tcp_metrics.c 28.5 KB
Newer Older
1 2 3
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/jiffies.h>
4
#include <linux/module.h>
5
#include <linux/cache.h>
6 7
#include <linux/slab.h>
#include <linux/init.h>
8
#include <linux/tcp.h>
E
Eric Dumazet 已提交
9
#include <linux/hash.h>
10
#include <linux/tcp_metrics.h>
11
#include <linux/vmalloc.h>
12 13

#include <net/inet_connection_sock.h>
14
#include <net/net_namespace.h>
15
#include <net/request_sock.h>
16
#include <net/inetpeer.h>
17
#include <net/sock.h>
18
#include <net/ipv6.h>
19 20
#include <net/dst.h>
#include <net/tcp.h>
21
#include <net/genetlink.h>
22 23 24

int sysctl_tcp_nometrics_save __read_mostly;

25 26
struct tcp_fastopen_metrics {
	u16	mss;
27 28
	u16	syn_loss:10;		/* Recurring Fast Open SYN losses */
	unsigned long	last_syn_loss;	/* Last Fast Open SYN loss */
29 30 31
	struct	tcp_fastopen_cookie	cookie;
};

32 33
struct tcp_metrics_block {
	struct tcp_metrics_block __rcu	*tcpm_next;
34
	struct inetpeer_addr		tcpm_saddr;
35
	struct inetpeer_addr		tcpm_daddr;
36
	unsigned long			tcpm_stamp;
37 38
	u32				tcpm_ts;
	u32				tcpm_ts_stamp;
39
	u32				tcpm_lock;
40
	u32				tcpm_vals[TCP_METRIC_MAX + 1];
41
	struct tcp_fastopen_metrics	tcpm_fastopen;
42 43

	struct rcu_head			rcu_head;
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
};

static bool tcp_metric_locked(struct tcp_metrics_block *tm,
			      enum tcp_metric_index idx)
{
	return tm->tcpm_lock & (1 << idx);
}

static u32 tcp_metric_get(struct tcp_metrics_block *tm,
			  enum tcp_metric_index idx)
{
	return tm->tcpm_vals[idx];
}

static u32 tcp_metric_get_jiffies(struct tcp_metrics_block *tm,
				  enum tcp_metric_index idx)
{
	return msecs_to_jiffies(tm->tcpm_vals[idx]);
}

static void tcp_metric_set(struct tcp_metrics_block *tm,
			   enum tcp_metric_index idx,
			   u32 val)
{
	tm->tcpm_vals[idx] = val;
}

static void tcp_metric_set_msecs(struct tcp_metrics_block *tm,
				 enum tcp_metric_index idx,
				 u32 val)
{
	tm->tcpm_vals[idx] = jiffies_to_msecs(val);
}

static bool addr_same(const struct inetpeer_addr *a,
		      const struct inetpeer_addr *b)
{
	const struct in6_addr *a6, *b6;

	if (a->family != b->family)
		return false;
	if (a->family == AF_INET)
		return a->addr.a4 == b->addr.a4;

	a6 = (const struct in6_addr *) &a->addr.a6[0];
	b6 = (const struct in6_addr *) &b->addr.a6[0];

	return ipv6_addr_equal(a6, b6);
}

struct tcpm_hash_bucket {
	struct tcp_metrics_block __rcu	*chain;
};

static DEFINE_SPINLOCK(tcp_metrics_lock);

100 101
static void tcpm_suck_dst(struct tcp_metrics_block *tm, struct dst_entry *dst,
			  bool fastopen_clear)
102 103 104
{
	u32 val;

105 106
	tm->tcpm_stamp = jiffies;

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	val = 0;
	if (dst_metric_locked(dst, RTAX_RTT))
		val |= 1 << TCP_METRIC_RTT;
	if (dst_metric_locked(dst, RTAX_RTTVAR))
		val |= 1 << TCP_METRIC_RTTVAR;
	if (dst_metric_locked(dst, RTAX_SSTHRESH))
		val |= 1 << TCP_METRIC_SSTHRESH;
	if (dst_metric_locked(dst, RTAX_CWND))
		val |= 1 << TCP_METRIC_CWND;
	if (dst_metric_locked(dst, RTAX_REORDERING))
		val |= 1 << TCP_METRIC_REORDERING;
	tm->tcpm_lock = val;

	tm->tcpm_vals[TCP_METRIC_RTT] = dst_metric_raw(dst, RTAX_RTT);
	tm->tcpm_vals[TCP_METRIC_RTTVAR] = dst_metric_raw(dst, RTAX_RTTVAR);
	tm->tcpm_vals[TCP_METRIC_SSTHRESH] = dst_metric_raw(dst, RTAX_SSTHRESH);
	tm->tcpm_vals[TCP_METRIC_CWND] = dst_metric_raw(dst, RTAX_CWND);
	tm->tcpm_vals[TCP_METRIC_REORDERING] = dst_metric_raw(dst, RTAX_REORDERING);
125 126
	tm->tcpm_ts = 0;
	tm->tcpm_ts_stamp = 0;
127 128 129 130 131
	if (fastopen_clear) {
		tm->tcpm_fastopen.mss = 0;
		tm->tcpm_fastopen.syn_loss = 0;
		tm->tcpm_fastopen.cookie.len = 0;
	}
132 133 134
}

