i5000_edac.c 42.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Intel 5000(P/V/X) class Memory Controllers kernel module
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
 *	norsk5@xmission.com
 *
 * This module is based on the following document:
 *
 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
D
Dave Jiang 已提交
22
#include <linux/edac.h>
23 24
#include <asm/mmzone.h>

25
#include "edac_core.h"
26 27 28 29

/*
 * Alter this version for the I5000 module when modifications are made
 */
M
Michal Marek 已提交
30
#define I5000_REVISION    " Ver: 2.0.12"
31
#define EDAC_MOD_STR      "i5000_edac"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

#define i5000_printk(level, fmt, arg...) \
        edac_printk(level, "i5000", fmt, ##arg)

#define i5000_mc_printk(mci, level, fmt, arg...) \
        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)

#ifndef PCI_DEVICE_ID_INTEL_FBD_0
#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
#endif
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
#endif

/* Device 16,
 * Function 0: System Address
 * Function 1: Memory Branch Map, Control, Errors Register
 * Function 2: FSB Error Registers
 *
 * All 3 functions of Device 16 (0,1,2) share the SAME DID
 */
#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0

/* OFFSETS for Function 0 */

/* OFFSETS for Function 1 */
#define		AMBASE			0x48
#define		MAXCH			0x56
#define		MAXDIMMPERCH		0x57
#define		TOLM			0x6C
#define		REDMEMB			0x7C
#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
#define		MIR0			0x80
#define		MIR1			0x84
#define		MIR2			0x88
#define		AMIR0			0x8C
#define		AMIR1			0x90
#define		AMIR2			0x94

#define		FERR_FAT_FBD		0x98
#define		NERR_FAT_FBD		0x9C
#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
#define			FERR_FAT_FBDCHAN 0x30000000
#define			FERR_FAT_M3ERR	0x00000004
#define			FERR_FAT_M2ERR	0x00000002
#define			FERR_FAT_M1ERR	0x00000001
80
#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
						FERR_FAT_M2ERR | \
						FERR_FAT_M3ERR)

#define		FERR_NF_FBD		0xA0

/* Thermal and SPD or BFD errors */
#define			FERR_NF_M28ERR	0x01000000
#define			FERR_NF_M27ERR	0x00800000
#define			FERR_NF_M26ERR	0x00400000
#define			FERR_NF_M25ERR	0x00200000
#define			FERR_NF_M24ERR	0x00100000
#define			FERR_NF_M23ERR	0x00080000
#define			FERR_NF_M22ERR	0x00040000
#define			FERR_NF_M21ERR	0x00020000

/* Correctable errors */
#define			FERR_NF_M20ERR	0x00010000
#define			FERR_NF_M19ERR	0x00008000
#define			FERR_NF_M18ERR	0x00004000
#define			FERR_NF_M17ERR	0x00002000

/* Non-Retry or redundant Retry errors */
#define			FERR_NF_M16ERR	0x00001000
#define			FERR_NF_M15ERR	0x00000800
#define			FERR_NF_M14ERR	0x00000400
#define			FERR_NF_M13ERR	0x00000200

/* Uncorrectable errors */
#define			FERR_NF_M12ERR	0x00000100
#define			FERR_NF_M11ERR	0x00000080
#define			FERR_NF_M10ERR	0x00000040
#define			FERR_NF_M9ERR	0x00000020
#define			FERR_NF_M8ERR	0x00000010
#define			FERR_NF_M7ERR	0x00000008
#define			FERR_NF_M6ERR	0x00000004
#define			FERR_NF_M5ERR	0x00000002
#define			FERR_NF_M4ERR	0x00000001

#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
							FERR_NF_M11ERR | \
							FERR_NF_M10ERR | \
A
Aristeu Rozanski 已提交
122
							FERR_NF_M9ERR | \
123
							FERR_NF_M8ERR | \
124 125 126 127 128 129 130 131 132 133 134
							FERR_NF_M7ERR | \
							FERR_NF_M6ERR | \
							FERR_NF_M5ERR | \
							FERR_NF_M4ERR)
#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
							FERR_NF_M19ERR | \
							FERR_NF_M18ERR | \
							FERR_NF_M17ERR)
#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
							FERR_NF_M28ERR)
#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135
							FERR_NF_M25ERR | \
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
							FERR_NF_M24ERR | \
							FERR_NF_M23ERR)
#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
							FERR_NF_M14ERR | \
							FERR_NF_M15ERR)

#define		NERR_NF_FBD		0xA4
#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
							FERR_NF_CORRECTABLE | \
							FERR_NF_DIMM_SPARE | \
							FERR_NF_THERMAL | \
							FERR_NF_SPD_PROTOCOL | \
							FERR_NF_NORTH_CRC | \
							FERR_NF_NON_RETRY)

#define		EMASK_FBD		0xA8
#define			EMASK_FBD_M28ERR	0x08000000
#define			EMASK_FBD_M27ERR	0x04000000
#define			EMASK_FBD_M26ERR	0x02000000
#define			EMASK_FBD_M25ERR	0x01000000
#define			EMASK_FBD_M24ERR	0x00800000
#define			EMASK_FBD_M23ERR	0x00400000
#define			EMASK_FBD_M22ERR	0x00200000
#define			EMASK_FBD_M21ERR	0x00100000
#define			EMASK_FBD_M20ERR	0x00080000
#define			EMASK_FBD_M19ERR	0x00040000
#define			EMASK_FBD_M18ERR	0x00020000
#define			EMASK_FBD_M17ERR	0x00010000

