zd_mac.c 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* zd_mac.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/usb.h>
#include <linux/jiffies.h>
#include <net/ieee80211_radiotap.h>

#include "zd_def.h"
#include "zd_chip.h"
#include "zd_mac.h"
#include "zd_ieee80211.h"
#include "zd_netdev.h"
#include "zd_rf.h"
#include "zd_util.h"

static void ieee_init(struct ieee80211_device *ieee);
static void softmac_init(struct ieee80211softmac_device *sm);

36 37 38 39
static void housekeeping_init(struct zd_mac *mac);
static void housekeeping_enable(struct zd_mac *mac);
static void housekeeping_disable(struct zd_mac *mac);

40 41 42 43 44 45 46 47 48 49 50 51 52
int zd_mac_init(struct zd_mac *mac,
	        struct net_device *netdev,
	        struct usb_interface *intf)
{
	struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);

	memset(mac, 0, sizeof(*mac));
	spin_lock_init(&mac->lock);
	mac->netdev = netdev;

	ieee_init(ieee);
	softmac_init(ieee80211_priv(netdev));
	zd_chip_init(&mac->chip, netdev, intf);
53
	housekeeping_init(mac);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	return 0;
}

static int reset_channel(struct zd_mac *mac)
{
	int r;
	unsigned long flags;
	const struct channel_range *range;

	spin_lock_irqsave(&mac->lock, flags);
	range = zd_channel_range(mac->regdomain);
	if (!range->start) {
		r = -EINVAL;
		goto out;
	}
	mac->requested_channel = range->start;
	r = 0;
out:
	spin_unlock_irqrestore(&mac->lock, flags);
	return r;
}

int zd_mac_init_hw(struct zd_mac *mac, u8 device_type)
{
	int r;
	struct zd_chip *chip = &mac->chip;
	u8 addr[ETH_ALEN];
	u8 default_regdomain;

	r = zd_chip_enable_int(chip);
	if (r)
		goto out;
	r = zd_chip_init_hw(chip, device_type);
	if (r)
		goto disable_int;

	zd_get_e2p_mac_addr(chip, addr);
	r = zd_write_mac_addr(chip, addr);
	if (r)
		goto disable_int;
	ZD_ASSERT(!irqs_disabled());
	spin_lock_irq(&mac->lock);
	memcpy(mac->netdev->dev_addr, addr, ETH_ALEN);
	spin_unlock_irq(&mac->lock);

	r = zd_read_regdomain(chip, &default_regdomain);
	if (r)
		goto disable_int;
	if (!zd_regdomain_supported(default_regdomain)) {
		dev_dbg_f(zd_mac_dev(mac),
			  "Regulatory Domain %#04x is not supported.\n",
		          default_regdomain);
		r = -EINVAL;
		goto disable_int;
	}
	spin_lock_irq(&mac->lock);
	mac->regdomain = mac->default_regdomain = default_regdomain;
	spin_unlock_irq(&mac->lock);
	r = reset_channel(mac);
	if (r)
		goto disable_int;

116 117 118
	/* We must inform the device that we are doing encryption/decryption in
	 * software at the moment. */
	r = zd_set_encryption_type(chip, ENC_SNIFFER);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	if (r)
		goto disable_int;

	r = zd_geo_init(zd_mac_to_ieee80211(mac), mac->regdomain);
	if (r)
		goto disable_int;

	r = 0;
disable_int:
	zd_chip_disable_int(chip);
out:
	return r;
}

void zd_mac_clear(struct zd_mac *mac)
{
	zd_chip_clear(&mac->chip);
U
Ulrich Kunitz 已提交
136 137
	ZD_ASSERT(!spin_is_locked(&mac->lock));
	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
138 139 140 141 142 143
}

static int reset_mode(struct zd_mac *mac)
{
	struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
	struct zd_ioreq32 ioreqs[3] = {
144
		{ CR_RX_FILTER, STA_RX_FILTER },
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		{ CR_SNIFFER_ON, 0U },
	};

	if (ieee->iw_mode == IW_MODE_MONITOR) {
		ioreqs[0].value = 0xffffffff;
		ioreqs[1].value = 0x1;
		ioreqs[2].value = ENC_SNIFFER;
	}

	return zd_iowrite32a(&mac->chip, ioreqs, 3);
}

int zd_mac_open(struct net_device *netdev)
{
	struct zd_mac *mac = zd_netdev_mac(netdev);
	struct zd_chip *chip = &mac->chip;
	int r;

	r = zd_chip_enable_int(chip);
	if (r < 0)
		goto out;

	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
	if (r < 0)
		goto disable_int;
	r = reset_mode(mac);
	if (r)
		goto disable_int;
	r = zd_chip_switch_radio_on(chip);
	if (r < 0)
		goto disable_int;
	r = zd_chip_set_channel(chip, mac->requested_channel);
	if (r < 0)
		goto disable_radio;
	r = zd_chip_enable_rx(chip);
	if (r < 0)
		goto disable_radio;
	r = zd_chip_enable_hwint(chip);
	if (r < 0)
		goto disable_rx;