static struct tcp_metrics_block *tcpm_new(struct dst_entry *dst,
135
					  struct inetpeer_addr *saddr,
136
					  struct inetpeer_addr *daddr,
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
					  unsigned int hash,
					  bool reclaim)
{
	struct tcp_metrics_block *tm;
	struct net *net;

	spin_lock_bh(&tcp_metrics_lock);
	net = dev_net(dst->dev);
	if (unlikely(reclaim)) {
		struct tcp_metrics_block *oldest;

		oldest = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain);
		for (tm = rcu_dereference(oldest->tcpm_next); tm;
		     tm = rcu_dereference(tm->tcpm_next)) {
			if (time_before(tm->tcpm_stamp, oldest->tcpm_stamp))
				oldest = tm;
		}
		tm = oldest;
	} else {
		tm = kmalloc(sizeof(*tm), GFP_ATOMIC);
		if (!tm)
			goto out_unlock;
	}
160
	tm->tcpm_saddr = *saddr;
161
	tm->tcpm_daddr = *daddr;
162

163
	tcpm_suck_dst(tm, dst, true);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	if (likely(!reclaim)) {
		tm->tcpm_next = net->ipv4.tcp_metrics_hash[hash].chain;
		rcu_assign_pointer(net->ipv4.tcp_metrics_hash[hash].chain, tm);
	}

out_unlock:
	spin_unlock_bh(&tcp_metrics_lock);
	return tm;
}

#define TCP_METRICS_TIMEOUT		(60 * 60 * HZ)

static void tcpm_check_stamp(struct tcp_metrics_block *tm, struct dst_entry *dst)
{
	if (tm && unlikely(time_after(jiffies, tm->tcpm_stamp + TCP_METRICS_TIMEOUT)))
180
		tcpm_suck_dst(tm, dst, false);
181 182 183 184 185 186 187 188 189 190 191 192 193 194
}

#define TCP_METRICS_RECLAIM_DEPTH	5
#define TCP_METRICS_RECLAIM_PTR		(struct tcp_metrics_block *) 0x1UL

static struct tcp_metrics_block *tcp_get_encode(struct tcp_metrics_block *tm, int depth)
{
	if (tm)
		return tm;
	if (depth > TCP_METRICS_RECLAIM_DEPTH)
		return TCP_METRICS_RECLAIM_PTR;
	return NULL;
}

195 196
static struct tcp_metrics_block *__tcp_get_metrics(const struct inetpeer_addr *saddr,
						   const struct inetpeer_addr *daddr,
197 198 199 200 201 202 203
						   struct net *net, unsigned int hash)
{
	struct tcp_metrics_block *tm;
	int depth = 0;

	for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
	     tm = rcu_dereference(tm->tcpm_next)) {
204 205
		if (addr_same(&tm->tcpm_saddr, saddr) &&
		    addr_same(&tm->tcpm_daddr, daddr))
206 207 208 209 210 211 212 213 214 215
			break;
		depth++;
	}
	return tcp_get_encode(tm, depth);
}

static struct tcp_metrics_block *__tcp_get_metrics_req(struct request_sock *req,
						       struct dst_entry *dst)
{
	struct tcp_metrics_block *tm;
216
	struct inetpeer_addr saddr, daddr;
217 218 219
	unsigned int hash;
	struct net *net;

220
	saddr.family = req->rsk_ops->family;
221 222
	daddr.family = req->rsk_ops->family;
	switch (daddr.family) {
223
	case AF_INET:
224
		saddr.addr.a4 = inet_rsk(req)->ir_loc_addr;
225 226
		daddr.addr.a4 = inet_rsk(req)->ir_rmt_addr;
		hash = (__force unsigned int) daddr.addr.a4;
227
		break;
228
#if IS_ENABLED(CONFIG_IPV6)
229
	case AF_INET6:
230
		*(struct in6_addr *)saddr.addr.a6 = inet_rsk(req)->ir_v6_loc_addr;
231
		*(struct in6_addr *)daddr.addr.a6 = inet_rsk(req)->ir_v6_rmt_addr;
232
		hash = ipv6_addr_hash(&inet_rsk(req)->ir_v6_rmt_addr);
233
		break;
234
#endif
235 236 237 238 239
	default:
		return NULL;
	}

	net = dev_net(dst->dev);
E
Eric Dumazet 已提交
240
	hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
241 242 243

	for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
	     tm = rcu_dereference(tm->tcpm_next)) {
244 245
		if (addr_same(&tm->tcpm_saddr, &saddr) &&
		    addr_same(&tm->tcpm_daddr, &daddr))
246 247 248 249 250 251
			break;
	}
	tcpm_check_stamp(tm, dst);
	return tm;
}

252 253 254
static struct tcp_metrics_block *__tcp_get_metrics_tw(struct inet_timewait_sock *tw)
{
	struct tcp_metrics_block *tm;
255
	struct inetpeer_addr saddr, daddr;
256 257 258
	unsigned int hash;
	struct net *net;