#define			EMASK_FBD_M15ERR	0x00004000
#define			EMASK_FBD_M14ERR	0x00002000
#define			EMASK_FBD_M13ERR	0x00001000
#define			EMASK_FBD_M12ERR	0x00000800
#define			EMASK_FBD_M11ERR	0x00000400
#define			EMASK_FBD_M10ERR	0x00000200
#define			EMASK_FBD_M9ERR		0x00000100
#define			EMASK_FBD_M8ERR		0x00000080
#define			EMASK_FBD_M7ERR		0x00000040
#define			EMASK_FBD_M6ERR		0x00000020
#define			EMASK_FBD_M5ERR		0x00000010
#define			EMASK_FBD_M4ERR		0x00000008
#define			EMASK_FBD_M3ERR		0x00000004
#define			EMASK_FBD_M2ERR		0x00000002
#define			EMASK_FBD_M1ERR		0x00000001

#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
							EMASK_FBD_M2ERR | \
							EMASK_FBD_M3ERR)

#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
							EMASK_FBD_M5ERR | \
							EMASK_FBD_M6ERR | \
							EMASK_FBD_M7ERR | \
							EMASK_FBD_M8ERR | \
							EMASK_FBD_M9ERR | \
							EMASK_FBD_M10ERR | \
							EMASK_FBD_M11ERR | \
							EMASK_FBD_M12ERR)
#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
							EMASK_FBD_M18ERR | \
							EMASK_FBD_M19ERR | \
							EMASK_FBD_M20ERR)
#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
							EMASK_FBD_M28ERR)
#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
							EMASK_FBD_M25ERR | \
							EMASK_FBD_M24ERR | \
							EMASK_FBD_M23ERR)
#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
							EMASK_FBD_M14ERR | \
							EMASK_FBD_M13ERR)

#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
					ENABLE_EMASK_FBD_NORTH_CRC | \
					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
					ENABLE_EMASK_FBD_THERMALS | \
					ENABLE_EMASK_FBD_DIMM_SPARE | \
					ENABLE_EMASK_FBD_FATAL_ERRORS | \
					ENABLE_EMASK_FBD_CORRECTABLE | \
					ENABLE_EMASK_FBD_UNCORRECTABLE)

#define		ERR0_FBD		0xAC
#define		ERR1_FBD		0xB0
#define		ERR2_FBD		0xB4
#define		MCERR_FBD		0xB8
#define		NRECMEMA		0xBE
#define			NREC_BANK(x)		(((x)>>12) & 0x7)
#define			NREC_RDWR(x)		(((x)>>11) & 1)
#define			NREC_RANK(x)		(((x)>>8) & 0x7)
#define		NRECMEMB		0xC0
#define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			NREC_RAS(x)		((x) & 0x7FFF)
#define		NRECFGLOG		0xC4
#define		NREEECFBDA		0xC8
#define		NREEECFBDB		0xCC
#define		NREEECFBDC		0xD0
#define		NREEECFBDD		0xD4
#define		NREEECFBDE		0xD8
#define		REDMEMA			0xDC
#define		RECMEMA			0xE2
#define			REC_BANK(x)		(((x)>>12) & 0x7)
#define			REC_RDWR(x)		(((x)>>11) & 1)
#define			REC_RANK(x)		(((x)>>8) & 0x7)
#define		RECMEMB			0xE4
#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			REC_RAS(x)		((x) & 0x7FFF)
#define		RECFGLOG		0xE8
#define		RECFBDA			0xEC
#define		RECFBDB			0xF0
#define		RECFBDC			0xF4
#define		RECFBDD			0xF8
#define		RECFBDE			0xFC

/* OFFSETS for Function 2 */

/*
 * Device 21,
 * Function 0: Memory Map Branch 0
 *
 * Device 22,
 * Function 0: Memory Map Branch 1
 */
#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6

#define AMB_PRESENT_0	0x64
#define AMB_PRESENT_1	0x66
#define MTR0		0x80
#define MTR1		0x84
#define MTR2		0x88
#define MTR3		0x8C

#define NUM_MTRS		4
273 274
#define CHANNELS_PER_BRANCH	2
#define MAX_BRANCHES		2
275 276 277 278 279 280 281 282 283

/* Defines to extract the vaious fields from the
 *	MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
284
#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

#ifdef CONFIG_EDAC_DEBUG
static char *numrow_toString[] = {
	"8,192 - 13 rows",
	"16,384 - 14 rows",
	"32,768 - 15 rows",
	"reserved"
};

static char *numcol_toString[] = {
	"1,024 - 10 columns",
	"2,048 - 11 columns",
	"4,096 - 12 columns",
	"reserved"
};
#endif

A
Aristeu Rozanski 已提交
306 307 308
/* enables the report of miscellaneous messages as CE errors - default off */
static int misc_messages;

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/* Enumeration of supported devices */
enum i5000_chips {
	I5000P = 0,
	I5000V = 1,		/* future */
	I5000X = 2		/* future */
};

/* Device name and register DID (Device ID) */
struct i5000_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */
static const struct i5000_dev_info i5000_devs[] = {
	[I5000P] = {
325 326 327
		.ctl_name = "I5000",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
	},
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
};

struct i5000_dimm_info {
	int megabytes;		/* size, 0 means not present  */
	int dual_rank;
};

#define	MAX_CHANNELS	6	/* max possible channels */
#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */

/* driver private data structure */
struct i5000_pvt {
	struct pci_dev *system_address;	/* 16.0 */
	struct pci_dev *branchmap_werrors;	/* 16.1 */
	struct pci_dev *fsb_error_regs;	/* 16.2 */
	struct pci_dev *branch_0;	/* 21.0 */
	struct pci_dev *branch_1;	/* 22.0 */

	u16 tolm;		/* top of low memory */
	u64 ambase;		/* AMB BAR */

	u16 mir0, mir1, mir2;