186
	housekeeping_enable(mac);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	ieee80211softmac_start(netdev);
	return 0;
disable_rx:
	zd_chip_disable_rx(chip);
disable_radio:
	zd_chip_switch_radio_off(chip);
disable_int:
	zd_chip_disable_int(chip);
out:
	return r;
}

int zd_mac_stop(struct net_device *netdev)
{
	struct zd_mac *mac = zd_netdev_mac(netdev);
	struct zd_chip *chip = &mac->chip;

204 205
	netif_stop_queue(netdev);

206 207 208 209 210 211 212
	/*
	 * The order here deliberately is a little different from the open()
	 * method, since we need to make sure there is no opportunity for RX
	 * frames to be processed by softmac after we have stopped it.
	 */

	zd_chip_disable_rx(chip);
213
	housekeeping_disable(mac);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	ieee80211softmac_stop(netdev);

	zd_chip_disable_hwint(chip);
	zd_chip_switch_radio_off(chip);
	zd_chip_disable_int(chip);

	return 0;
}

int zd_mac_set_mac_address(struct net_device *netdev, void *p)
{
	int r;
	unsigned long flags;
	struct sockaddr *addr = p;
	struct zd_mac *mac = zd_netdev_mac(netdev);
	struct zd_chip *chip = &mac->chip;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	dev_dbg_f(zd_mac_dev(mac),
		  "Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data));

	r = zd_write_mac_addr(chip, addr->sa_data);
	if (r)
		return r;

	spin_lock_irqsave(&mac->lock, flags);
	memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN);
	spin_unlock_irqrestore(&mac->lock, flags);

	return 0;
}

int zd_mac_set_regdomain(struct zd_mac *mac, u8 regdomain)
{
	int r;
	u8 channel;

	ZD_ASSERT(!irqs_disabled());
	spin_lock_irq(&mac->lock);
	if (regdomain == 0) {
		regdomain = mac->default_regdomain;
	}
	if (!zd_regdomain_supported(regdomain)) {
		spin_unlock_irq(&mac->lock);
		return -EINVAL;
	}
	mac->regdomain = regdomain;
	channel = mac->requested_channel;
	spin_unlock_irq(&mac->lock);

	r = zd_geo_init(zd_mac_to_ieee80211(mac), regdomain);
	if (r)
		return r;
	if (!zd_regdomain_supports_channel(regdomain, channel)) {
		r = reset_channel(mac);
		if (r)
			return r;
	}

	return 0;
}

u8 zd_mac_get_regdomain(struct zd_mac *mac)
{
	unsigned long flags;
	u8 regdomain;

	spin_lock_irqsave(&mac->lock, flags);
	regdomain = mac->regdomain;
	spin_unlock_irqrestore(&mac->lock, flags);
	return regdomain;
}

static void set_channel(struct net_device *netdev, u8 channel)
{
	struct zd_mac *mac = zd_netdev_mac(netdev);

	dev_dbg_f(zd_mac_dev(mac), "channel %d\n", channel);

	zd_chip_set_channel(&mac->chip, channel);
}

/* TODO: Should not work in Managed mode. */
int zd_mac_request_channel(struct zd_mac *mac, u8 channel)
{
	unsigned long lock_flags;
	struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);

	if (ieee->iw_mode == IW_MODE_INFRA)
		return -EPERM;

	spin_lock_irqsave(&mac->lock, lock_flags);
	if (!zd_regdomain_supports_channel(mac->regdomain, channel)) {
		spin_unlock_irqrestore(&mac->lock, lock_flags);
		return -EINVAL;
	}
	mac->requested_channel = channel;
	spin_unlock_irqrestore(&mac->lock, lock_flags);
	if (netif_running(mac->netdev))
		return zd_chip_set_channel(&mac->chip, channel);
	else
		return 0;
}

int zd_mac_get_channel(struct zd_mac *mac, u8 *channel, u8 *flags)
{
	struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);

	*channel = zd_chip_get_channel(&mac->chip);
	if (ieee->iw_mode != IW_MODE_INFRA) {
		spin_lock_irq(&mac->lock);
		*flags = *channel == mac->requested_channel ?
			MAC_FIXED_CHANNEL : 0;
		spin_unlock(&mac->lock);
	} else {
		*flags = 0;
	}
	dev_dbg_f(zd_mac_dev(mac), "channel %u flags %u\n", *channel, *flags);
	return 0;
}