259
	saddr.family = tw->tw_family;
260 261
	daddr.family = tw->tw_family;
	switch (daddr.family) {
262
	case AF_INET:
263
		saddr.addr.a4 = tw->tw_rcv_saddr;
264 265
		daddr.addr.a4 = tw->tw_daddr;
		hash = (__force unsigned int) daddr.addr.a4;
266
		break;
267
#if IS_ENABLED(CONFIG_IPV6)
268
	case AF_INET6:
269
		*(struct in6_addr *)saddr.addr.a6 = tw->tw_v6_rcv_saddr;
270
		*(struct in6_addr *)daddr.addr.a6 = tw->tw_v6_daddr;
271
		hash = ipv6_addr_hash(&tw->tw_v6_daddr);
272
		break;
273
#endif
274 275 276 277 278
	default:
		return NULL;
	}

	net = twsk_net(tw);
E
Eric Dumazet 已提交
279
	hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
280 281 282

	for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
	     tm = rcu_dereference(tm->tcpm_next)) {
283 284
		if (addr_same(&tm->tcpm_saddr, &saddr) &&
		    addr_same(&tm->tcpm_daddr, &daddr))
285 286 287 288 289
			break;
	}
	return tm;
}

290 291 292 293 294
static struct tcp_metrics_block *tcp_get_metrics(struct sock *sk,
						 struct dst_entry *dst,
						 bool create)
{
	struct tcp_metrics_block *tm;
295
	struct inetpeer_addr saddr, daddr;
296 297 298 299
	unsigned int hash;
	struct net *net;
	bool reclaim;

300
	saddr.family = sk->sk_family;
301 302
	daddr.family = sk->sk_family;
	switch (daddr.family) {
303
	case AF_INET:
304
		saddr.addr.a4 = inet_sk(sk)->inet_saddr;
305 306
		daddr.addr.a4 = inet_sk(sk)->inet_daddr;
		hash = (__force unsigned int) daddr.addr.a4;
307
		break;
308
#if IS_ENABLED(CONFIG_IPV6)
309
	case AF_INET6:
310
		*(struct in6_addr *)saddr.addr.a6 = sk->sk_v6_rcv_saddr;
311
		*(struct in6_addr *)daddr.addr.a6 = sk->sk_v6_daddr;
312
		hash = ipv6_addr_hash(&sk->sk_v6_daddr);
313
		break;
314
#endif
315 316 317 318 319
	default:
		return NULL;
	}

	net = dev_net(dst->dev);
E
Eric Dumazet 已提交
320
	hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
321

322
	tm = __tcp_get_metrics(&saddr, &daddr, net, hash);
323 324 325 326 327 328
	reclaim = false;
	if (tm == TCP_METRICS_RECLAIM_PTR) {
		reclaim = true;
		tm = NULL;
	}
	if (!tm && create)
329
		tm = tcpm_new(dst, &saddr, &daddr, hash, reclaim);
330 331 332 333 334 335
	else
		tcpm_check_stamp(tm, dst);

	return tm;
}

336 337 338 339 340 341
/* Save metrics learned by this TCP session.  This function is called
 * only, when TCP finishes successfully i.e. when it enters TIME-WAIT
 * or goes from LAST-ACK to CLOSE.
 */
void tcp_update_metrics(struct sock *sk)
{
342
	const struct inet_connection_sock *icsk = inet_csk(sk);
343
	struct dst_entry *dst = __sk_dst_get(sk);
344 345 346 347 348
	struct tcp_sock *tp = tcp_sk(sk);
	struct tcp_metrics_block *tm;
	unsigned long rtt;
	u32 val;
	int m;
349

350
	if (sysctl_tcp_nometrics_save || !dst)
351 352
		return;

353
	if (dst->flags & DST_HOST)
354 355
		dst_confirm(dst);

356 357 358 359 360 361 362 363 364 365 366 367
	rcu_read_lock();
	if (icsk->icsk_backoff || !tp->srtt) {
		/* This session failed to estimate rtt. Why?
		 * Probably, no packets returned in time.  Reset our
		 * results.
		 */
		tm = tcp_get_metrics(sk, dst, false);
		if (tm && !tcp_metric_locked(tm, TCP_METRIC_RTT))
			tcp_metric_set(tm, TCP_METRIC_RTT, 0);
		goto out_unlock;
	} else
		tm = tcp_get_metrics(sk, dst, true);
368

369 370
	if (!tm)
		goto out_unlock;
371

372 373
	rtt = tcp_metric_get_jiffies(tm, TCP_METRIC_RTT);
	m = rtt - tp->srtt;
374

375 376 377 378 379 380 381 382 383 384 385
	/* If newly calculated rtt larger than stored one, store new
	 * one. Otherwise, use EWMA. Remember, rtt overestimation is
	 * always better than underestimation.
	 */
	if (!tcp_metric_locked(tm, TCP_METRIC_RTT)) {
		if (m <= 0)
			rtt = tp->srtt;
		else
			rtt -= (m >> 3);
		tcp_metric_set_msecs(tm, TCP_METRIC_RTT, rtt);
	}
386

387 388
	if (!tcp_metric_locked(tm, TCP_METRIC_RTTVAR)) {
		unsigned long var;
389

390 391
		if (m < 0)
			m = -m;
392

393 394 395 396
		/* Scale deviation to rttvar fixed point */
		m >>= 1;
		if (m < tp->mdev)
			m = tp->mdev;
397

