migrate.c 52.5 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/balloon_compaction.h>
40
#include <linux/mmu_notifier.h>
41
#include <linux/page_idle.h>
42
#include <linux/page_owner.h>
C
Christoph Lameter 已提交
43

44 45
#include <asm/tlbflush.h>

46 47 48
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
49 50 51
#include "internal.h"

/*
52
 * migrate_prep() needs to be called before we start compiling a list of pages
53 54
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

69 70 71 72 73 74 75 76
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
bool isolate_movable_page(struct page *page, isolate_mode_t mode)
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

	return true;

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
	return false;
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

152 153 154 155
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
156 157 158
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
159 160 161 162 163 164
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
165
	list_for_each_entry_safe(page, page2, l, lru) {
166 167 168 169
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
170
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
171
		dec_zone_page_state(page, NR_ISOLATED_ANON +
172
				page_is_file_cache(page));
173
		if (unlikely(isolated_balloon_page(page))) {
174
			balloon_page_putback(page);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
		} else if (unlikely(__PageMovable(page))) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
190
			putback_lru_page(page);
191
		}
C
Christoph Lameter 已提交
192 193 194
	}
}

195 196 197
/*
 * Restore a potential migration pte to a working pte entry
 */
198 199
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
200 201 202 203 204 205 206
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

N
Naoya Horiguchi 已提交
207 208 209 210
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
211
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
N
Naoya Horiguchi 已提交
212
	} else {
B
Bob Liu 已提交
213 214
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
N
Naoya Horiguchi 已提交
215
			goto out;
216

N
Naoya Horiguchi 已提交
217
		ptep = pte_offset_map(pmd, addr);
218

219 220 221 222
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
N
Naoya Horiguchi 已提交
223 224 225

		ptl = pte_lockptr(mm, pmd);
	}
226 227 228 229

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
230
		goto unlock;
231 232 233

	entry = pte_to_swp_entry(pte);

234 235 236
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
237 238 239

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
240 241
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
242 243

	/* Recheck VMA as permissions can change since migration started  */
244
	if (is_write_migration_entry(entry))
245 246
		pte = maybe_mkwrite(pte, vma);

A
Andi Kleen 已提交
247
#ifdef CONFIG_HUGETLB_PAGE
248
	if (PageHuge(new)) {
N
Naoya Horiguchi 已提交
249
		pte = pte_mkhuge(pte);
250 251
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
A
Andi Kleen 已提交
252
#endif
253
	flush_dcache_page(new);
254
	set_pte_at(mm, addr, ptep, pte);
255

N
Naoya Horiguchi 已提交
256 257 258 259
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
260
			page_dup_rmap(new, true);
N
Naoya Horiguchi 已提交
261
	} else if (PageAnon(new))
262
		page_add_anon_rmap(new, vma, addr, false);
263 264 265
	else
		page_add_file_rmap(new);

266
	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
267 268
		mlock_vma_page(new);

269
	/* No need to invalidate - it was non-present before */
270
	update_mmu_cache(vma, addr, ptep);
271
unlock:
272
	pte_unmap_unlock(ptep, ptl);
273 274
out:
	return SWAP_AGAIN;
275 276
}

277 278 279 280
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
281
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
282
{
283 284 285 286 287
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

288 289 290 291
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
292 293
}

294 295 296 297 298
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
299
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
300
				spinlock_t *ptl)
301
{
302
	pte_t pte;
303 304 305
	swp_entry_t entry;
	struct page *page;

306
	spin_lock(ptl);
307 308 309 310 311 312 313 314 315 316
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
317 318 319 320 321 322 323 324 325
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
326 327 328 329 330 331 332 333
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

334 335 336 337 338 339 340 341
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

342 343
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
344
{
345
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
346 347 348
	__migration_entry_wait(mm, pte, ptl);
}

349 350
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
351 352
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
353 354 355 356
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
357
	if (mode != MIGRATE_ASYNC) {
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
393
							enum migrate_mode mode)
394 395 396 397 398
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
399
/*
400
 * Replace the page in the mapping.
401 402 403 404
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
405
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
406
 */
407
int migrate_page_move_mapping(struct address_space *mapping,
408
		struct page *newpage, struct page *page,
409 410
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
411
{
412 413
	struct zone *oldzone, *newzone;
	int dirty;
414
	int expected_count = 1 + extra_count;
415
	void **pslot;
C
Christoph Lameter 已提交
416