	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */

	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */

J
Joe Perches 已提交
359
	/* DIMM information matrix, allocating architecture maximums */
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];

	/* Actual values for this controller */
	int maxch;		/* Max channels */
	int maxdimmperch;	/* Max DIMMs per channel */
};

/* I5000 MCH error information retrieved from Hardware */
struct i5000_error_info {

	/* These registers are always read from the MC */
	u32 ferr_fat_fbd;	/* First Errors Fatal */
	u32 nerr_fat_fbd;	/* Next Errors Fatal */
	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */

	/* These registers are input ONLY if there was a Recoverable  Error */
	u32 redmemb;		/* Recoverable Mem Data Error log B */
	u16 recmema;		/* Recoverable Mem Error log A */
	u32 recmemb;		/* Recoverable Mem Error log B */

	/* These registers are input ONLY if there was a
	 * Non-Recoverable Error */
	u16 nrecmema;		/* Non-Recoverable Mem log A */
	u16 nrecmemb;		/* Non-Recoverable Mem log B */

};

388 389
static struct edac_pci_ctl_info *i5000_pci;

390
/*
391 392 393 394 395
 *	i5000_get_error_info	Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
 */
static void i5000_get_error_info(struct mem_ctl_info *mci,
396
				 struct i5000_error_info *info)
397 398 399 400
{
	struct i5000_pvt *pvt;
	u32 value;

401
	pvt = mci->pvt_info;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);

	/* Mask only the bits that the doc says are valid
	 */
	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);

	/* If there is an error, then read in the */
	/* NEXT FATAL error register and the Memory Error Log Register A */
	if (value & FERR_FAT_MASK) {
		info->ferr_fat_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
417
				NERR_FAT_FBD, &info->nerr_fat_fbd);
418
		pci_read_config_word(pvt->branchmap_werrors,
419
				NRECMEMA, &info->nrecmema);
420
		pci_read_config_word(pvt->branchmap_werrors,
421
				NRECMEMB, &info->nrecmemb);
422 423 424

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
425
				FERR_FAT_FBD, value);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	} else {
		info->ferr_fat_fbd = 0;
		info->nerr_fat_fbd = 0;
		info->nrecmema = 0;
		info->nrecmemb = 0;
	}

	/* read in the 1st NON-FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);

	/* If there is an error, then read in the 1st NON-FATAL error
	 * register as well */
	if (value & FERR_NF_MASK) {
		info->ferr_nf_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
443
				NERR_NF_FBD, &info->nerr_nf_fbd);
444
		pci_read_config_word(pvt->branchmap_werrors,
445
				RECMEMA, &info->recmema);
446
		pci_read_config_dword(pvt->branchmap_werrors,
447
				RECMEMB, &info->recmemb);
448
		pci_read_config_dword(pvt->branchmap_werrors,
449
				REDMEMB, &info->redmemb);
450 451 452

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
453
				FERR_NF_FBD, value);
454 455 456 457 458 459 460 461 462
	} else {
		info->ferr_nf_fbd = 0;
		info->nerr_nf_fbd = 0;
		info->recmema = 0;
		info->recmemb = 0;
		info->redmemb = 0;
	}
}

463
/*
464 465 466 467 468 469 470
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 * 					struct i5000_error_info *info,
 * 					int handle_errors);
 *
 *	handle the Intel FATAL errors, if any
 */
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
471
					struct i5000_error_info *info,
472
					int handle_errors)
473
{
A
Aristeu Rozanski 已提交
474 475
	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
	char *specific = NULL;
476 477 478 479 480 481 482 483 484 485 486 487
	u32 allErrors;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

488
	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489 490 491 492 493 494 495 496

	/* Use the NON-Recoverable macros to extract data */
	bank = NREC_BANK(info->nrecmema);
	rank = NREC_RANK(info->nrecmema);
	rdwr = NREC_RDWR(info->nrecmema);
	ras = NREC_RAS(info->nrecmemb);
	cas = NREC_CAS(info->nrecmemb);

497 498 499
	debugf0("\t\tCSROW= %d  Channel= %d "
		"(DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
		rank, channel, bank,
500 501 502
		rdwr ? "Write" : "Read", ras, cas);

	/* Only 1 bit will be on */
A
Aristeu Rozanski 已提交
503 504 505 506 507 508 509 510 511 512
	switch (allErrors) {
	case FERR_FAT_M1ERR:
		specific = "Alert on non-redundant retry or fast "
				"reset timeout";
		break;
	case FERR_FAT_M2ERR:
		specific = "Northbound CRC error on non-redundant "
				"retry";
		break;
	case FERR_FAT_M3ERR:
A
Aristeu Rozanski 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526
		{
		static int done;

		/*
		 * This error is generated to inform that the intelligent
		 * throttling is disabled and the temperature passed the
		 * specified middle point. Since this is something the BIOS
		 * should take care of, we'll warn only once to avoid
		 * worthlessly flooding the log.
		 */
		if (done)
			return;
		done++;

A
Aristeu Rozanski 已提交
527
		specific = ">Tmid Thermal event with intelligent "
A
Aristeu Rozanski 已提交
528 529
			   "throttling disabled";
		}
A
Aristeu Rozanski 已提交
530
		break;
531 532 533 534
	}

	/* Form out message */
	snprintf(msg, sizeof(msg),
535 536
		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
		 bank, ras, cas, allErrors, specific);
537 538