398 399 400 401 402
		var = tcp_metric_get_jiffies(tm, TCP_METRIC_RTTVAR);
		if (m >= var)
			var = m;
		else
			var -= (var - m) >> 2;
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		tcp_metric_set_msecs(tm, TCP_METRIC_RTTVAR, var);
	}

	if (tcp_in_initial_slowstart(tp)) {
		/* Slow start still did not finish. */
		if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
			val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
			if (val && (tp->snd_cwnd >> 1) > val)
				tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
					       tp->snd_cwnd >> 1);
		}
		if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
			val = tcp_metric_get(tm, TCP_METRIC_CWND);
			if (tp->snd_cwnd > val)
				tcp_metric_set(tm, TCP_METRIC_CWND,
					       tp->snd_cwnd);
		}
	} else if (tp->snd_cwnd > tp->snd_ssthresh &&
		   icsk->icsk_ca_state == TCP_CA_Open) {
		/* Cong. avoidance phase, cwnd is reliable. */
		if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH))
			tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
				       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
		if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
			val = tcp_metric_get(tm, TCP_METRIC_CWND);
429
			tcp_metric_set(tm, TCP_METRIC_CWND, (val + tp->snd_cwnd) >> 1);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		}
	} else {
		/* Else slow start did not finish, cwnd is non-sense,
		 * ssthresh may be also invalid.
		 */
		if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
			val = tcp_metric_get(tm, TCP_METRIC_CWND);
			tcp_metric_set(tm, TCP_METRIC_CWND,
				       (val + tp->snd_ssthresh) >> 1);
		}
		if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
			val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
			if (val && tp->snd_ssthresh > val)
				tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
					       tp->snd_ssthresh);
		}
		if (!tcp_metric_locked(tm, TCP_METRIC_REORDERING)) {
			val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
			if (val < tp->reordering &&
449
			    tp->reordering != sysctl_tcp_reordering)
450 451
				tcp_metric_set(tm, TCP_METRIC_REORDERING,
					       tp->reordering);
452 453
		}
	}
454 455 456
	tm->tcpm_stamp = jiffies;
out_unlock:
	rcu_read_unlock();
457 458 459 460 461 462 463
}

/* Initialize metrics on socket. */

void tcp_init_metrics(struct sock *sk)
{
	struct dst_entry *dst = __sk_dst_get(sk);
464 465
	struct tcp_sock *tp = tcp_sk(sk);
	struct tcp_metrics_block *tm;
466
	u32 val, crtt = 0; /* cached RTT scaled by 8 */
467 468 469 470 471 472

	if (dst == NULL)
		goto reset;

	dst_confirm(dst);

473 474 475 476 477 478 479 480 481 482 483 484 485
	rcu_read_lock();
	tm = tcp_get_metrics(sk, dst, true);
	if (!tm) {
		rcu_read_unlock();
		goto reset;
	}

	if (tcp_metric_locked(tm, TCP_METRIC_CWND))
		tp->snd_cwnd_clamp = tcp_metric_get(tm, TCP_METRIC_CWND);

	val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
	if (val) {
		tp->snd_ssthresh = val;
486 487 488 489 490 491 492 493
		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
			tp->snd_ssthresh = tp->snd_cwnd_clamp;
	} else {
		/* ssthresh may have been reduced unnecessarily during.
		 * 3WHS. Restore it back to its initial default.
		 */
		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
	}
494 495
	val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
	if (val && tp->reordering != val) {
496 497
		tcp_disable_fack(tp);
		tcp_disable_early_retrans(tp);
498
		tp->reordering = val;
499 500
	}

501
	crtt = tcp_metric_get_jiffies(tm, TCP_METRIC_RTT);
502
	rcu_read_unlock();
503
reset:
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	/* The initial RTT measurement from the SYN/SYN-ACK is not ideal
	 * to seed the RTO for later data packets because SYN packets are
	 * small. Use the per-dst cached values to seed the RTO but keep
	 * the RTT estimator variables intact (e.g., srtt, mdev, rttvar).
	 * Later the RTO will be updated immediately upon obtaining the first
	 * data RTT sample (tcp_rtt_estimator()). Hence the cached RTT only
	 * influences the first RTO but not later RTT estimation.
	 *
	 * But if RTT is not available from the SYN (due to retransmits or
	 * syn cookies) or the cache, force a conservative 3secs timeout.
	 *
	 * A bit of theory. RTT is time passed after "normal" sized packet
	 * is sent until it is ACKed. In normal circumstances sending small
	 * packets force peer to delay ACKs and calculation is correct too.
	 * The algorithm is adaptive and, provided we follow specs, it
	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
	 * tricks sort of "quick acks" for time long enough to decrease RTT
	 * to low value, and then abruptly stops to do it and starts to delay
	 * ACKs, wait for troubles.
	 */
524
	if (crtt > tp->srtt) {
525 526 527
		/* Set RTO like tcp_rtt_estimator(), but from cached RTT. */
		crtt >>= 3;
		inet_csk(sk)->icsk_rto = crtt + max(2 * crtt, tcp_rto_min(sk));
528
	} else if (tp->srtt == 0) {
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
		 * 3WHS. This is most likely due to retransmission,
		 * including spurious one. Reset the RTO back to 3secs
		 * from the more aggressive 1sec to avoid more spurious
		 * retransmission.
		 */
		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
	}
	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
	 * retransmitted. In light of RFC6298 more aggressive 1sec
	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
	 * retransmission has occurred.
	 */
	if (tp->total_retrans > 1)
		tp->snd_cwnd = 1;
	else
		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
	tp->snd_cwnd_stamp = tcp_time_stamp;
}
549