/* If wrong rate is given, we are falling back to the slowest rate: 1MBit/s */
static u8 cs_typed_rate(u8 cs_rate)
{
	static const u8 typed_rates[16] = {
		[ZD_CS_CCK_RATE_1M]	= ZD_CS_CCK|ZD_CS_CCK_RATE_1M,
		[ZD_CS_CCK_RATE_2M]	= ZD_CS_CCK|ZD_CS_CCK_RATE_2M,
		[ZD_CS_CCK_RATE_5_5M]	= ZD_CS_CCK|ZD_CS_CCK_RATE_5_5M,
		[ZD_CS_CCK_RATE_11M]	= ZD_CS_CCK|ZD_CS_CCK_RATE_11M,
		[ZD_OFDM_RATE_6M]	= ZD_CS_OFDM|ZD_OFDM_RATE_6M,
		[ZD_OFDM_RATE_9M]	= ZD_CS_OFDM|ZD_OFDM_RATE_9M,
		[ZD_OFDM_RATE_12M]	= ZD_CS_OFDM|ZD_OFDM_RATE_12M,
		[ZD_OFDM_RATE_18M]	= ZD_CS_OFDM|ZD_OFDM_RATE_18M,
		[ZD_OFDM_RATE_24M]	= ZD_CS_OFDM|ZD_OFDM_RATE_24M,
		[ZD_OFDM_RATE_36M]	= ZD_CS_OFDM|ZD_OFDM_RATE_36M,
		[ZD_OFDM_RATE_48M]	= ZD_CS_OFDM|ZD_OFDM_RATE_48M,
		[ZD_OFDM_RATE_54M]	= ZD_CS_OFDM|ZD_OFDM_RATE_54M,
	};

	ZD_ASSERT(ZD_CS_RATE_MASK == 0x0f);
	return typed_rates[cs_rate & ZD_CS_RATE_MASK];
}

/* Fallback to lowest rate, if rate is unknown. */
static u8 rate_to_cs_rate(u8 rate)
{
	switch (rate) {
	case IEEE80211_CCK_RATE_2MB:
		return ZD_CS_CCK_RATE_2M;
	case IEEE80211_CCK_RATE_5MB:
		return ZD_CS_CCK_RATE_5_5M;
	case IEEE80211_CCK_RATE_11MB:
		return ZD_CS_CCK_RATE_11M;
	case IEEE80211_OFDM_RATE_6MB:
		return ZD_OFDM_RATE_6M;
	case IEEE80211_OFDM_RATE_9MB:
		return ZD_OFDM_RATE_9M;
	case IEEE80211_OFDM_RATE_12MB:
		return ZD_OFDM_RATE_12M;
	case IEEE80211_OFDM_RATE_18MB:
		return ZD_OFDM_RATE_18M;
	case IEEE80211_OFDM_RATE_24MB:
		return ZD_OFDM_RATE_24M;
	case IEEE80211_OFDM_RATE_36MB:
		return ZD_OFDM_RATE_36M;
	case IEEE80211_OFDM_RATE_48MB:
		return ZD_OFDM_RATE_48M;
	case IEEE80211_OFDM_RATE_54MB:
		return ZD_OFDM_RATE_54M;
	}
	return ZD_CS_CCK_RATE_1M;
}

int zd_mac_set_mode(struct zd_mac *mac, u32 mode)
{
	struct ieee80211_device *ieee;

	switch (mode) {
	case IW_MODE_AUTO:
	case IW_MODE_ADHOC:
	case IW_MODE_INFRA:
		mac->netdev->type = ARPHRD_ETHER;
		break;
	case IW_MODE_MONITOR:
		mac->netdev->type = ARPHRD_IEEE80211_RADIOTAP;
		break;
	default:
		dev_dbg_f(zd_mac_dev(mac), "wrong mode %u\n", mode);
		return -EINVAL;
	}

	ieee = zd_mac_to_ieee80211(mac);
	ZD_ASSERT(!irqs_disabled());
	spin_lock_irq(&ieee->lock);
	ieee->iw_mode = mode;
	spin_unlock_irq(&ieee->lock);

	if (netif_running(mac->netdev))
		return reset_mode(mac);

	return 0;
}

int zd_mac_get_mode(struct zd_mac *mac, u32 *mode)
{
	unsigned long flags;
	struct ieee80211_device *ieee;

	ieee = zd_mac_to_ieee80211(mac);
	spin_lock_irqsave(&ieee->lock, flags);
	*mode = ieee->iw_mode;
	spin_unlock_irqrestore(&ieee->lock, flags);
	return 0;
}

int zd_mac_get_range(struct zd_mac *mac, struct iw_range *range)
{
	int i;
	const struct channel_range *channel_range;
	u8 regdomain;

	memset(range, 0, sizeof(*range));

	/* FIXME: Not so important and depends on the mode. For 802.11g
	 * usually this value is used. It seems to be that Bit/s number is
	 * given here.
	 */
	range->throughput = 27 * 1000 * 1000;

	range->max_qual.qual = 100;
	range->max_qual.level = 100;

	/* FIXME: Needs still to be tuned. */
	range->avg_qual.qual = 71;
	range->avg_qual.level = 80;