	/* Call the helper to output message */
539
	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 0, 0, 0,
540
			     channel >> 1, channel & 1, rank,
541 542
			     rdwr ? "Write error" : "Read error",
			     msg, NULL);
543 544
}

545
/*
546
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547 548
 * 				struct i5000_error_info *info,
 * 				int handle_errors);
549 550 551 552
 *
 *	handle the Intel NON-FATAL errors, if any
 */
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
553
					struct i5000_error_info *info,
554
					int handle_errors)
555
{
A
Aristeu Rozanski 已提交
556 557
	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
	char *specific = NULL;
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	u32 allErrors;
	u32 ue_errors;
	u32 ce_errors;
	u32 misc_errors;
	int branch;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

	/* ONLY ONE of the possible error bits will be set, as per the docs */
	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
	if (ue_errors) {
		debugf0("\tUncorrected bits= 0x%x\n", ue_errors);

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
580 581 582 583 584 585 586

		/*
		 * According with i5000 datasheet, bit 28 has no significance
		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
		 */
		channel = branch & 2;

587 588 589 590 591 592 593
		bank = NREC_BANK(info->nrecmema);
		rank = NREC_RANK(info->nrecmema);
		rdwr = NREC_RDWR(info->nrecmema);
		ras = NREC_RAS(info->nrecmemb);
		cas = NREC_CAS(info->nrecmemb);

		debugf0
594 595 596 597
			("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			rank, channel, channel + 1, branch >> 1, bank,
			rdwr ? "Write" : "Read", ras, cas);
598

A
Aristeu Rozanski 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		switch (ue_errors) {
		case FERR_NF_M12ERR:
			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M11ERR:
			specific = "Non-Aliased Uncorrectable Spare-Copy "
					"Data ECC";
			break;
		case FERR_NF_M10ERR:
			specific = "Non-Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M9ERR:
			specific = "Non-Aliased Uncorrectable Non-Mirrored "
					"Demand Data ECC";
			break;
		case FERR_NF_M8ERR:
			specific = "Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M7ERR:
			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
			break;
		case FERR_NF_M6ERR:
			specific = "Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M5ERR:
			specific = "Aliased Uncorrectable Non-Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M4ERR:
			specific = "Uncorrectable Data ECC on Replay";
			break;
		}

634 635
		/* Form out message */
		snprintf(msg, sizeof(msg),
636 637
			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
			 rank, bank, ras, cas, ue_errors, specific);
638 639

		/* Call the helper to output message */
640 641 642 643
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 0, 0, 0,
				channel >> 1, -1, rank,
				rdwr ? "Write error" : "Read error",
				msg, NULL);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	}

	/* Check correctable errors */
	ce_errors = allErrors & FERR_NF_CORRECTABLE;
	if (ce_errors) {
		debugf0("\tCorrected bits= 0x%x\n", ce_errors);

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);

		channel = 0;
		if (REC_ECC_LOCATOR_ODD(info->redmemb))
			channel = 1;

		/* Convert channel to be based from zero, instead of
		 * from branch base of 0 */
		channel += branch;

		bank = REC_BANK(info->recmema);
		rank = REC_RANK(info->recmema);
		rdwr = REC_RDWR(info->recmema);
		ras = REC_RAS(info->recmemb);
		cas = REC_CAS(info->recmemb);

		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			rank, channel, branch >> 1, bank,
			rdwr ? "Write" : "Read", ras, cas);

A
Aristeu Rozanski 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		switch (ce_errors) {
		case FERR_NF_M17ERR:
			specific = "Correctable Non-Mirrored Demand Data ECC";
			break;
		case FERR_NF_M18ERR:
			specific = "Correctable Mirrored Demand Data ECC";
			break;
		case FERR_NF_M19ERR:
			specific = "Correctable Spare-Copy Data ECC";
			break;
		case FERR_NF_M20ERR:
			specific = "Correctable Patrol Data ECC";
			break;
		}

687 688
		/* Form out message */
		snprintf(msg, sizeof(msg),
689
			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
A
Aristeu Rozanski 已提交
690 691 692
			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
			 specific);
693 694

		/* Call the helper to output message */
695 696 697 698
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
				channel >> 1, channel % 2, rank,
				rdwr ? "Write error" : "Read error",
				msg, NULL);
699 700
	}

A
Aristeu Rozanski 已提交
701 702
	if (!misc_messages)
		return;
703

A
Aristeu Rozanski 已提交
704 705
	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
706
	if (misc_errors) {
A
Aristeu Rozanski 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		switch (misc_errors) {
		case FERR_NF_M13ERR:
			specific = "Non-Retry or Redundant Retry FBD Memory "
					"Alert or Redundant Fast Reset Timeout";
			break;
		case FERR_NF_M14ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Configuration Alert";
			break;
		case FERR_NF_M15ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Northbound CRC error on read data";
			break;
		case FERR_NF_M21ERR:
			specific = "FBD Northbound CRC error on "
					"FBD Sync Status";
			break;
		case FERR_NF_M22ERR:
			specific = "SPD protocol error";
			break;
		case FERR_NF_M27ERR:
			specific = "DIMM-spare copy started";
			break;
		case FERR_NF_M28ERR:
			specific = "DIMM-spare copy completed";
			break;
		}
		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
735

A
Aristeu Rozanski 已提交
736 737
		/* Form out message */
		snprintf(msg, sizeof(msg),
738
			 "Err=%#x (%s)", misc_errors, specific);
739

A
Aristeu Rozanski 已提交
740
		/* Call the helper to output message */
741 742 743
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
				branch >> 1, -1, -1,
				"Misc error", msg, NULL);
744 745 746
	}
}