417
	if (!mapping) {
418
		/* Anonymous page without mapping */
419
		if (page_count(page) != expected_count)
420
			return -EAGAIN;
421 422 423 424 425

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
426
			__SetPageSwapBacked(newpage);
427

428
		return MIGRATEPAGE_SUCCESS;
429 430
	}

431 432 433
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
434
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
435

436 437
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
438

439
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
440
	if (page_count(page) != expected_count ||
441
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
442
		spin_unlock_irq(&mapping->tree_lock);
443
		return -EAGAIN;
C
Christoph Lameter 已提交
444 445
	}

446
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
447
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
448 449 450
		return -EAGAIN;
	}

451 452 453 454 455 456 457
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
458 459
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
460
		page_ref_unfreeze(page, expected_count);
461 462 463 464
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
465
	/*
466 467
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
468
	 */
469 470 471
	newpage->index = page->index;
	newpage->mapping = page->mapping;
	if (PageSwapBacked(page))
472
		__SetPageSwapBacked(newpage);
473

474
	get_page(newpage);	/* add cache reference */
C
Christoph Lameter 已提交
475 476 477 478 479
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

480 481 482 483 484 485 486
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

487 488 489
	radix_tree_replace_slot(pslot, newpage);

	/*
490 491
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
492 493
	 * We know this isn't the last reference.
	 */
494
	page_ref_unfreeze(page, expected_count - 1);
495

496 497 498
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

499 500 501 502 503 504 505 506 507 508
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
509 510 511 512 513 514 515 516 517 518 519
	if (newzone != oldzone) {
		__dec_zone_state(oldzone, NR_FILE_PAGES);
		__inc_zone_state(newzone, NR_FILE_PAGES);
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
			__dec_zone_state(oldzone, NR_SHMEM);
			__inc_zone_state(newzone, NR_SHMEM);
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
			__dec_zone_state(oldzone, NR_FILE_DIRTY);
			__inc_zone_state(newzone, NR_FILE_DIRTY);
		}
520
	}
521
	local_irq_enable();
C
Christoph Lameter 已提交
522

523
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
524
}
525
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
526

N
Naoya Horiguchi 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
544
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
545 546 547 548
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

549
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
550 551 552 553
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

554 555
	newpage->index = page->index;
	newpage->mapping = page->mapping;
556

N
Naoya Horiguchi 已提交
557 558 559 560
	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

561
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
562 563

	spin_unlock_irq(&mapping->tree_lock);
564

565
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
616 617 618
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
619
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
620
{
621 622
	int cpupid;

623
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
624 625 626
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
627 628 629 630 631 632 633

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
634
	if (TestClearPageActive(page)) {
635
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
636
		SetPageActive(newpage);
637 638
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
639 640 641 642 643
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

644 645 646
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
647

648 649 650 651 652
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

653 654 655 656 657 658 659
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

660
	ksm_migrate_page(newpage, page);
661 662 663 664
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
665 666
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
667 668 669 670 671 672 673 674 675
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
676 677

	copy_page_owner(page, newpage);
678 679

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
680
}
681
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
682

683 684 685 686
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
687
/*
688
 * Common logic to directly migrate a single LRU page suitable for
689
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
690 691 692
 *
 * Pages are locked upon entry and exit.
 */
693
int migrate_page(struct address_space *mapping,
694 695
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
696 697 698 699 700
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

701
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
702

703
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
704 705 706
		return rc;

	migrate_page_copy(newpage, page);
707
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
708 709 710
}
EXPORT_SYMBOL(migrate_page);

711
#ifdef CONFIG_BLOCK
712 713 714 715 716
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
717
int buffer_migrate_page(struct address_space *mapping,
718
		struct page *newpage, struct page *page, enum migrate_mode mode)
719 720 721 722 723
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
724
		return migrate_page(mapping, newpage, page, mode);
725 726 727

	head = page_buffers(page);

728
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
729

730
	if (rc != MIGRATEPAGE_SUCCESS)
731 732
		return rc;

733 734 735 736 737
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
738 739
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

766
	return MIGRATEPAGE_SUCCESS;
767 768
}
EXPORT_SYMBOL(buffer_migrate_page);
769
#endif
770

771 772 773 774
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
775
{
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

793
	/*
794 795 796 797 798 799
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
800
	 */
801
	remove_migration_ptes(page, page, false);
802