	/* FIXME: depends on standard? */
	range->min_rts = 256;
	range->max_rts = 2346;

	range->min_frag = MIN_FRAG_THRESHOLD;
	range->max_frag = MAX_FRAG_THRESHOLD;

	range->max_encoding_tokens = WEP_KEYS;
	range->num_encoding_sizes = 2;
	range->encoding_size[0] = 5;
	range->encoding_size[1] = WEP_KEY_LEN;

	range->we_version_compiled = WIRELESS_EXT;
	range->we_version_source = 20;

	ZD_ASSERT(!irqs_disabled());
	spin_lock_irq(&mac->lock);
	regdomain = mac->regdomain;
	spin_unlock_irq(&mac->lock);
	channel_range = zd_channel_range(regdomain);

	range->num_channels = channel_range->end - channel_range->start;
	range->old_num_channels = range->num_channels;
	range->num_frequency = range->num_channels;
	range->old_num_frequency = range->num_frequency;

	for (i = 0; i < range->num_frequency; i++) {
		struct iw_freq *freq = &range->freq[i];
		freq->i = channel_range->start + i;
		zd_channel_to_freq(freq, freq->i);
	}

	return 0;
}

static int zd_calc_tx_length_us(u8 *service, u8 cs_rate, u16 tx_length)
{
	static const u8 rate_divisor[] = {
		[ZD_CS_CCK_RATE_1M]	=  1,
		[ZD_CS_CCK_RATE_2M]	=  2,
		[ZD_CS_CCK_RATE_5_5M]	= 11, /* bits must be doubled */
		[ZD_CS_CCK_RATE_11M]	= 11,
		[ZD_OFDM_RATE_6M]	=  6,
		[ZD_OFDM_RATE_9M]	=  9,
		[ZD_OFDM_RATE_12M]	= 12,
		[ZD_OFDM_RATE_18M]	= 18,
		[ZD_OFDM_RATE_24M]	= 24,
		[ZD_OFDM_RATE_36M]	= 36,
		[ZD_OFDM_RATE_48M]	= 48,
		[ZD_OFDM_RATE_54M]	= 54,
	};

	u32 bits = (u32)tx_length * 8;
	u32 divisor;

	divisor = rate_divisor[cs_rate];
	if (divisor == 0)
		return -EINVAL;

	switch (cs_rate) {
	case ZD_CS_CCK_RATE_5_5M:
		bits = (2*bits) + 10; /* round up to the next integer */
		break;
	case ZD_CS_CCK_RATE_11M:
		if (service) {
			u32 t = bits % 11;
			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
			if (0 < t && t <= 3) {
				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
			}
		}
		bits += 10; /* round up to the next integer */
		break;
	}

	return bits/divisor;
}

enum {
	R2M_SHORT_PREAMBLE = 0x01,
	R2M_11A		   = 0x02,
};

static u8 cs_rate_to_modulation(u8 cs_rate, int flags)
{
	u8 modulation;

	modulation = cs_typed_rate(cs_rate);
	if (flags & R2M_SHORT_PREAMBLE) {
		switch (ZD_CS_RATE(modulation)) {
		case ZD_CS_CCK_RATE_2M:
		case ZD_CS_CCK_RATE_5_5M:
		case ZD_CS_CCK_RATE_11M:
			modulation |= ZD_CS_CCK_PREA_SHORT;
			return modulation;
		}
	}
	if (flags & R2M_11A) {
		if (ZD_CS_TYPE(modulation) == ZD_CS_OFDM)
			modulation |= ZD_CS_OFDM_MODE_11A;
	}
	return modulation;
}

static void cs_set_modulation(struct zd_mac *mac, struct zd_ctrlset *cs,
	                      struct ieee80211_hdr_4addr *hdr)
{
	struct ieee80211softmac_device *softmac = ieee80211_priv(mac->netdev);
	u16 ftype = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_ctl));
	u8 rate, cs_rate;
	int is_mgt = (ftype == IEEE80211_FTYPE_MGMT) != 0;

	/* FIXME: 802.11a? short preamble? */
	rate = ieee80211softmac_suggest_txrate(softmac,
		is_multicast_ether_addr(hdr->addr1), is_mgt);

	cs_rate = rate_to_cs_rate(rate);
	cs->modulation = cs_rate_to_modulation(cs_rate, 0);
}

static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
	                   struct ieee80211_hdr_4addr *header)
{
	unsigned int tx_length = le16_to_cpu(cs->tx_length);
	u16 fctl = le16_to_cpu(header->frame_ctl);
	u16 ftype = WLAN_FC_GET_TYPE(fctl);
	u16 stype = WLAN_FC_GET_STYPE(fctl);

	/*
	 * CONTROL:
	 * - start at 0x00
	 * - if fragment 0, enable bit 0
	 * - if backoff needed, enable bit 0
	 * - if burst (backoff not needed) disable bit 0
	 * - if multicast, enable bit 1
	 * - if PS-POLL frame, enable bit 2
	 * - if in INDEPENDENT_BSS mode and zd1205_DestPowerSave, then enable
	 *   bit 4 (FIXME: wtf)
	 * - if frag_len > RTS threshold, set bit 5 as long if it isnt
	 *   multicast or mgt
	 * - if bit 5 is set, and we are in OFDM mode, unset bit 5 and set bit
	 *   7
	 */

	cs->control = 0;

