment, it is also required for the Journalling Flash File
	  System(s) to obtain a handle on the MTD device when it's mounted
	  (although JFFS and JFFS2 don't actually use any of the functionality
	  of the mtdblock device).

	  Later, it may be extended to perform read/erase/modify/write cycles
	  on flash chips to emulate a smaller block size. Needless to say,
	  this is very unsafe, but could be useful for file systems which are
	  almost never written to.

	  You do not need this option for use with the DiskOnChip devices. For
	  those, enable NFTL support (CONFIG_NFTL) instead.

config MTD_BLOCK_RO
	tristate "Readonly block device access to MTD devices"
	depends on MTD_BLOCK!=y && MTD
	help
	  This allows you to mount read-only file systems (such as cramfs)
	  from an MTD device, without the overhead (and danger) of the caching
	  driver.

	  You do not need this option for use with the DiskOnChip devices. For
	  those, enable NFTL support (CONFIG_NFTL) instead.

config FTL
	tristate "FTL (Flash Translation Layer) support"
	depends on MTD
	---help---
	  This provides support for the original Flash Translation Layer which
	  is part of the PCMCIA specification. It uses a kind of pseudo-
	  file system on a flash device to emulate a block device with
	  512-byte sectors, on top of which you put a 'normal' file system.

	  You may find that the algorithms used in this code are patented
	  unless you live in the Free World where software patents aren't
	  legal - in the USA you are only permitted to use this on PCMCIA
	  hardware, although under the terms of the GPL you're obviously
	  permitted to copy, modify and distribute the code as you wish. Just
	  not use it.

config NFTL
	tristate "NFTL (NAND Flash Translation Layer) support"
	depends on MTD
	---help---
	  This provides support for the NAND Flash Translation Layer which is
	  used on M-Systems' DiskOnChip devices. It uses a kind of pseudo-
	  file system on a flash device to emulate a block device with
	  512-byte sectors, on top of which you put a 'normal' file system.

	  You may find that the algorithms used in this code are patented
	  unless you live in the Free World where software patents aren't
	  legal - in the USA you are only permitted to use this on DiskOnChip
	  hardware, although under the terms of the GPL you're obviously
	  permitted to copy, modify and distribute the code as you wish. Just
	  not use it.

config NFTL_RW
	bool "Write support for NFTL"
	depends on NFTL
	help
	  Support for writing to the NAND Flash Translation Layer, as used
	  on the DiskOnChip.

config INFTL
	tristate "INFTL (Inverse NAND Flash Translation Layer) support"
	depends on MTD
	---help---
243
	  This provides support for the Inverse NAND Flash Translation
L
Linus Torvalds 已提交
244 245 246 247 248 249 250 251 252 253 254 255
	  Layer which is used on M-Systems' newer DiskOnChip devices. It
	  uses a kind of pseudo-file system on a flash device to emulate
	  a block device with 512-byte sectors, on top of which you put
	  a 'normal' file system.

	  You may find that the algorithms used in this code are patented
	  unless you live in the Free World where software patents aren't
	  legal - in the USA you are only permitted to use this on DiskOnChip
	  hardware, although under the terms of the GPL you're obviously
	  permitted to copy, modify and distribute the code as you wish. Just
	  not use it.

256 257 258 259
config RFD_FTL
        tristate "Resident Flash Disk (Flash Translation Layer) support"
	depends on MTD
	---help---
260 261
	  This provides support for the flash translation layer known
	  as the Resident Flash Disk (RFD), as used by the Embedded BIOS
262 263 264
	  of General Software. There is a blurb at:

		http://www.gensw.com/pages/prod/bios/rfd.htm
265

L
Linus Torvalds 已提交
266 267 268 269 270 271 272 273
source "drivers/mtd/chips/Kconfig"

source "drivers/mtd/maps/Kconfig"

source "drivers/mtd/devices/Kconfig"

source "drivers/mtd/nand/Kconfig"

274 275
source "drivers/mtd/onenand/Kconfig"

L
Linus Torvalds 已提交
276 277
endmenu