tlb_uv.c 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
#include <linux/mc146818rtc.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
#include <asm/idle.h>
#include <asm/genapic.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_bau.h>
19
#include <asm/tsc.h>
20

21 22 23 24 25 26
#include <mach_apic.h>

static struct bau_control **uv_bau_table_bases __read_mostly;
static int uv_bau_retry_limit __read_mostly;
static int uv_nshift __read_mostly; /* position of pnode (which is nasid>>1) */
static unsigned long uv_mmask __read_mostly;
27

28 29
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
30 31 32 33 34 35 36 37 38

/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
39
static void uv_reply_to_message(int resource,
40 41 42
		    struct bau_payload_queue_entry *msg,
		    struct bau_msg_status *msp)
{
43
	unsigned long dw;
44

45
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
46 47 48 49
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
50
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
51 52 53 54 55 56
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
57
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
58 59 60 61 62 63 64 65 66 67
		       int msg_slot, int sw_ack_slot)
{
	int cpu;
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
68
	this_cpu_mask = 1UL << cpu;
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
}

/*
92
 * Examine the payload queue on one distribution node to see
93 94 95 96
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
97
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
98 99 100 101 102 103 104
{
	int i;
	int j;
	int count = 0;
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
	     msg++, i++) {
		if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
			msp = bau_tablesp->msg_statuses + i;
			printk(KERN_DEBUG
			       "blade %d: address:%#lx %d of %d, not cpu(s): ",
			       i, msg->address, msg->acknowledge_count,
			       msg->number_of_cpus);
			for (j = 0; j < msg->number_of_cpus; j++) {
				if (!((long)1 << j & msp-> seen_by.bits)) {
					count++;
					printk("%d ", j);
				}
			}
			printk("\n");
		}
	}
	return count;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int count = 0;

137 138 139
	sender = smp_processor_id();
	for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
	     i++) {
140 141
		if (!bau_node_isset(i, distribution))
			continue;
142
		count += uv_examine_destination(uv_bau_table_bases[i], sender);
143 144 145 146
	}
	return count;
}

147 148 149 150 151
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
152
static int uv_wait_completion(struct bau_desc *bau_desc,
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
 * The cpumaskp mask contains the cpus the broadcast was sent to.
 *
 * Returns 1 if all remote flushing was done. The mask is zeroed.
 * Returns 0 if some remote flushing remains to be done. The mask is left
 * unchanged.
 */
215 216
int uv_flush_send_and_wait(int cpu, int this_blade, struct bau_desc *bau_desc,
			   cpumask_t *cpumaskp)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
{
	int completion_status = 0;
	int right_shift;
	int bit;
	int blade;
	int tries = 0;
	unsigned long index;
	unsigned long mmr_offset;
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
239 240
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
			cpu;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
		return 0;
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
		if (blade == this_blade)
			continue;
		cpu_clear(bit, *cpumaskp);
	}
	if (!cpus_empty(*cpumaskp))
		return 0;
	return 1;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
 * @cpumaskp: mask of all cpu's in which the address is to be removed
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
 * The caller has derived the cpumaskp from the mm_struct and has subtracted
 * the local cpu from the mask.  This function is called only if there
 * are bits set in the mask. (e.g. flush_tlb_page())
 *
 * The cpumaskp is converted into a nodemask of the nodes containing
 * the cpus.
292 293 294
 *
 * Returns 1 if all remote flushing was done.
 * Returns 0 if some remote flushing remains to be done.
295
 */
296 297
int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm,
	unsigned long va)
298 299
{
	int i;
300
	int bit;
301 302 303
	int blade;
	int cpu;
	int this_blade;
304
	int locals = 0;
305
	struct bau_desc *bau_desc;
306 307 308 309

	cpu = uv_blade_processor_id();
	this_blade = uv_numa_blade_id();
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
310
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu;
311 312 313 314 315 316

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
317
		BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
318 319
		if (blade == this_blade) {
			locals++;
320
			continue;
321
		}
322 323 324
		bau_node_set(blade, &bau_desc->distribution);
		i++;
	}
325 326 327 328 329 330 331 332 333
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
			return 0;
		else
			return 1;
	}
334 335 336 337 338 339
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
	bau_desc->payload.sending_cpu = smp_processor_id();

340
	return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
357
void uv_bau_message_interrupt(struct pt_regs *regs)
358 359 360
{
	struct bau_payload_queue_entry *pqp;
	struct bau_payload_queue_entry *msg;
361 362
	struct bau_payload_queue_entry *va_queue_first;
	struct bau_payload_queue_entry *va_queue_last;
363
	struct pt_regs *old_regs = set_irq_regs(regs);
364
	cycles_t time1, time2;
365 366 367 368 369 370 371 372 373 374
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

375
	time1 = get_cycles();
376 377 378

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

379 380
	pqp = va_queue_first = __get_cpu_var(bau_control).va_queue_first;
	va_queue_last = __get_cpu_var(bau_control).va_queue_last;
381 382 383 384 385 386 387 388 389 390
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
		msg_slot = msg - pqp;
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
391 392
		if (msg > va_queue_last)
			msg = va_queue_first;
393 394 395 396 397 398 399
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

400 401
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
402 403 404 405 406

	irq_exit();
	set_irq_regs(old_regs);
}

407
static void uv_enable_timeouts(void)
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
{
	int i;
	int blade;
	int last_blade;
	int pnode;
	int cur_cpu = 0;
	unsigned long apicid;

	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pnode = uv_blade_to_pnode(blade);
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}
}

428
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
429 430 431 432 433 434
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

435
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
436 437 438 439 440 441 442
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