	/* First fragment */
	if (WLAN_GET_SEQ_FRAG(le16_to_cpu(header->seq_ctl)) == 0)
		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;

	/* Multicast */
	if (is_multicast_ether_addr(header->addr1))
		cs->control |= ZD_CS_MULTICAST;

	/* PS-POLL */
	if (stype == IEEE80211_STYPE_PSPOLL)
		cs->control |= ZD_CS_PS_POLL_FRAME;

	if (!is_multicast_ether_addr(header->addr1) &&
	    ftype != IEEE80211_FTYPE_MGMT &&
	    tx_length > zd_netdev_ieee80211(mac->netdev)->rts)
	{
		/* FIXME: check the logic */
		if (ZD_CS_TYPE(cs->modulation) == ZD_CS_OFDM) {
			/* 802.11g */
			cs->control |= ZD_CS_SELF_CTS;
		} else { /* 802.11b */
			cs->control |= ZD_CS_RTS;
		}
	}

	/* FIXME: Management frame? */
}

static int fill_ctrlset(struct zd_mac *mac,
	                struct ieee80211_txb *txb,
			int frag_num)
{
	int r;
	struct sk_buff *skb = txb->fragments[frag_num];
	struct ieee80211_hdr_4addr *hdr =
		(struct ieee80211_hdr_4addr *) skb->data;
	unsigned int frag_len = skb->len + IEEE80211_FCS_LEN;
	unsigned int next_frag_len;
	unsigned int packet_length;
	struct zd_ctrlset *cs = (struct zd_ctrlset *)
		skb_push(skb, sizeof(struct zd_ctrlset));

	if (frag_num+1  < txb->nr_frags) {
		next_frag_len = txb->fragments[frag_num+1]->len +
			        IEEE80211_FCS_LEN;
	} else {
		next_frag_len = 0;
	}
	ZD_ASSERT(frag_len <= 0xffff);
	ZD_ASSERT(next_frag_len <= 0xffff);

	cs_set_modulation(mac, cs, hdr);

	cs->tx_length = cpu_to_le16(frag_len);

	cs_set_control(mac, cs, hdr);

	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
	ZD_ASSERT(packet_length <= 0xffff);
	/* ZD1211B: Computing the length difference this way, gives us
	 * flexibility to compute the packet length.
	 */
	cs->packet_length = cpu_to_le16(mac->chip.is_zd1211b ?
			packet_length - frag_len : packet_length);

	/*
	 * CURRENT LENGTH:
	 * - transmit frame length in microseconds
	 * - seems to be derived from frame length
	 * - see Cal_Us_Service() in zdinlinef.h
	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
	 *  - bTxBurstEnable is never set in the vendor driver
	 *
	 * SERVICE:
	 * - "for PLCP configuration"
	 * - always 0 except in some situations at 802.11b 11M
	 * - see line 53 of zdinlinef.h
	 */
	cs->service = 0;
	r = zd_calc_tx_length_us(&cs->service, ZD_CS_RATE(cs->modulation),
		                 le16_to_cpu(cs->tx_length));
	if (r < 0)
		return r;
	cs->current_length = cpu_to_le16(r);

	if (next_frag_len == 0) {
		cs->next_frame_length = 0;
	} else {
		r = zd_calc_tx_length_us(NULL, ZD_CS_RATE(cs->modulation),
			                 next_frag_len);
		if (r < 0)
			return r;
		cs->next_frame_length = cpu_to_le16(r);
	}

	return 0;
}

static int zd_mac_tx(struct zd_mac *mac, struct ieee80211_txb *txb, int pri)
{
	int i, r;

	for (i = 0; i < txb->nr_frags; i++) {
		struct sk_buff *skb = txb->fragments[i];

		r = fill_ctrlset(mac, txb, i);
		if (r)
			return r;
		r = zd_usb_tx(&mac->chip.usb, skb->data, skb->len);
		if (r)
			return r;
	}

	/* FIXME: shouldn't this be handled by the upper layers? */
	mac->netdev->trans_start = jiffies;

	ieee80211_txb_free(txb);
	return 0;
}

struct zd_rt_hdr {
	struct ieee80211_radiotap_header rt_hdr;
	u8  rt_flags;
721
	u8  rt_rate;
722 723
	u16 rt_channel;
	u16 rt_chbitmask;
724
};
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

static void fill_rt_header(void *buffer, struct zd_mac *mac,
	                   const struct ieee80211_rx_stats *stats,
			   const struct rx_status *status)
{
	struct zd_rt_hdr *hdr = buffer;

	hdr->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
	hdr->rt_hdr.it_pad = 0;
	hdr->rt_hdr.it_len = cpu_to_le16(sizeof(struct zd_rt_hdr));
	hdr->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
		                 (1 << IEEE80211_RADIOTAP_CHANNEL) |
				 (1 << IEEE80211_RADIOTAP_RATE));

	hdr->rt_flags = 0;
	if (status->decryption_type & (ZD_RX_WEP64|ZD_RX_WEP128|ZD_RX_WEP256))
		hdr->rt_flags |= IEEE80211_RADIOTAP_F_WEP;