803
	rc = mapping->a_ops->writepage(page, &wbc);
804

805 806 807 808
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
809
	return (rc < 0) ? -EIO : -EAGAIN;
810 811 812 813 814 815
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
816
	struct page *newpage, struct page *page, enum migrate_mode mode)
817
{
818
	if (PageDirty(page)) {
819 820
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
821
			return -EBUSY;
822
		return writeout(mapping, page);
823
	}
824 825 826 827 828

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
829
	if (page_has_private(page) &&
830 831 832
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

833
	return migrate_page(mapping, newpage, page, mode);
834 835
}

836 837 838 839 840 841
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
842 843 844
 *
 * Return value:
 *   < 0 - error code
845
 *  MIGRATEPAGE_SUCCESS - success
846
 */
847
static int move_to_new_page(struct page *newpage, struct page *page,
848
				enum migrate_mode mode)
849 850
{
	struct address_space *mapping;
851 852
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
853

854 855
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
856 857

	mapping = page_mapping(page);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
876
		/*
877 878
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
879
		 */
880 881 882 883 884 885 886 887 888 889 890 891
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
892

893 894 895 896 897
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
914
			page->mapping = NULL;
915
	}
916
out:
917 918 919
	return rc;
}

920
static int __unmap_and_move(struct page *page, struct page *newpage,
921
				int force, enum migrate_mode mode)
922
{
923
	int rc = -EAGAIN;
924
	int page_was_mapped = 0;
925
	struct anon_vma *anon_vma = NULL;
926
	bool is_lru = !__PageMovable(page);
927

N
Nick Piggin 已提交
928
	if (!trylock_page(page)) {
929
		if (!force || mode == MIGRATE_ASYNC)
930
			goto out;
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
946
			goto out;
947

948 949 950 951
		lock_page(page);
	}

	if (PageWriteback(page)) {
952
		/*
953
		 * Only in the case of a full synchronous migration is it
954 955 956
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
957
		 */
958
		if (mode != MIGRATE_SYNC) {
959
			rc = -EBUSY;
960
			goto out_unlock;
961 962
		}
		if (!force)
963
			goto out_unlock;
964 965
		wait_on_page_writeback(page);
	}
966

967
	/*
968 969
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
970
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
971
	 * of migration. File cache pages are no problem because of page_lock()
972 973
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
974 975 976 977 978 979
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
980
	 */
981
	if (PageAnon(page) && !PageKsm(page))
982
		anon_vma = page_get_anon_vma(page);
983

984 985 986 987 988 989 990 991 992 993 994
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

995
	if (unlikely(isolated_balloon_page(page))) {
996 997 998 999 1000 1001 1002 1003
		/*
		 * A ballooned page does not need any special attention from
		 * physical to virtual reverse mapping procedures.
		 * Skip any attempt to unmap PTEs or to remap swap cache,
		 * in order to avoid burning cycles at rmap level, and perform
		 * the page migration right away (proteced by page lock).
		 */
		rc = balloon_page_migrate(newpage, page, mode);
1004
		goto out_unlock_both;
1005 1006
	}

1007 1008 1009 1010 1011
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1012
	/*
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1023
	 */
1024
	if (!page->mapping) {
1025
		VM_BUG_ON_PAGE(PageAnon(page), page);
1026
		if (page_has_private(page)) {
1027
			try_to_free_buffers(page);
1028
			goto out_unlock_both;
1029
		}
1030 1031
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1032 1033
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1034
		try_to_unmap(page,
1035
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1036 1037
		page_was_mapped = 1;
	}
1038

1039
	if (!page_mapped(page))
1040
		rc = move_to_new_page(newpage, page, mode);
1041

1042 1043
	if (page_was_mapped)
		remove_migration_ptes(page,
1044
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1045

1046 1047 1048
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1049
	/* Drop an anon_vma reference if we took one */
1050
	if (anon_vma)
1051
		put_anon_vma(anon_vma);
1052
	unlock_page(page);
1053
out:
1054 1055 1056 1057 1058 1059 1060
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1061 1062
		if (unlikely(__is_movable_balloon_page(newpage) ||
				__PageMovable(newpage)))
1063 1064 1065 1066 1067
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1068 1069
	return rc;
}
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1081 1082 1083 1084
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1085 1086 1087
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1088 1089
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1090
{
1091
	int rc = MIGRATEPAGE_SUCCESS;
1092
	int *result = NULL;
1093
	struct page *newpage;
1094