443
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
444 445 446 447 448 449 450
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
451
static int uv_ptc_seq_show(struct seq_file *file, void *data)
452 453 454 455 456 457 458 459 460 461
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
462
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
463 464 465 466 467 468 469 470 471 472 473
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
			   uv_read_global_mmr64(uv_blade_to_pnode
					(uv_cpu_to_blade_id(cpu)),
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
474
			   stat->sflush, stat->dflush,
475 476 477 478 479 480 481 482 483 484 485
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
486
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
		  size_t count, loff_t *data)
{
	long newmode;
	char optstr[64];

	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
519
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
520
		printk(KERN_DEBUG
521
		"dflush_us:  cycles spent in handling flush requests\n");
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
537 538 539 540
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
541 542
};

543
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
544 545 546 547 548
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
549 550 551 552 553
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
554 555
};

556
static int __init uv_ptc_init(void)
557
{
558
	struct proc_dir_entry *proc_uv_ptc;
559 560 561 562

	if (!is_uv_system())
		return 0;

563
	if (!proc_mkdir("sgi_uv", NULL))
564 565 566 567 568 569
		return -EINVAL;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
570
		remove_proc_entry("sgi_uv", NULL);
571 572 573 574 575 576
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

577 578 579 580
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
581
{
582 583 584
	int i;
	int *ip;
	struct bau_msg_status *msp;
585
	struct bau_control *bau_tabp;
586

587
	bau_tabp =
588
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
589 590
	BUG_ON(!bau_tabp);
	bau_tabp->msg_statuses =
591
	    kmalloc_node(sizeof(struct bau_msg_status) *
592 593 594
			 DEST_Q_SIZE, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->msg_statuses);
	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
595 596
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
597 598 599 600
	bau_tabp->watching =
	    kmalloc_node(sizeof(int) * DEST_NUM_RESOURCES, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->watching);
	for (i = 0, ip = bau_tabp->watching; i < DEST_Q_SIZE; i++, ip++) {
601 602
		*ip = 0;
	}
603 604
	uv_bau_table_bases[blade] = bau_tabp;
	return bau_tabsp;
605 606
}

607 608 609 610 611
/*
 * finish the initialization of the per-blade control structures
 */
static void __init uv_table_bases_finish(int blade, int node, int cur_cpu,
				  struct bau_control *bau_tablesp,
612
				  struct bau_desc *adp)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	int i;
	struct bau_control *bcp;

	for (i = cur_cpu; i < (cur_cpu + uv_blade_nr_possible_cpus(blade));
	     i++) {
		bcp = (struct bau_control *)&per_cpu(bau_control, i);
		bcp->bau_msg_head = bau_tablesp->va_queue_first;
		bcp->va_queue_first = bau_tablesp->va_queue_first;
		bcp->va_queue_last = bau_tablesp->va_queue_last;
		bcp->watching = bau_tablesp->watching;
		bcp->msg_statuses = bau_tablesp->msg_statuses;
		bcp->descriptor_base = adp;
	}
}
628 629

/*
630
 * initialize the sending side's sending buffers
631
 */
632
static struct bau_desc * __init
633
uv_activation_descriptor_init(int node, int pnode)
634 635 636 637
{
	int i;
	unsigned long pa;
	unsigned long m;
638
	unsigned long n;
639
	unsigned long mmr_image;
640 641
	struct bau_desc *adp;
	struct bau_desc *ad2;
642

643
	adp = (struct bau_desc *)
644
	    kmalloc_node(16384, GFP_KERNEL, node);
645
	BUG_ON(!adp);
646 647 648 649 650 651 652 653 654
	pa = __pa((unsigned long)adp);
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
	if (mmr_image)
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
655
		memset(ad2, 0, sizeof(struct bau_desc));
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		ad2->header.sw_ack_flag = 1;
		ad2->header.base_dest_nodeid =
		    uv_blade_to_pnode(uv_cpu_to_blade_id(0));
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
static struct bau_payload_queue_entry * __init uv_payload_queue_init(int node,
				int pnode, struct bau_control *bau_tablesp)
{
675 676 677
	char *cp;
	struct bau_payload_queue_entry *pqp;

678 679 680 681
	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
		GFP_KERNEL, node);
	BUG_ON(!pqp);
682 683 684 685 686 687 688 689 690 691
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
			      ((unsigned long)pnode <<
			       UV_PAYLOADQ_PNODE_SHIFT) |
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
692
	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
693 694 695
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
696
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
697 698
	return pqp;
}
699

700 701 702 703 704 705 706 707
/*
 * Initialization of each UV blade's structures
 */
static int __init uv_init_blade(int blade, int node, int cur_cpu)
{
	int pnode;
	unsigned long pa;
	unsigned long apicid;
708
	struct bau_desc *adp;
709 710
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
	uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
	apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
726
	}
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int node;
	int nblades;
	int last_blade;
	int cur_cpu = 0;

	if (!is_uv_system())
		return 0;
743

744
	uv_bau_retry_limit = 1;
745
	uv_nshift = uv_hub_info->n_val;
746
	uv_mmask = (1UL << uv_hub_info->n_val) - 1;
747 748
	nblades = 0;
	last_blade = -1;
749 750
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
751 752 753 754 755 756 757
		if (blade == last_blade)
			continue;
		last_blade = blade;
		nblades++;
	}
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
758
	BUG_ON(!uv_bau_table_bases);
759
	last_blade = -1;
760 761
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
762 763 764
		if (blade == last_blade)
			continue;
		last_blade = blade;
765 766
		uv_init_blade(blade, node, cur_cpu);
		cur_cpu += uv_blade_nr_possible_cpus(blade);
767 768 769 770 771 772
	}
	set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
	uv_enable_timeouts();
	return 0;
}
__initcall(uv_bau_init);
773
__initcall(uv_ptc_init);