747
/*
748 749 750 751
 *	i5000_process_error_info	Process the error info that is
 *	in the 'info' structure, previously retrieved from hardware
 */
static void i5000_process_error_info(struct mem_ctl_info *mci,
752
				struct i5000_error_info *info,
753
				int handle_errors)
754 755 756 757 758 759 760 761
{
	/* First handle any fatal errors that occurred */
	i5000_process_fatal_error_info(mci, info, handle_errors);

	/* now handle any non-fatal errors that occurred */
	i5000_process_nonfatal_error_info(mci, info, handle_errors);
}

762
/*
763 764 765 766 767 768 769 770 771 772 773 774
 *	i5000_clear_error	Retrieve any error from the hardware
 *				but do NOT process that error.
 *				Used for 'clearing' out of previous errors
 *				Called by the Core module.
 */
static void i5000_clear_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;

	i5000_get_error_info(mci, &info);
}

775
/*
776 777 778 779 780 781
 *	i5000_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i5000_check_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;
782
	debugf4("MC%d\n", mci->mc_idx);
783 784 785 786
	i5000_get_error_info(mci, &info);
	i5000_process_error_info(mci, &info, 1);
}

787
/*
788 789 790 791 792 793 794 795 796 797 798
 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
	struct i5000_pvt *pvt;
	struct pci_dev *pdev;

799
	pvt = mci->pvt_info;
800 801 802 803 804

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
805
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
806 807 808 809

		/* End of list, leave */
		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
810 811 812 813 814 815
				"'system address,Process Bus' "
				"device not found:"
				"vendor 0x%x device 0x%x FUNC 1 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 1)
			break;
	}

	pvt->branchmap_werrors = pdev;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
831
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
832 833 834

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
835 836 837 838 839 840
				"MC: 'branchmap,control,errors' "
				"device not found:"
				"vendor 0x%x device 0x%x Func 2 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

			pci_dev_put(pvt->branchmap_werrors);
			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 2)
			break;
	}

	pvt->fsb_error_regs = pdev;

	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
		pci_name(pvt->system_address),
		pvt->system_address->vendor, pvt->system_address->device);
	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
		pci_name(pvt->branchmap_werrors),
		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
		pci_name(pvt->fsb_error_regs),
		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);

	pdev = NULL;
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
865
			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
866 867 868

	if (pdev == NULL) {
		i5000_printk(KERN_ERR,
869 870 871
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
872 873 874 875 876 877 878 879 880 881 882 883 884 885

		pci_dev_put(pvt->branchmap_werrors);
		pci_dev_put(pvt->fsb_error_regs);
		return 1;
	}

	pvt->branch_0 = pdev;

	/* If this device claims to have more than 2 channels then
	 * fetch Branch 1's information
	 */
	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
		pdev = NULL;
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
886
				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
887 888 889

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
890 891 892 893 894
				"MC: 'BRANCH 1' device not found:"
				"vendor 0x%x device 0x%x Func 0 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_I5000_BRANCH_1);
895 896 897 898 899 900 901 902 903 904 905 906 907

			pci_dev_put(pvt->branchmap_werrors);
			pci_dev_put(pvt->fsb_error_regs);
			pci_dev_put(pvt->branch_0);
			return 1;
		}

		pvt->branch_1 = pdev;
	}

	return 0;
}

908
/*
909 910 911 912 913 914 915
 *	i5000_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i5000_put_devices(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;

916
	pvt = mci->pvt_info;
917 918 919 920 921 922

	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
	pci_dev_put(pvt->branch_0);	/* DEV 21 */

	/* Only if more than 2 channels do we release the second branch */
923
	if (pvt->maxch >= CHANNELS_PER_BRANCH)
924 925 926
		pci_dev_put(pvt->branch_1);	/* DEV 22 */
}

927
/*
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
 *	determine_amb_resent
 *
 *		the information is contained in NUM_MTRS different registers
 *		determineing which of the NUM_MTRS requires knowing
 *		which channel is in question
 *
 *	2 branches, each with 2 channels
 *		b0_ambpresent0 for channel '0'
 *		b0_ambpresent1 for channel '1'
 *		b1_ambpresent0 for channel '2'
 *		b1_ambpresent1 for channel '3'
 */
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
{
	int amb_present;

	if (channel < CHANNELS_PER_BRANCH) {
		if (channel & 0x1)
			amb_present = pvt->b0_ambpresent1;
		else
			amb_present = pvt->b0_ambpresent0;
	} else {
		if (channel & 0x1)
			amb_present = pvt->b1_ambpresent1;
		else
			amb_present = pvt->b1_ambpresent0;
	}

	return amb_present;
}

959
/*
960 961 962 963
 * determine_mtr(pvt, csrow, channel)
 *
 *	return the proper MTR register as determine by the csrow and channel desired
 */
964
static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
965 966 967 968
{
	int mtr;

	if (channel < CHANNELS_PER_BRANCH)
969
		mtr = pvt->b0_mtr[slot];
970
	else
971
		mtr = pvt->b1_mtr[slot];
972 973 974 975

	return mtr;
}

976
/*
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
 */
static void decode_mtr(int slot_row, u16 mtr)
{
	int ans;

	ans = MTR_DIMMS_PRESENT(mtr);

	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
		ans ? "Present" : "NOT Present");
	if (!ans)
		return;

	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
}

996
static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
997
			struct i5000_dimm_info *dinfo)
998 999 1000 1001 1002
{
	int mtr;
	int amb_present_reg;
	int addrBits;