1095
	newpage = get_new_page(page, private, &result);
1096 1097 1098 1099 1100
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1101 1102
		ClearPageActive(page);
		ClearPageUnevictable(page);
1103 1104 1105 1106 1107 1108
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1109 1110 1111 1112
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1113 1114 1115
		goto out;
	}

1116 1117 1118 1119 1120
	if (unlikely(PageTransHuge(page))) {
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1121
			goto out;
1122
	}
1123

1124
	rc = __unmap_and_move(page, newpage, force, mode);
1125
	if (rc == MIGRATEPAGE_SUCCESS)
1126
		set_page_owner_migrate_reason(newpage, reason);
1127

1128
out:
1129
	if (rc != -EAGAIN) {
1130 1131 1132 1133 1134 1135 1136
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
1137
		dec_zone_page_state(page, NR_ISOLATED_ANON +
1138
				page_is_file_cache(page));
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1149
			/*
1150 1151 1152
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1153
			 */
1154 1155
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1156 1157
		}
	} else {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1173 1174 1175 1176
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1177
	}
1178

1179 1180 1181 1182 1183 1184
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1185 1186 1187
	return rc;
}

N
Naoya Horiguchi 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1207 1208
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1209
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1210
{
1211
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1212
	int *result = NULL;
1213
	int page_was_mapped = 0;
1214
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1215 1216
	struct anon_vma *anon_vma = NULL;

1217 1218 1219 1220 1221 1222 1223
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1224
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1225
		putback_active_hugepage(hpage);
1226
		return -ENOSYS;
1227
	}
1228

1229
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1230 1231 1232 1233
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1234
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1235 1236 1237 1238
			goto out;
		lock_page(hpage);
	}

1239 1240
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1241

1242 1243 1244
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1245 1246 1247 1248 1249
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1250 1251

	if (!page_mapped(hpage))
1252
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1253

1254 1255
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1256
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1257

1258 1259 1260
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1261
	if (anon_vma)
1262
		put_anon_vma(anon_vma);
1263

1264
	if (rc == MIGRATEPAGE_SUCCESS) {
1265
		hugetlb_cgroup_migrate(hpage, new_hpage);
1266
		put_new_page = NULL;
1267
		set_page_owner_migrate_reason(new_hpage, reason);
1268
	}
1269

N
Naoya Horiguchi 已提交
1270
	unlock_page(hpage);
1271
out:
1272 1273
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1274 1275 1276 1277 1278 1279

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1280
	if (put_new_page)
1281 1282
		put_new_page(new_hpage, private);
	else
1283
		putback_active_hugepage(new_hpage);
1284

N
Naoya Horiguchi 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1294
/*
1295 1296
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1297
 *
1298 1299 1300
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1301 1302
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1303 1304 1305 1306
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1307
 *
1308 1309
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1310
 * The caller should call putback_movable_pages() to return pages to the LRU
1311
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1312
 *
1313
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1314
 */
1315
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1316 1317
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1318
{
1319
	int retry = 1;
C
Christoph Lameter 已提交
1320
	int nr_failed = 0;
1321
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1331 1332
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1333

1334 1335
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1336

1337 1338
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1339
						put_new_page, private, page,
1340
						pass > 2, mode, reason);
1341
			else
1342
				rc = unmap_and_move(get_new_page, put_new_page,
1343 1344
						private, page, pass > 2, mode,
						reason);
1345

1346
			switch(rc) {
1347
			case -ENOMEM:
1348
				nr_failed++;
1349
				goto out;
1350
			case -EAGAIN:
1351
				retry++;
1352
				break;
1353
			case MIGRATEPAGE_SUCCESS:
1354
				nr_succeeded++;
1355 1356
				break;
			default:
1357 1358 1359 1360 1361 1362
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1363
				nr_failed++;
1364
				break;
1365
			}
C
Christoph Lameter 已提交
1366 1367
		}
	}
1368 1369
	nr_failed += retry;
	rc = nr_failed;
1370
out:
1371 1372 1373 1374
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1375 1376
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1377 1378 1379
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1380
	return rc;
C
Christoph Lameter 已提交
1381
}
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1407 1408 1409 1410
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
1411
		return __alloc_pages_node(pm->node,
1412
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1413 1414 1415 1416 1417 1418
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1419
 * The pm array ends with node = MAX_NUMNODES.
1420
 */
1421 1422 1423
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1440
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1441 1442
			goto set_status;