550
bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check)
551
{
552 553 554
	struct tcp_metrics_block *tm;
	bool ret;

555 556
	if (!dst)
		return false;
557 558 559

	rcu_read_lock();
	tm = __tcp_get_metrics_req(req, dst);
560 561 562 563 564 565 566 567 568 569 570 571 572
	if (paws_check) {
		if (tm &&
		    (u32)get_seconds() - tm->tcpm_ts_stamp < TCP_PAWS_MSL &&
		    (s32)(tm->tcpm_ts - req->ts_recent) > TCP_PAWS_WINDOW)
			ret = false;
		else
			ret = true;
	} else {
		if (tm && tcp_metric_get(tm, TCP_METRIC_RTT) && tm->tcpm_ts_stamp)
			ret = true;
		else
			ret = false;
	}
573 574 575
	rcu_read_unlock();

	return ret;
576 577
}
EXPORT_SYMBOL_GPL(tcp_peer_is_proven);
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst)
{
	struct tcp_metrics_block *tm;

	rcu_read_lock();
	tm = tcp_get_metrics(sk, dst, true);
	if (tm) {
		struct tcp_sock *tp = tcp_sk(sk);

		if ((u32)get_seconds() - tm->tcpm_ts_stamp <= TCP_PAWS_MSL) {
			tp->rx_opt.ts_recent_stamp = tm->tcpm_ts_stamp;
			tp->rx_opt.ts_recent = tm->tcpm_ts;
		}
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(tcp_fetch_timewait_stamp);

/* VJ's idea. Save last timestamp seen from this destination and hold
 * it at least for normal timewait interval to use for duplicate
 * segment detection in subsequent connections, before they enter
 * synchronized state.
 */
bool tcp_remember_stamp(struct sock *sk)
{
	struct dst_entry *dst = __sk_dst_get(sk);
	bool ret = false;

	if (dst) {
		struct tcp_metrics_block *tm;

		rcu_read_lock();
		tm = tcp_get_metrics(sk, dst, true);
		if (tm) {
			struct tcp_sock *tp = tcp_sk(sk);

			if ((s32)(tm->tcpm_ts - tp->rx_opt.ts_recent) <= 0 ||
			    ((u32)get_seconds() - tm->tcpm_ts_stamp > TCP_PAWS_MSL &&
			     tm->tcpm_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
				tm->tcpm_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
				tm->tcpm_ts = tp->rx_opt.ts_recent;
			}
			ret = true;
		}
		rcu_read_unlock();
	}
	return ret;
}

bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
{
	struct tcp_metrics_block *tm;
	bool ret = false;

	rcu_read_lock();
	tm = __tcp_get_metrics_tw(tw);
635
	if (tm) {
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		const struct tcp_timewait_sock *tcptw;
		struct sock *sk = (struct sock *) tw;

		tcptw = tcp_twsk(sk);
		if ((s32)(tm->tcpm_ts - tcptw->tw_ts_recent) <= 0 ||
		    ((u32)get_seconds() - tm->tcpm_ts_stamp > TCP_PAWS_MSL &&
		     tm->tcpm_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
			tm->tcpm_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
			tm->tcpm_ts	   = tcptw->tw_ts_recent;
		}
		ret = true;
	}
	rcu_read_unlock();

	return ret;
}

653 654 655
static DEFINE_SEQLOCK(fastopen_seqlock);

void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
656 657
			    struct tcp_fastopen_cookie *cookie,
			    int *syn_loss, unsigned long *last_syn_loss)
658 659 660 661 662 663 664 665 666 667 668 669 670 671
{
	struct tcp_metrics_block *tm;

	rcu_read_lock();
	tm = tcp_get_metrics(sk, __sk_dst_get(sk), false);
	if (tm) {
		struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
		unsigned int seq;

		do {
			seq = read_seqbegin(&fastopen_seqlock);
			if (tfom->mss)
				*mss = tfom->mss;
			*cookie = tfom->cookie;
672 673
			*syn_loss = tfom->syn_loss;
			*last_syn_loss = *syn_loss ? tfom->last_syn_loss : 0;
674 675 676 677 678 679
		} while (read_seqretry(&fastopen_seqlock, seq));
	}
	rcu_read_unlock();
}

void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
680
			    struct tcp_fastopen_cookie *cookie, bool syn_lost)
681
{
682
	struct dst_entry *dst = __sk_dst_get(sk);
683 684
	struct tcp_metrics_block *tm;

685 686
	if (!dst)
		return;
687
	rcu_read_lock();
688
	tm = tcp_get_metrics(sk, dst, true);
689 690 691 692
	if (tm) {
		struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;

		write_seqlock_bh(&fastopen_seqlock);
693 694 695
		if (mss)
			tfom->mss = mss;
		if (cookie && cookie->len > 0)
696
			tfom->cookie = *cookie;
697 698 699 700 701
		if (syn_lost) {
			++tfom->syn_loss;
			tfom->last_syn_loss = jiffies;
		} else
			tfom->syn_loss = 0;
702 703 704 705 706
		write_sequnlock_bh(&fastopen_seqlock);
	}
	rcu_read_unlock();
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static struct genl_family tcp_metrics_nl_family = {
	.id		= GENL_ID_GENERATE,
	.hdrsize	= 0,
	.name		= TCP_METRICS_GENL_NAME,
	.version	= TCP_METRICS_GENL_VERSION,
	.maxattr	= TCP_METRICS_ATTR_MAX,
	.netnsok	= true,
};

static struct nla_policy tcp_metrics_nl_policy[TCP_METRICS_ATTR_MAX + 1] = {
	[TCP_METRICS_ATTR_ADDR_IPV4]	= { .type = NLA_U32, },
	[TCP_METRICS_ATTR_ADDR_IPV6]	= { .type = NLA_BINARY,
					    .len = sizeof(struct in6_addr), },
	/* Following attributes are not received for GET/DEL,
	 * we keep them for reference
	 */
#if 0
	[TCP_METRICS_ATTR_AGE]		= { .type = NLA_MSECS, },
	[TCP_METRICS_ATTR_TW_TSVAL]	= { .type = NLA_U32, },
	[TCP_METRICS_ATTR_TW_TS_STAMP]	= { .type = NLA_S32, },
	[TCP_METRICS_ATTR_VALS]		= { .type = NLA_NESTED, },
	[TCP_METRICS_ATTR_FOPEN_MSS]	= { .type = NLA_U16, },
	[TCP_METRICS_ATTR_FOPEN_SYN_DROPS]	= { .type = NLA_U16, },
	[TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS]	= { .type = NLA_MSECS, },
	[TCP_METRICS_ATTR_FOPEN_COOKIE]	= { .type = NLA_BINARY,
					    .len = TCP_FASTOPEN_COOKIE_MAX, },
#endif
};

/* Add attributes, caller cancels its header on failure */
static int tcp_metrics_fill_info(struct sk_buff *msg,
				 struct tcp_metrics_block *tm)
{
	struct nlattr *nest;
	int i;

743
	switch (tm->tcpm_daddr.family) {
744 745
	case AF_INET:
		if (nla_put_be32(msg, TCP_METRICS_ATTR_ADDR_IPV4,
746
				tm->tcpm_daddr.addr.a4) < 0)
747
			goto nla_put_failure;
748 749 750
		if (nla_put_be32(msg, TCP_METRICS_ATTR_SADDR_IPV4,
				tm->tcpm_saddr.addr.a4) < 0)
			goto nla_put_failure;
751 752 753
		break;
	case AF_INET6:
		if (nla_put(msg, TCP_METRICS_ATTR_ADDR_IPV6, 16,
754
			    tm->tcpm_daddr.addr.a6) < 0)
755
			goto nla_put_failure;
756 757 758
		if (nla_put(msg, TCP_METRICS_ATTR_SADDR_IPV6, 16,
			    tm->tcpm_saddr.addr.a6) < 0)
			goto nla_put_failure;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		break;
	default:
		return -EAFNOSUPPORT;
	}

	if (nla_put_msecs(msg, TCP_METRICS_ATTR_AGE,
			  jiffies - tm->tcpm_stamp) < 0)
		goto nla_put_failure;
	if (tm->tcpm_ts_stamp) {
		if (nla_put_s32(msg, TCP_METRICS_ATTR_TW_TS_STAMP,
				(s32) (get_seconds() - tm->tcpm_ts_stamp)) < 0)
			goto nla_put_failure;
		if (nla_put_u32(msg, TCP_METRICS_ATTR_TW_TSVAL,
				tm->tcpm_ts) < 0)
			goto nla_put_failure;
	}

	{
		int n = 0;

		nest = nla_nest_start(msg, TCP_METRICS_ATTR_VALS);
		if (!nest)
			goto nla_put_failure;
		for (i = 0; i < TCP_METRIC_MAX + 1; i++) {
			if (!tm->tcpm_vals[i])
				continue;
			if (nla_put_u32(msg, i + 1, tm->tcpm_vals[i]) < 0)
				goto nla_put_failure;
			n++;
		}
		if (n)
			nla_nest_end(msg, nest);
		else
			nla_nest_cancel(msg, nest);
	}

	{
		struct tcp_fastopen_metrics tfom_copy[1], *tfom;
		unsigned int seq;

		do {
			seq = read_seqbegin(&fastopen_seqlock);
			tfom_copy[0] = tm->tcpm_fastopen;
		} while (read_seqretry(&fastopen_seqlock, seq));

		tfom = tfom_copy;
		if (tfom->mss &&
		    nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_MSS,
				tfom->mss) < 0)
			goto nla_put_failure;
		if (tfom->syn_loss &&
		    (nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROPS,
				tfom->syn_loss) < 0 ||
		     nla_put_msecs(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS,
				jiffies - tfom->last_syn_loss) < 0))
			goto nla_put_failure;
		if (tfom->cookie.len > 0 &&
		    nla_put(msg, TCP_METRICS_ATTR_FOPEN_COOKIE,
			    tfom->cookie.len, tfom->cookie.val) < 0)
			goto nla_put_failure;
	}