1003
	mtr = determine_mtr(pvt, slot, channel);
1004 1005 1006
	if (MTR_DIMMS_PRESENT(mtr)) {
		amb_present_reg = determine_amb_present_reg(pvt, channel);

1007 1008
		/* Determine if there is a DIMM present in this DIMM slot */
		if (amb_present_reg) {
1009 1010
			dinfo->dual_rank = MTR_DIMM_RANK(mtr);

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			/* Start with the number of bits for a Bank
				* on the DRAM */
			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
			/* Add the number of ROW bits */
			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
			/* add the number of COLUMN bits */
			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);

			addrBits += 6;	/* add 64 bits per DIMM */
			addrBits -= 20;	/* divide by 2^^20 */
			addrBits -= 3;	/* 8 bits per bytes */

			dinfo->megabytes = 1 << addrBits;
1024 1025 1026 1027
		}
	}
}

1028
/*
1029 1030 1031 1032 1033 1034 1035 1036
 *	calculate_dimm_size
 *
 *	also will output a DIMM matrix map, if debug is enabled, for viewing
 *	how the DIMMs are populated
 */
static void calculate_dimm_size(struct i5000_pvt *pvt)
{
	struct i5000_dimm_info *dinfo;
1037
	int slot, channel, branch;
1038 1039 1040 1041 1042 1043 1044 1045
	char *p, *mem_buffer;
	int space, n;

	/* ================= Generate some debug output ================= */
	space = PAGE_SIZE;
	mem_buffer = p = kmalloc(space, GFP_KERNEL);
	if (p == NULL) {
		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046
			__FILE__, __func__);
1047 1048 1049
		return;
	}

1050
	/* Scan all the actual slots
1051
	 * and calculate the information for each DIMM
1052 1053
	 * Start with the highest slot first, to display it first
	 * and work toward the 0th slot
1054
	 */
1055
	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056

1057
		/* on an odd slot, first output a 'boundary' marker,
1058
		 * then reset the message buffer  */
1059 1060
		if (slot & 0x1) {
			n = snprintf(p, space, "--------------------------"
1061
				"--------------------------------");
1062 1063 1064 1065 1066 1067
			p += n;
			space -= n;
			debugf2("%s\n", mem_buffer);
			p = mem_buffer;
			space = PAGE_SIZE;
		}
1068
		n = snprintf(p, space, "slot %2d    ", slot);
1069 1070 1071 1072
		p += n;
		space -= n;

		for (channel = 0; channel < pvt->maxch; channel++) {
1073 1074 1075 1076 1077 1078 1079
			dinfo = &pvt->dimm_info[slot][channel];
			handle_channel(pvt, slot, channel, dinfo);
			if (dinfo->megabytes)
				n = snprintf(p, space, "%4d MB %dR| ",
					     dinfo->megabytes, dinfo->dual_rank + 1);
			else
				n = snprintf(p, space, "%4d MB   | ", 0);
1080 1081 1082 1083 1084
			p += n;
			space -= n;
		}
		p += n;
		space -= n;
1085 1086 1087
		debugf2("%s\n", mem_buffer);
		p = mem_buffer;
		space = PAGE_SIZE;
1088 1089 1090
	}

	/* Output the last bottom 'boundary' marker */
1091 1092
	n = snprintf(p, space, "--------------------------"
		"--------------------------------");
1093 1094
	p += n;
	space -= n;
1095 1096 1097
	debugf2("%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;
1098 1099

	/* now output the 'channel' labels */
1100
	n = snprintf(p, space, "           ");
1101 1102 1103 1104 1105 1106 1107
	p += n;
	space -= n;
	for (channel = 0; channel < pvt->maxch; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}
1108 1109 1110 1111 1112
	debugf2("%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;

	n = snprintf(p, space, "           ");
1113
	p += n;
1114 1115 1116 1117 1118
	for (branch = 0; branch < MAX_BRANCHES; branch++) {
		n = snprintf(p, space, "       branch %d       | ", branch);
		p += n;
		space -= n;
	}
1119 1120 1121 1122 1123 1124

	/* output the last message and free buffer */
	debugf2("%s\n", mem_buffer);
	kfree(mem_buffer);
}

1125
/*
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
 *	i5000_get_mc_regs	read in the necessary registers and
 *				cache locally
 *
 *			Fills in the private data members
 */
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 actual_tolm;
	u16 limit;
	int slot_row;
	int maxch;
	int maxdimmperch;
	int way0, way1;

1141
	pvt = mci->pvt_info;
1142 1143

	pci_read_config_dword(pvt->system_address, AMBASE,
1144
			(u32 *) & pvt->ambase);
1145
	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1146
			((u32 *) & pvt->ambase) + sizeof(u32));
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	maxdimmperch = pvt->maxdimmperch;
	maxch = pvt->maxch;

	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);

	/* Get the Branch Map regs */
	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
	pvt->tolm >>= 12;
	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
		pvt->tolm);

	actual_tolm = pvt->tolm << 28;
	debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);

	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);

	/* Get the MIR[0-2] regs */
	limit = (pvt->mir0 >> 4) & 0x0FFF;
	way0 = pvt->mir0 & 0x1;
	way1 = pvt->mir0 & 0x2;
	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
	limit = (pvt->mir1 >> 4) & 0x0FFF;
	way0 = pvt->mir1 & 0x1;
	way1 = pvt->mir1 & 0x2;
	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
	limit = (pvt->mir2 >> 4) & 0x0FFF;
	way0 = pvt->mir2 & 0x1;
	way1 = pvt->mir2 & 0x2;
	debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);