743 744
	hdr->rt_rate = stats->rate / 5;

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	/* FIXME: 802.11a */
	hdr->rt_channel = cpu_to_le16(ieee80211chan2mhz(
		                             _zd_chip_get_channel(&mac->chip)));
	hdr->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_2GHZ |
		((status->frame_status & ZD_RX_FRAME_MODULATION_MASK) ==
		ZD_RX_OFDM ? IEEE80211_CHAN_OFDM : IEEE80211_CHAN_CCK));
}

/* Returns 1 if the data packet is for us and 0 otherwise. */
static int is_data_packet_for_us(struct ieee80211_device *ieee,
	                         struct ieee80211_hdr_4addr *hdr)
{
	struct net_device *netdev = ieee->dev;
	u16 fc = le16_to_cpu(hdr->frame_ctl);

	ZD_ASSERT(WLAN_FC_GET_TYPE(fc) == IEEE80211_FTYPE_DATA);

	switch (ieee->iw_mode) {
	case IW_MODE_ADHOC:
		if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != 0 ||
		    memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) != 0)
			return 0;
		break;
	case IW_MODE_AUTO:
	case IW_MODE_INFRA:
		if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) !=
		    IEEE80211_FCTL_FROMDS ||
		    memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) != 0)
			return 0;
		break;
	default:
		ZD_ASSERT(ieee->iw_mode != IW_MODE_MONITOR);
		return 0;
	}

	return memcmp(hdr->addr1, netdev->dev_addr, ETH_ALEN) == 0 ||
	       is_multicast_ether_addr(hdr->addr1) ||
	       (netdev->flags & IFF_PROMISC);
}

/* Filters receiving packets. If it returns 1 send it to ieee80211_rx, if 0
 * return. If an error is detected -EINVAL is returned. ieee80211_rx_mgt() is
 * called here.
 *
 * It has been based on ieee80211_rx_any.
 */
static int filter_rx(struct ieee80211_device *ieee,
	             const u8 *buffer, unsigned int length,
		     struct ieee80211_rx_stats *stats)
{
	struct ieee80211_hdr_4addr *hdr;
	u16 fc;

	if (ieee->iw_mode == IW_MODE_MONITOR)
		return 1;

	hdr = (struct ieee80211_hdr_4addr *)buffer;
	fc = le16_to_cpu(hdr->frame_ctl);
	if ((fc & IEEE80211_FCTL_VERS) != 0)
		return -EINVAL;

	switch (WLAN_FC_GET_TYPE(fc)) {
	case IEEE80211_FTYPE_MGMT:
		if (length < sizeof(struct ieee80211_hdr_3addr))
			return -EINVAL;
		ieee80211_rx_mgt(ieee, hdr, stats);
		return 0;
	case IEEE80211_FTYPE_CTL:
		/* Ignore invalid short buffers */
		return 0;
	case IEEE80211_FTYPE_DATA:
		if (length < sizeof(struct ieee80211_hdr_3addr))
			return -EINVAL;
		return is_data_packet_for_us(ieee, hdr);
	}

	return -EINVAL;
}

824 825 826
static void update_qual_rssi(struct zd_mac *mac,
			     const u8 *buffer, unsigned int length,
			     u8 qual_percent, u8 rssi_percent)
827 828
{
	unsigned long flags;
829 830 831 832 833 834 835 836
	struct ieee80211_hdr_3addr *hdr;
	int i;

	hdr = (struct ieee80211_hdr_3addr *)buffer;
	if (length < offsetof(struct ieee80211_hdr_3addr, addr3))
		return;
	if (memcmp(hdr->addr2, zd_mac_to_ieee80211(mac)->bssid, ETH_ALEN) != 0)
		return;
837 838

	spin_lock_irqsave(&mac->lock, flags);
839 840 841 842
	i = mac->stats_count % ZD_MAC_STATS_BUFFER_SIZE;
	mac->qual_buffer[i] = qual_percent;
	mac->rssi_buffer[i] = rssi_percent;
	mac->stats_count++;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	spin_unlock_irqrestore(&mac->lock, flags);
}

static int fill_rx_stats(struct ieee80211_rx_stats *stats,
	                 const struct rx_status **pstatus,
		         struct zd_mac *mac,
			 const u8 *buffer, unsigned int length)
{
	const struct rx_status *status;

	*pstatus = status = zd_tail(buffer, length, sizeof(struct rx_status));
	if (status->frame_status & ZD_RX_ERROR) {
		/* FIXME: update? */
		return -EINVAL;
	}
	memset(stats, 0, sizeof(struct ieee80211_rx_stats));
	stats->len = length - (ZD_PLCP_HEADER_SIZE + IEEE80211_FCS_LEN +
		               + sizeof(struct rx_status));
	/* FIXME: 802.11a */
	stats->freq = IEEE80211_24GHZ_BAND;
	stats->received_channel = _zd_chip_get_channel(&mac->chip);
	stats->rssi = zd_rx_strength_percent(status->signal_strength);
	stats->signal = zd_rx_qual_percent(buffer,
		                          length - sizeof(struct rx_status),
		                          status);
	stats->mask = IEEE80211_STATMASK_RSSI | IEEE80211_STATMASK_SIGNAL;
	stats->rate = zd_rx_rate(buffer, status);
	if (stats->rate)
		stats->mask |= IEEE80211_STATMASK_RATE;

	return 0;
}

int zd_mac_rx(struct zd_mac *mac, const u8 *buffer, unsigned int length)
{
	int r;
	struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
	struct ieee80211_rx_stats stats;
	const struct rx_status *status;
	struct sk_buff *skb;

	if (length < ZD_PLCP_HEADER_SIZE + IEEE80211_1ADDR_LEN +
	             IEEE80211_FCS_LEN + sizeof(struct rx_status))
		return -EINVAL;

	r = fill_rx_stats(&stats, &status, mac, buffer, length);
	if (r)
		return r;

	length -= ZD_PLCP_HEADER_SIZE+IEEE80211_FCS_LEN+
		  sizeof(struct rx_status);
	buffer += ZD_PLCP_HEADER_SIZE;

896 897
	update_qual_rssi(mac, buffer, length, stats.signal, stats.rssi);

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	r = filter_rx(ieee, buffer, length, &stats);
	if (r <= 0)
		return r;

	skb = dev_alloc_skb(sizeof(struct zd_rt_hdr) + length);
	if (!skb)
		return -ENOMEM;
	if (ieee->iw_mode == IW_MODE_MONITOR)
		fill_rt_header(skb_put(skb, sizeof(struct zd_rt_hdr)), mac,
			       &stats, status);
	memcpy(skb_put(skb, length), buffer, length);

	r = ieee80211_rx(ieee, skb, &stats);
	if (!r) {
		ZD_ASSERT(in_irq());
		dev_kfree_skb_irq(skb);
	}
	return 0;
}

static int netdev_tx(struct ieee80211_txb *txb, struct net_device *netdev,
		     int pri)
{
	return zd_mac_tx(zd_netdev_mac(netdev), txb, pri);
}

static void set_security(struct net_device *netdev,
			 struct ieee80211_security *sec)
{
	struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
	struct ieee80211_security *secinfo = &ieee->sec;
	int keyidx;

	dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), "\n");

	for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
		if (sec->flags & (1<<keyidx)) {
			secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
			secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
			memcpy(secinfo->keys[keyidx], sec->keys[keyidx],
			       SCM_KEY_LEN);
		}

	if (sec->flags & SEC_ACTIVE_KEY) {
		secinfo->active_key = sec->active_key;
		dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
			"   .active_key = %d\n", sec->active_key);
	}
	if (sec->flags & SEC_UNICAST_GROUP) {
		secinfo->unicast_uses_group = sec->unicast_uses_group;
		dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
			"   .unicast_uses_group = %d\n",
			sec->unicast_uses_group);
	}
	if (sec->flags & SEC_LEVEL) {
		secinfo->level = sec->level;
		dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
			"   .level = %d\n", sec->level);
	}
	if (sec->flags & SEC_ENABLED) {
		secinfo->enabled = sec->enabled;
		dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
			"   .enabled = %d\n", sec->enabled);
	}
	if (sec->flags & SEC_ENCRYPT) {
		secinfo->encrypt = sec->encrypt;
		dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
			"   .encrypt = %d\n", sec->encrypt);
	}
	if (sec->flags & SEC_AUTH_MODE) {
		secinfo->auth_mode = sec->auth_mode;
		dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
			"   .auth_mode = %d\n", sec->auth_mode);
	}
}

static void ieee_init(struct ieee80211_device *ieee)
{
	ieee->mode = IEEE_B | IEEE_G;
	ieee->freq_band = IEEE80211_24GHZ_BAND;
	ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION;
	ieee->tx_headroom = sizeof(struct zd_ctrlset);
	ieee->set_security = set_security;
	ieee->hard_start_xmit = netdev_tx;

	/* Software encryption/decryption for now */
	ieee->host_build_iv = 0;
	ieee->host_encrypt = 1;
	ieee->host_decrypt = 1;

	/* FIXME: default to managed mode, until ieee80211 and zd1211rw can
	 * correctly support AUTO */
	ieee->iw_mode = IW_MODE_INFRA;
}

static void softmac_init(struct ieee80211softmac_device *sm)
{
	sm->set_channel = set_channel;
}

struct iw_statistics *zd_mac_get_wireless_stats(struct net_device *ndev)
{
	struct zd_mac *mac = zd_netdev_mac(ndev);
	struct iw_statistics *iw_stats = &mac->iw_stats;
1002
	unsigned int i, count, qual_total, rssi_total;
1003 1004 1005 1006 1007 1008

	memset(iw_stats, 0, sizeof(struct iw_statistics));
	/* We are not setting the status, because ieee->state is not updated
	 * at all and this driver doesn't track authentication state.
	 */
	spin_lock_irq(&mac->lock);
1009 1010 1011 1012 1013 1014 1015
	count = mac->stats_count < ZD_MAC_STATS_BUFFER_SIZE ?
		mac->stats_count : ZD_MAC_STATS_BUFFER_SIZE;
	qual_total = rssi_total = 0;
	for (i = 0; i < count; i++) {
		qual_total += mac->qual_buffer[i];
		rssi_total += mac->rssi_buffer[i];
	}
1016
	spin_unlock_irq(&mac->lock);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	iw_stats->qual.updated = IW_QUAL_NOISE_INVALID;
	if (count > 0) {
		iw_stats->qual.qual = qual_total / count;
		iw_stats->qual.level = rssi_total / count;
		iw_stats->qual.updated |=
			IW_QUAL_QUAL_UPDATED|IW_QUAL_LEVEL_UPDATED;
	} else {
		iw_stats->qual.updated |=
			IW_QUAL_QUAL_INVALID|IW_QUAL_LEVEL_INVALID;
	}
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	/* TODO: update counter */
	return iw_stats;
}

#ifdef DEBUG
static const char* decryption_types[] = {
	[ZD_RX_NO_WEP] = "none",
	[ZD_RX_WEP64] = "WEP64",
	[ZD_RX_TKIP] = "TKIP",
	[ZD_RX_AES] = "AES",
	[ZD_RX_WEP128] = "WEP128",
	[ZD_RX_WEP256] = "WEP256",
};

static const char *decryption_type_string(u8 type)
{
	const char *s;

	if (type < ARRAY_SIZE(decryption_types)) {
		s = decryption_types[type];
	} else {
		s = NULL;
	}
	return s ? s : "unknown";
}

static int is_ofdm(u8 frame_status)
{
	return (frame_status & ZD_RX_OFDM);
}

void zd_dump_rx_status(const struct rx_status *status)
{
	const char* modulation;
	u8 quality;

	if (is_ofdm(status->frame_status)) {
		modulation = "ofdm";
		quality = status->signal_quality_ofdm;
	} else {
		modulation = "cck";
		quality = status->signal_quality_cck;
	}
	pr_debug("rx status %s strength %#04x qual %#04x decryption %s\n",
		modulation, status->signal_strength, quality,
		decryption_type_string(status->decryption_type));
	if (status->frame_status & ZD_RX_ERROR) {
		pr_debug("rx error %s%s%s%s%s%s\n",
			(status->frame_status & ZD_RX_TIMEOUT_ERROR) ?
				"timeout " : "",
			(status->frame_status & ZD_RX_FIFO_OVERRUN_ERROR) ?
				"fifo " : "",
			(status->frame_status & ZD_RX_DECRYPTION_ERROR) ?
				"decryption " : "",
			(status->frame_status & ZD_RX_CRC32_ERROR) ?
				"crc32 " : "",
			(status->frame_status & ZD_RX_NO_ADDR1_MATCH_ERROR) ?
				"addr1 " : "",
			(status->frame_status & ZD_RX_CRC16_ERROR) ?
				"crc16" : "");
	}
}
#endif /* DEBUG */
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

#define LINK_LED_WORK_DELAY HZ

static void link_led_handler(void *p)
{
	struct zd_mac *mac = p;
	struct zd_chip *chip = &mac->chip;
	struct ieee80211softmac_device *sm = ieee80211_priv(mac->netdev);
	int is_associated;
	int r;

	spin_lock_irq(&mac->lock);
1102
	is_associated = sm->associnfo.associated != 0;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	spin_unlock_irq(&mac->lock);

	r = zd_chip_control_leds(chip,
		                 is_associated ? LED_ASSOCIATED : LED_SCANNING);
	if (r)
		dev_err(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);

	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
		           LINK_LED_WORK_DELAY);
}

static void housekeeping_init(struct zd_mac *mac)
{
	INIT_WORK(&mac->housekeeping.link_led_work, link_led_handler, mac);
}

static void housekeeping_enable(struct zd_mac *mac)
{
	dev_dbg_f(zd_mac_dev(mac), "\n");
	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
			   0);
}

static void housekeeping_disable(struct zd_mac *mac)
{
	dev_dbg_f(zd_mac_dev(mac), "\n");
	cancel_rearming_delayed_workqueue(zd_workqueue,
		&mac->housekeeping.link_led_work);
	zd_chip_control_leds(&mac->chip, LED_OFF);
}