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

static int tcp_metrics_dump_info(struct sk_buff *skb,
				 struct netlink_callback *cb,
				 struct tcp_metrics_block *tm)
{
	void *hdr;

833
	hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
			  &tcp_metrics_nl_family, NLM_F_MULTI,
			  TCP_METRICS_CMD_GET);
	if (!hdr)
		return -EMSGSIZE;

	if (tcp_metrics_fill_info(skb, tm) < 0)
		goto nla_put_failure;

	return genlmsg_end(skb, hdr);

nla_put_failure:
	genlmsg_cancel(skb, hdr);
	return -EMSGSIZE;
}

static int tcp_metrics_nl_dump(struct sk_buff *skb,
			       struct netlink_callback *cb)
{
	struct net *net = sock_net(skb->sk);
	unsigned int max_rows = 1U << net->ipv4.tcp_metrics_hash_log;
	unsigned int row, s_row = cb->args[0];
	int s_col = cb->args[1], col = s_col;

	for (row = s_row; row < max_rows; row++, s_col = 0) {
		struct tcp_metrics_block *tm;
		struct tcpm_hash_bucket *hb = net->ipv4.tcp_metrics_hash + row;

		rcu_read_lock();
		for (col = 0, tm = rcu_dereference(hb->chain); tm;
		     tm = rcu_dereference(tm->tcpm_next), col++) {
			if (col < s_col)
				continue;
			if (tcp_metrics_dump_info(skb, cb, tm) < 0) {
				rcu_read_unlock();
				goto done;
			}
		}
		rcu_read_unlock();
	}

done:
	cb->args[0] = row;
	cb->args[1] = col;
	return skb->len;
}

static int parse_nl_addr(struct genl_info *info, struct inetpeer_addr *addr,
			 unsigned int *hash, int optional)
{
	struct nlattr *a;

	a = info->attrs[TCP_METRICS_ATTR_ADDR_IPV4];
	if (a) {
		addr->family = AF_INET;
		addr->addr.a4 = nla_get_be32(a);
		*hash = (__force unsigned int) addr->addr.a4;
		return 0;
	}
	a = info->attrs[TCP_METRICS_ATTR_ADDR_IPV6];
	if (a) {
894
		if (nla_len(a) != sizeof(struct in6_addr))
895 896 897 898 899 900 901 902 903 904 905 906
			return -EINVAL;
		addr->family = AF_INET6;
		memcpy(addr->addr.a6, nla_data(a), sizeof(addr->addr.a6));
		*hash = ipv6_addr_hash((struct in6_addr *) addr->addr.a6);
		return 0;
	}
	return optional ? 1 : -EAFNOSUPPORT;
}

static int tcp_metrics_nl_cmd_get(struct sk_buff *skb, struct genl_info *info)
{
	struct tcp_metrics_block *tm;
907
	struct inetpeer_addr daddr;
908 909 910 911 912 913
	unsigned int hash;
	struct sk_buff *msg;
	struct net *net = genl_info_net(info);
	void *reply;
	int ret;

914
	ret = parse_nl_addr(info, &daddr, &hash, 0);
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	if (ret < 0)
		return ret;

	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
	if (!msg)
		return -ENOMEM;

	reply = genlmsg_put_reply(msg, info, &tcp_metrics_nl_family, 0,
				  info->genlhdr->cmd);
	if (!reply)
		goto nla_put_failure;

	hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
	ret = -ESRCH;
	rcu_read_lock();
	for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
	     tm = rcu_dereference(tm->tcpm_next)) {
932
		if (addr_same(&tm->tcpm_daddr, &daddr)) {
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
			ret = tcp_metrics_fill_info(msg, tm);
			break;
		}
	}
	rcu_read_unlock();
	if (ret < 0)
		goto out_free;

	genlmsg_end(msg, reply);
	return genlmsg_reply(msg, info);

nla_put_failure:
	ret = -EMSGSIZE;

out_free:
	nlmsg_free(msg);
	return ret;
}

#define deref_locked_genl(p)	\
	rcu_dereference_protected(p, lockdep_genl_is_held() && \
				     lockdep_is_held(&tcp_metrics_lock))

#define deref_genl(p)	rcu_dereference_protected(p, lockdep_genl_is_held())

static int tcp_metrics_flush_all(struct net *net)
{
	unsigned int max_rows = 1U << net->ipv4.tcp_metrics_hash_log;
	struct tcpm_hash_bucket *hb = net->ipv4.tcp_metrics_hash;
	struct tcp_metrics_block *tm;
	unsigned int row;

	for (row = 0; row < max_rows; row++, hb++) {
		spin_lock_bh(&tcp_metrics_lock);
		tm = deref_locked_genl(hb->chain);
		if (tm)
			hb->chain = NULL;
		spin_unlock_bh(&tcp_metrics_lock);
		while (tm) {
			struct tcp_metrics_block *next;

			next = deref_genl(tm->tcpm_next);
			kfree_rcu(tm, rcu_head);
			tm = next;
		}
	}
	return 0;
}

static int tcp_metrics_nl_cmd_del(struct sk_buff *skb, struct genl_info *info)
{
	struct tcpm_hash_bucket *hb;
985
	struct tcp_metrics_block *tm, *tmlist = NULL;
986
	struct tcp_metrics_block __rcu **pp;
987
	struct inetpeer_addr daddr;
988 989 990 991
	unsigned int hash;
	struct net *net = genl_info_net(info);
	int ret;

992
	ret = parse_nl_addr(info, &daddr, &hash, 1);
993 994 995 996 997 998 999 1000 1001
	if (ret < 0)
		return ret;
	if (ret > 0)
		return tcp_metrics_flush_all(net);

	hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
	hb = net->ipv4.tcp_metrics_hash + hash;
	pp = &hb->chain;
	spin_lock_bh(&tcp_metrics_lock);
1002
	for (tm = deref_locked_genl(*pp); tm; tm = deref_locked_genl(*pp)) {
1003
		if (addr_same(&tm->tcpm_daddr, &daddr)) {
1004
			*pp = tm->tcpm_next;
1005 1006 1007 1008
			tm->tcpm_next = tmlist;
			tmlist = tm;
		} else {
			pp = &tm->tcpm_next;
1009 1010 1011
		}
	}
	spin_unlock_bh(&tcp_metrics_lock);
1012
	if (!tmlist)
1013
		return -ESRCH;
1014 1015 1016 1017
	for (tm = tmlist; tm; tm = tmlist) {
		tmlist = tm->tcpm_next;
		kfree_rcu(tm, rcu_head);
	}
1018 1019 1020
	return 0;
}

1021
static const struct genl_ops tcp_metrics_nl_ops[] = {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	{
		.cmd = TCP_METRICS_CMD_GET,
		.doit = tcp_metrics_nl_cmd_get,
		.dumpit = tcp_metrics_nl_dump,
		.policy = tcp_metrics_nl_policy,
		.flags = GENL_ADMIN_PERM,
	},
	{
		.cmd = TCP_METRICS_CMD_DEL,
		.doit = tcp_metrics_nl_cmd_del,
		.policy = tcp_metrics_nl_policy,
		.flags = GENL_ADMIN_PERM,
	},
};

E
Eric Dumazet 已提交
1037
static unsigned int tcpmhash_entries;
1038 1039 1040 1041 1042 1043 1044
static int __init set_tcpmhash_entries(char *str)
{
	ssize_t ret;

	if (!str)
		return 0;

E
Eric Dumazet 已提交
1045
	ret = kstrtouint(str, 0, &tcpmhash_entries);
1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (ret)
		return 0;

	return 1;
}
__setup("tcpmhash_entries=", set_tcpmhash_entries);

static int __net_init tcp_net_metrics_init(struct net *net)
{
E
Eric Dumazet 已提交
1055 1056
	size_t size;
	unsigned int slots;
1057 1058 1059 1060 1061 1062 1063 1064 1065

	slots = tcpmhash_entries;
	if (!slots) {
		if (totalram_pages >= 128 * 1024)
			slots = 16 * 1024;
		else
			slots = 8 * 1024;
	}

E
Eric Dumazet 已提交
1066 1067
	net->ipv4.tcp_metrics_hash_log = order_base_2(slots);
	size = sizeof(struct tcpm_hash_bucket) << net->ipv4.tcp_metrics_hash_log;
1068

1069 1070 1071 1072
	net->ipv4.tcp_metrics_hash = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
	if (!net->ipv4.tcp_metrics_hash)
		net->ipv4.tcp_metrics_hash = vzalloc(size);

1073 1074 1075 1076 1077 1078 1079 1080
	if (!net->ipv4.tcp_metrics_hash)
		return -ENOMEM;

	return 0;
}

static void __net_exit tcp_net_metrics_exit(struct net *net)
{
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	unsigned int i;

	for (i = 0; i < (1U << net->ipv4.tcp_metrics_hash_log) ; i++) {
		struct tcp_metrics_block *tm, *next;

		tm = rcu_dereference_protected(net->ipv4.tcp_metrics_hash[i].chain, 1);
		while (tm) {
			next = rcu_dereference_protected(tm->tcpm_next, 1);
			kfree(tm);
			tm = next;
		}
	}
1093 1094 1095 1096
	if (is_vmalloc_addr(net->ipv4.tcp_metrics_hash))
		vfree(net->ipv4.tcp_metrics_hash);
	else
		kfree(net->ipv4.tcp_metrics_hash);
1097 1098 1099 1100 1101 1102 1103 1104 1105
}

static __net_initdata struct pernet_operations tcp_net_metrics_ops = {
	.init	=	tcp_net_metrics_init,
	.exit	=	tcp_net_metrics_exit,
};

void __init tcp_metrics_init(void)
{
1106 1107 1108 1109 1110 1111
	int ret;

	ret = register_pernet_subsys(&tcp_net_metrics_ops);
	if (ret < 0)
		goto cleanup;
	ret = genl_register_family_with_ops(&tcp_metrics_nl_family,
1112
					    tcp_metrics_nl_ops);
1113 1114 1115 1116 1117 1118 1119 1120 1121
	if (ret < 0)
		goto cleanup_subsys;
	return;

cleanup_subsys:
	unregister_pernet_subsys(&tcp_net_metrics_ops);

cleanup:
	return;
1122
}