	/* Get the MTR[0-3] regs */
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		int where = MTR0 + (slot_row * sizeof(u32));

		pci_read_config_word(pvt->branch_0, where,
1186
				&pvt->b0_mtr[slot_row]);
1187 1188 1189 1190 1191 1192

		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
			pvt->b0_mtr[slot_row]);

		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
			pci_read_config_word(pvt->branch_1, where,
1193
					&pvt->b1_mtr[slot_row]);
1194
			debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1195
				where, pvt->b1_mtr[slot_row]);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		} else {
			pvt->b1_mtr[slot_row] = 0;
		}
	}

	/* Read and dump branch 0's MTRs */
	debugf2("\nMemory Technology Registers:\n");
	debugf2("   Branch 0:\n");
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
	}
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1208
			&pvt->b0_ambpresent0);
1209 1210
	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1211
			&pvt->b0_ambpresent1);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);

	/* Only if we have 2 branchs (4 channels) */
	if (pvt->maxch < CHANNELS_PER_BRANCH) {
		pvt->b1_ambpresent0 = 0;
		pvt->b1_ambpresent1 = 0;
	} else {
		/* Read and dump  branch 1's MTRs */
		debugf2("   Branch 1:\n");
		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
		}
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1225
				&pvt->b1_ambpresent0);
1226 1227 1228
		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
			pvt->b1_ambpresent0);
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1229
				&pvt->b1_ambpresent1);
1230 1231 1232 1233 1234 1235 1236 1237 1238
		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
			pvt->b1_ambpresent1);
	}

	/* Go and determine the size of each DIMM and place in an
	 * orderly matrix */
	calculate_dimm_size(pvt);
}

1239
/*
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
 *	i5000_init_csrows	Initialize the 'csrows' table within
 *				the mci control	structure with the
 *				addressing of memory.
 *
 *	return:
 *		0	success
 *		1	no actual memory found on this MC
 */
static int i5000_init_csrows(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
1251
	struct dimm_info *dimm;
1252 1253
	int empty, channel_count;
	int max_csrows;
1254
	int mtr;
1255 1256
	int csrow_megs;
	int channel;
1257
	int slot;
1258

1259
	pvt = mci->pvt_info;
1260 1261 1262 1263 1264 1265

	channel_count = pvt->maxch;
	max_csrows = pvt->maxdimmperch * 2;

	empty = 1;		/* Assume NO memory */

1266
	/*
1267 1268 1269 1270 1271
	 * FIXME: The memory layout used to map slot/channel into the
	 * real memory architecture is weird: branch+slot are "csrows"
	 * and channel is channel. That required an extra array (dimm_info)
	 * to map the dimms. A good cleanup would be to remove this array,
	 * and do a loop here with branch, channel, slot
1272
	 */
1273 1274
	for (slot = 0; slot < max_csrows; slot++) {
		for (channel = 0; channel < pvt->maxch; channel++) {
1275

1276
			mtr = determine_mtr(pvt, slot, channel);
1277

1278 1279
			if (!MTR_DIMMS_PRESENT(mtr))
				continue;
1280

1281 1282 1283
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       channel / MAX_BRANCHES,
				       channel % MAX_BRANCHES, slot);
1284

1285
			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1286
			dimm->grain = 8;
1287

1288
			/* Assume DDR2 for now */
1289
			dimm->mtype = MEM_FB_DDR2;
1290

1291 1292
			/* ask what device type on this row */
			if (MTR_DRAM_WIDTH(mtr))
1293
				dimm->dtype = DEV_X8;
1294
			else
1295
				dimm->dtype = DEV_X4;
1296

1297
			dimm->edac_mode = EDAC_S8ECD8ED;
1298
			dimm->nr_pages = csrow_megs << 8;
1299
		}
1300 1301 1302 1303 1304 1305 1306

		empty = 0;
	}

	return empty;
}

1307
/*
1308 1309 1310 1311 1312 1313 1314 1315
 *	i5000_enable_error_reporting
 *			Turn on the memory reporting features of the hardware
 */
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 fbd_error_mask;

1316
	pvt = mci->pvt_info;
1317 1318 1319

	/* Read the FBD Error Mask Register */
	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1320
			&fbd_error_mask);
1321 1322 1323 1324 1325

	/* Enable with a '0' */
	fbd_error_mask &= ~(ENABLE_EMASK_ALL);

	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1326
			fbd_error_mask);
1327 1328
}

1329
/*
1330
 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1331 1332 1333 1334 1335
 *
 *	ask the device how many channels are present and how many CSROWS
 *	 as well
 */
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1336 1337
					int *num_dimms_per_channel,
					int *num_channels)
1338 1339 1340 1341 1342 1343 1344
{
	u8 value;

	/* Need to retrieve just how many channels and dimms per channel are
	 * supported on this memory controller
	 */
	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1345
	*num_dimms_per_channel = (int)value;
1346 1347 1348 1349 1350

	pci_read_config_byte(pdev, MAXCH, &value);
	*num_channels = (int)value;
}

1351
/*
1352 1353 1354 1355 1356 1357 1358 1359 1360
 *	i5000_probe1	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
{
	struct mem_ctl_info *mci;
1361
	struct edac_mc_layer layers[3];
1362 1363 1364 1365
	struct i5000_pvt *pvt;
	int num_channels;
	int num_dimms_per_channel;

1366 1367
	debugf0("MC: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
		__FILE__, pdev->bus->number,
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));

	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;

	/* Ask the devices for the number of CSROWS and CHANNELS so
	 * that we can calculate the memory resources, etc
	 *
	 * The Chipset will report what it can handle which will be greater
	 * or equal to what the motherboard manufacturer will implement.
	 *
	 * As we don't have a motherboard identification routine to determine
	 * actual number of slots/dimms per channel, we thus utilize the
	 * resource as specified by the chipset. Thus, we might have
	 * have more DIMMs per channel than actually on the mobo, but this
L
Lucas De Marchi 已提交
1384
	 * allows the driver to support up to the chipset max, without
1385 1386 1387
	 * some fancy mobo determination.
	 */
	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1388
					&num_channels);
1389

1390 1391
	debugf0("MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
		num_channels, num_dimms_per_channel);
1392 1393

	/* allocate a new MC control structure */
1394

1395
	layers[0].type = EDAC_MC_LAYER_BRANCH;
1396 1397
	layers[0].size = MAX_BRANCHES;
	layers[0].is_virt_csrow = false;
1398
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1399
	layers[1].size = num_channels / MAX_BRANCHES;
1400 1401 1402 1403
	layers[1].is_virt_csrow = false;
	layers[2].type = EDAC_MC_LAYER_SLOT;
	layers[2].size = num_dimms_per_channel;
	layers[2].is_virt_csrow = true;
1404
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1405 1406 1407
	if (mci == NULL)
		return -ENOMEM;

1408
	debugf0("MC: %s(): mci = %p\n", __FILE__, mci);
1409

1410
	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1411

1412
	pvt = mci->pvt_info;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	pvt->system_address = pdev;	/* Record this device in our private */
	pvt->maxch = num_channels;
	pvt->maxdimmperch = num_dimms_per_channel;

	/* 'get' the pci devices we want to reserve for our use */
	if (i5000_get_devices(mci, dev_idx))
		goto fail0;

	/* Time to get serious */
	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */

	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i5000_edac.c";
	mci->mod_ver = I5000_REVISION;
	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1431
	mci->dev_name = pci_name(pdev);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = i5000_check_error;

	/* initialize the MC control structure 'csrows' table
	 * with the mapping and control information */
	if (i5000_init_csrows(mci)) {
		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
			"    because i5000_init_csrows() returned nonzero "
			"value\n");
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
		debugf1("MC: Enable error reporting now\n");
		i5000_enable_error_reporting(mci);
	}

	/* add this new MC control structure to EDAC's list of MCs */
1450
	if (edac_mc_add_mc(mci)) {
1451 1452
		debugf0("MC: %s(): failed edac_mc_add_mc()\n",
			__FILE__);
1453 1454 1455 1456 1457 1458 1459 1460
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
		goto fail1;
	}

	i5000_clear_error(mci);

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	/* allocating generic PCI control info */
	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i5000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1472 1473 1474
	return 0;

	/* Error exit unwinding stack */
1475
fail1:
1476 1477 1478

	i5000_put_devices(mci);

1479
fail0:
1480 1481 1482 1483
	edac_mc_free(mci);
	return -ENODEV;
}

1484
/*
1485 1486 1487 1488 1489 1490 1491
 *	i5000_init_one	constructor for one instance of device
 *
 * 	returns:
 *		negative on error
 *		count (>= 0)
 */
static int __devinit i5000_init_one(struct pci_dev *pdev,
1492
				const struct pci_device_id *id)
1493 1494 1495
{
	int rc;

1496
	debugf0("MC: %s()\n", __FILE__);
1497 1498 1499

	/* wake up device */
	rc = pci_enable_device(pdev);
1500
	if (rc)
1501 1502 1503 1504 1505 1506
		return rc;

	/* now probe and enable the device */
	return i5000_probe1(pdev, id->driver_data);
}

1507
/*
1508 1509 1510 1511 1512 1513 1514
 *	i5000_remove_one	destructor for one instance of device
 *
 */
static void __devexit i5000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

1515
	debugf0("%s()\n", __FILE__);
1516

1517 1518 1519
	if (i5000_pci)
		edac_pci_release_generic_ctl(i5000_pci);

1520 1521 1522 1523 1524 1525 1526 1527
	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
		return;

	/* retrieve references to resources, and free those resources */
	i5000_put_devices(mci);
	edac_mc_free(mci);
}

1528
/*
1529 1530 1531 1532
 *	pci_device_id	table for which devices we are looking for
 *
 *	The "E500P" device is the first device supported.
 */
1533
static DEFINE_PCI_DEVICE_TABLE(i5000_pci_tbl) = {
1534 1535 1536 1537 1538 1539 1540 1541
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
	 .driver_data = I5000P},

	{0,}			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);

1542
/*
1543 1544 1545 1546
 *	i5000_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i5000_driver = {
1547
	.name = KBUILD_BASENAME,
1548 1549 1550 1551 1552
	.probe = i5000_init_one,
	.remove = __devexit_p(i5000_remove_one),
	.id_table = i5000_pci_tbl,
};

1553
/*
1554 1555 1556 1557 1558 1559 1560
 *	i5000_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i5000_init(void)
{
	int pci_rc;

1561
	debugf2("MC: %s()\n", __FILE__);
1562

1563 1564 1565
       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
       opstate_init();

1566 1567 1568 1569 1570
	pci_rc = pci_register_driver(&i5000_driver);

	return (pci_rc < 0) ? pci_rc : 0;
}

1571
/*
1572 1573 1574 1575 1576
 *	i5000_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i5000_exit(void)
{
1577
	debugf2("MC: %s()\n", __FILE__);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	pci_unregister_driver(&i5000_driver);
}

module_init(i5000_init);
module_exit(i5000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR
    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1588
		I5000_REVISION);
1589

D
Dave Jiang 已提交
1590 1591
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
A
Aristeu Rozanski 已提交
1592 1593 1594
module_param(misc_messages, int, 0444);
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");