1443 1444 1445
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, pp->addr,
				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1446 1447 1448 1449 1450

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		err = -ENOENT;
		if (!page)
			goto set_status;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1469
		if (PageHuge(page)) {
1470 1471
			if (PageHead(page))
				isolate_huge_page(page, &pagelist);
1472 1473 1474
			goto put_and_set;
		}

1475
		err = isolate_lru_page(page);
1476
		if (!err) {
1477
			list_add_tail(&page->lru, &pagelist);
1478 1479 1480
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1492
	err = 0;
1493
	if (!list_empty(&pagelist)) {
1494
		err = migrate_pages(&pagelist, new_page_node, NULL,
1495
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1496
		if (err)
1497
			putback_movable_pages(&pagelist);
1498
	}
1499 1500 1501 1502 1503

	up_read(&mm->mmap_sem);
	return err;
}

1504 1505 1506 1507
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1508
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1509 1510 1511 1512 1513
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1514 1515 1516 1517
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1518

1519 1520 1521
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1522
		goto out;
1523 1524 1525

	migrate_prep();

1526
	/*
1527 1528
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1529
	 */
1530
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1531

1532 1533 1534 1535
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1536

1537 1538 1539 1540 1541 1542
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1543 1544
			int node;

1545 1546 1547 1548 1549 1550
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1551 1552 1553
				goto out_pm;

			err = -ENODEV;
1554 1555 1556
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1557
			if (!node_state(node, N_MEMORY))
1558 1559 1560 1561 1562 1563
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1575 1576

		/* Return status information */
1577 1578
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1579
				err = -EFAULT;
1580 1581 1582 1583
				goto out_pm;
			}
	}
	err = 0;
1584 1585

out_pm:
1586
	free_page((unsigned long)pm);
1587 1588 1589 1590
out:
	return err;
}

1591
/*
1592
 * Determine the nodes of an array of pages and store it in an array of status.
1593
 */
1594 1595
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1596
{
1597 1598
	unsigned long i;

1599 1600
	down_read(&mm->mmap_sem);

1601
	for (i = 0; i < nr_pages; i++) {
1602
		unsigned long addr = (unsigned long)(*pages);
1603 1604
		struct vm_area_struct *vma;
		struct page *page;
1605
		int err = -EFAULT;
1606 1607

		vma = find_vma(mm, addr);
1608
		if (!vma || addr < vma->vm_start)
1609 1610
			goto set_status;

1611 1612
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1613 1614 1615 1616 1617

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1618
		err = page ? page_to_nid(page) : -ENOENT;
1619
set_status:
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1641 1642
	while (nr_pages) {
		unsigned long chunk_nr;
1643

1644 1645 1646 1647 1648 1649
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1650 1651 1652

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1653 1654
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1655

1656 1657 1658 1659 1660
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1661 1662 1663 1664 1665 1666
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1667 1668 1669 1670
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1671
{
1672
	const struct cred *cred = current_cred(), *tcred;
1673 1674
	struct task_struct *task;
	struct mm_struct *mm;
1675
	int err;
1676
	nodemask_t task_nodes;
1677 1678 1679 1680 1681 1682 1683 1684 1685

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1686
	rcu_read_lock();
1687
	task = pid ? find_task_by_vpid(pid) : current;
1688
	if (!task) {
1689
		rcu_read_unlock();
1690 1691
		return -ESRCH;
	}
1692
	get_task_struct(task);
1693 1694 1695 1696 1697 1698 1699

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1700
	tcred = __task_cred(task);
1701 1702
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1703
	    !capable(CAP_SYS_NICE)) {
1704
		rcu_read_unlock();
1705
		err = -EPERM;
1706
		goto out;
1707
	}
1708
	rcu_read_unlock();
1709

1710 1711
 	err = security_task_movememory(task);
 	if (err)
1712
		goto out;
1713

1714 1715 1716 1717
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1718 1719 1720 1721 1722 1723 1724 1725
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1726 1727 1728

	mmput(mm);
	return err;
1729 1730 1731 1732

out:
	put_task_struct(task);
	return err;
1733 1734
}

1735 1736 1737 1738 1739 1740
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1741
				   unsigned long nr_migrate_pages)
1742 1743 1744 1745 1746 1747 1748 1749
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1750
		if (!zone_reclaimable(zone))
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1771
	newpage = __alloc_pages_node(nid,
1772 1773 1774
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1775
					 ~__GFP_RECLAIM, 0);
1776

1777 1778 1779
	return newpage;
}

1780 1781 1782 1783 1784 1785 1786 1787
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1788
/* Returns true if the node is migrate rate-limited after the update */
1789 1790
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1791
{
1792 1793 1794 1795 1796 1797
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1798
		spin_lock(&pgdat->numabalancing_migrate_lock);
1799 1800 1801
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1802
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1803
	}
1804 1805 1806
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1807
		return true;
1808
	}
1809 1810 1811 1812 1813 1814 1815 1816 1817

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1818 1819
}

1820
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1821
{
1822
	int page_lru;
1823

1824
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1825

1826
	/* Avoid migrating to a node that is nearly full */
1827 1828
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1829

1830 1831
	if (isolate_lru_page(page))
		return 0;
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1843 1844
	}

1845 1846 1847 1848
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1849
	/*
1850 1851 1852
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1853 1854
	 */
	put_page(page);
1855
	return 1;
1856 1857
}

1858 1859 1860 1861 1862 1863
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1864 1865 1866 1867 1868
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1869 1870
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1871 1872
{
	pg_data_t *pgdat = NODE_DATA(node);
1873
	int isolated;
1874 1875 1876 1877
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1878 1879
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1880
	 */
1881 1882
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1883 1884 1885 1886 1887 1888 1889
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1890
	if (numamigrate_update_ratelimit(pgdat, 1))
1891 1892 1893 1894 1895 1896 1897
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1898
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1899 1900
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1901
	if (nr_remaining) {
1902 1903 1904 1905 1906 1907
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1908 1909 1910
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1911 1912
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1913 1914 1915 1916

out:
	put_page(page);
	return 0;
1917
}
1918
#endif /* CONFIG_NUMA_BALANCING */
1919

1920
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1921 1922 1923 1924
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1925 1926 1927 1928 1929 1930
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1931
	spinlock_t *ptl;
1932 1933 1934 1935
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1936 1937
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1938
	pmd_t orig_entry;
1939 1940 1941 1942 1943 1944

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1945
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1946 1947 1948
		goto out_dropref;

	new_page = alloc_pages_node(node,
1949
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1950
		HPAGE_PMD_ORDER);
1951 1952
	if (!new_page)
		goto out_fail;
1953
	prep_transhuge_page(new_page);
1954

1955
	isolated = numamigrate_isolate_page(pgdat, page);
1956
	if (!isolated) {
1957
		put_page(new_page);
1958
		goto out_fail;
1959
	}
1960 1961 1962 1963
	/*
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
	 */
1964 1965 1966
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1967
	/* Prepare a page as a migration target */
1968
	__SetPageLocked(new_page);
1969
	__SetPageSwapBacked(new_page);
1970 1971 1972 1973 1974 1975 1976 1977

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1978
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1979
	ptl = pmd_lock(mm, pmd);
1980 1981
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1982
		spin_unlock(ptl);
1983
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1994 1995
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1996
		putback_lru_page(page);
1997 1998
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1999 2000

		goto out_unlock;
2001 2002
	}

2003
	orig_entry = *pmd;
2004 2005
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
2006
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2007

2008 2009 2010 2011 2012 2013 2014
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2015
	flush_cache_range(vma, mmun_start, mmun_end);
2016
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2017
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2018
	set_pmd_at(mm, mmun_start, pmd, entry);
2019
	update_mmu_cache_pmd(vma, address, &entry);
2020 2021

	if (page_count(page) != 2) {
2022
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2023
		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2024
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2025
		update_mmu_cache_pmd(vma, address, &entry);
2026
		page_remove_rmap(new_page, true);
2027 2028 2029
		goto fail_putback;
	}

2030
	mlock_migrate_page(new_page, page);
2031
	page_remove_rmap(page, true);
2032
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2033

2034
	spin_unlock(ptl);
2035
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2036

2037 2038 2039 2040
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2054 2055
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2056
out_dropref:
2057 2058
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2059
		entry = pmd_modify(entry, vma->vm_page_prot);
2060
		set_pmd_at(mm, mmun_start, pmd, entry);
2061 2062 2063
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2064

2065
out_unlock:
2066
	unlock_page(page);
2067 2068 2069
	put_page(page);
	return 0;
}
2070 2071 2072
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */