setup_64.c 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/ide.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
36
#include <linux/bootmem.h>
37
#include <asm/io.h>
38
#include <asm/kdump.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/lmb.h>
60
#include <asm/iseries/it_lp_naca.h>
61
#include <asm/firmware.h>
P
Paul Mackerras 已提交
62
#include <asm/xmon.h>
D
David Gibson 已提交
63
#include <asm/udbg.h>
64
#include <asm/kexec.h>
65

S
Stephen Rothwell 已提交
66 67
#include "setup.h"

68 69 70 71 72 73 74 75 76 77 78
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

int have_of = 1;
int boot_cpuid = 0;
dev_t boot_dev;
u64 ppc64_pft_size;

79 80 81 82 83 84 85 86 87
/* Pick defaults since we might want to patch instructions
 * before we've read this from the device tree.
 */
struct ppc64_caches ppc64_caches = {
	.dline_size = 0x80,
	.log_dline_size = 7,
	.iline_size = 0x80,
	.log_iline_size = 7
};
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
EXPORT_SYMBOL_GPL(ppc64_caches);

/*
 * These are used in binfmt_elf.c to put aux entries on the stack
 * for each elf executable being started.
 */
int dcache_bsize;
int icache_bsize;
int ucache_bsize;

#ifdef CONFIG_MAGIC_SYSRQ
unsigned long SYSRQ_KEY;
#endif /* CONFIG_MAGIC_SYSRQ */


#ifdef CONFIG_SMP

static int smt_enabled_cmdline;

/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
	struct device_node *dn;
	char *smt_option;

	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline)
		return;

	dn = of_find_node_by_path("/options");

	if (dn) {
		smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);

                if (smt_option) {
			if (!strcmp(smt_option, "on"))
				smt_enabled_at_boot = 1;
			else if (!strcmp(smt_option, "off"))
				smt_enabled_at_boot = 0;
                }
        }
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
	smt_enabled_cmdline = 1;

	if (!p)
		return 0;

	if (!strcmp(p, "on") || !strcmp(p, "1"))
		smt_enabled_at_boot = 1;
	else if (!strcmp(p, "off") || !strcmp(p, "0"))
		smt_enabled_at_boot = 0;

	return 0;
}
early_param("smt-enabled", early_smt_enabled);

P
Paul Mackerras 已提交
148 149
#else
#define check_smt_enabled()
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#endif /* CONFIG_SMP */

/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
 * some early parsing of the device-tree to setup out LMB
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
173 174
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();
175

176
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
177 178 179 180 181 182 183 184

	/*
	 * Do early initializations using the flattened device
	 * tree, like retreiving the physical memory map or
	 * calculating/retreiving the hash table size
	 */
	early_init_devtree(__va(dt_ptr));

185 186 187 188 189 190 191 192
	/* Now we know the logical id of our boot cpu, setup the paca. */
	setup_boot_paca();

	/* Fix up paca fields required for the boot cpu */
	get_paca()->cpu_start = 1;
	get_paca()->stab_real = __pa((u64)&initial_stab);
	get_paca()->stab_addr = (u64)&initial_stab;

193 194
	/* Probe the machine type */
	probe_machine();
195

196
	setup_kdump_trampoline();
197

198 199 200
	DBG("Found, Initializing memory management...\n");

	/*
201 202 203
	 * Initialize the MMU Hash table and create the linear mapping
	 * of memory. Has to be done before stab/slb initialization as
	 * this is currently where the page size encoding is obtained
204
	 */
205
	htab_initialize();
206 207

	/*
208
	 * Initialize stab / SLB management except on iSeries
209
	 */
210 211 212 213
	if (cpu_has_feature(CPU_FTR_SLB))
		slb_initialize();
	else if (!firmware_has_feature(FW_FEATURE_ISERIES))
		stab_initialize(get_paca()->stab_real);
214 215 216 217

	DBG(" <- early_setup()\n");
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
	struct paca_struct *lpaca = get_paca();

	/* Mark enabled in PACA */
	lpaca->proc_enabled = 0;

	/* Initialize hash table for that CPU */
	htab_initialize_secondary();

	/* Initialize STAB/SLB. We use a virtual address as it works
	 * in real mode on pSeries and we want a virutal address on
	 * iSeries anyway
	 */
	if (cpu_has_feature(CPU_FTR_SLB))
		slb_initialize();
	else
		stab_initialize(lpaca->stab_addr);
}

#endif /* CONFIG_SMP */
240

241 242 243 244
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
void smp_release_cpus(void)
{
	extern unsigned long __secondary_hold_spinloop;
245
	unsigned long *ptr;
246 247 248 249 250 251 252 253 254 255

	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
	 * This is useless but harmless on iSeries, secondaries are already
	 * waiting on their paca spinloops. */

256 257 258
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
	*ptr = 1;
259 260 261 262 263 264
	mb();

	DBG(" <- smp_release_cpus()\n");
}
#endif /* CONFIG_SMP || CONFIG_KEXEC */

265
/*
266 267
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
static void __init initialize_cache_info(void)
{
	struct device_node *np;
	unsigned long num_cpus = 0;

	DBG(" -> initialize_cache_info()\n");

	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
		num_cpus += 1;

		/* We're assuming *all* of the CPUs have the same
		 * d-cache and i-cache sizes... -Peter
		 */

		if ( num_cpus == 1 ) {
			u32 *sizep, *lsizep;
			u32 size, lsize;
			const char *dc, *ic;

			/* Then read cache informations */
292
			if (machine_is(powermac)) {
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
				dc = "d-cache-block-size";
				ic = "i-cache-block-size";
			} else {
				dc = "d-cache-line-size";
				ic = "i-cache-line-size";
			}

			size = 0;
			lsize = cur_cpu_spec->dcache_bsize;
			sizep = (u32 *)get_property(np, "d-cache-size", NULL);
			if (sizep != NULL)
				size = *sizep;
			lsizep = (u32 *) get_property(np, dc, NULL);
			if (lsizep != NULL)
				lsize = *lsizep;
			if (sizep == 0 || lsizep == 0)
				DBG("Argh, can't find dcache properties ! "
				    "sizep: %p, lsizep: %p\n", sizep, lsizep);

312 313
			ppc64_caches.dsize = size;
			ppc64_caches.dline_size = lsize;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
			ppc64_caches.log_dline_size = __ilog2(lsize);
			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;

			size = 0;
			lsize = cur_cpu_spec->icache_bsize;
			sizep = (u32 *)get_property(np, "i-cache-size", NULL);
			if (sizep != NULL)
				size = *sizep;
			lsizep = (u32 *)get_property(np, ic, NULL);
			if (lsizep != NULL)
				lsize = *lsizep;
			if (sizep == 0 || lsizep == 0)
				DBG("Argh, can't find icache properties ! "
				    "sizep: %p, lsizep: %p\n", sizep, lsizep);

329 330
			ppc64_caches.isize = size;
			ppc64_caches.iline_size = lsize;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
			ppc64_caches.log_iline_size = __ilog2(lsize);
			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
		}
	}

	DBG(" <- initialize_cache_info()\n");
}


/*
 * Do some initial setup of the system.  The parameters are those which 
 * were passed in from the bootloader.
 */
void __init setup_system(void)
{
	DBG(" -> setup_system()\n");

	/*
	 * Unflatten the device-tree passed by prom_init or kexec
	 */
	unflatten_device_tree();

	/*
	 * Fill the ppc64_caches & systemcfg structures with informations
A
Adrian Bunk 已提交
355
	 * retrieved from the device-tree. Need to be called before
356
	 * finish_device_tree() since the later requires some of the
357
	 * informations filled up here to properly parse the interrupt tree.
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	 */
	initialize_cache_info();

#ifdef CONFIG_PPC_RTAS
	/*
	 * Initialize RTAS if available
	 */
	rtas_initialize();
#endif /* CONFIG_PPC_RTAS */

	/*
	 * Check if we have an initrd provided via the device-tree
	 */
	check_for_initrd();

	/*
	 * Do some platform specific early initializations, that includes
	 * setting up the hash table pointers. It also sets up some interrupt-mapping
	 * related options that will be used by finish_device_tree()
	 */
	ppc_md.init_early();

380 381 382 383 384 385 386
 	/*
	 * We can discover serial ports now since the above did setup the
	 * hash table management for us, thus ioremap works. We do that early
	 * so that further code can be debugged
	 */
	find_legacy_serial_ports();

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	/*
	 * "Finish" the device-tree, that is do the actual parsing of
	 * some of the properties like the interrupt map
	 */
	finish_device_tree();

	/*
	 * Initialize xmon
	 */
#ifdef CONFIG_XMON_DEFAULT
	xmon_init(1);
#endif
	/*
	 * Register early console
	 */
	register_early_udbg_console();

404 405 406
	if (do_early_xmon)
		debugger(NULL);

P
Paul Mackerras 已提交
407 408
	check_smt_enabled();
	smp_setup_cpu_maps();
409

410
#ifdef CONFIG_SMP
411 412 413 414
	/* Release secondary cpus out of their spinloops at 0x60 now that
	 * we can map physical -> logical CPU ids
	 */
	smp_release_cpus();
415
#endif
416 417 418 419 420

	printk("Starting Linux PPC64 %s\n", system_utsname.version);

	printk("-----------------------------------------------------\n");
	printk("ppc64_pft_size                = 0x%lx\n", ppc64_pft_size);
421 422 423
	printk("ppc64_interrupt_controller    = 0x%ld\n",
	       ppc64_interrupt_controller);
	printk("physicalMemorySize            = 0x%lx\n", lmb_phys_mem_size());
424
	printk("ppc64_caches.dcache_line_size = 0x%x\n",
425
	       ppc64_caches.dline_size);
426
	printk("ppc64_caches.icache_line_size = 0x%x\n",
427
	       ppc64_caches.iline_size);
428 429
	printk("htab_address                  = 0x%p\n", htab_address);
	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
430 431 432
#if PHYSICAL_START > 0
	printk("physical_start                = 0x%x\n", PHYSICAL_START);
#endif
433 434 435 436 437 438 439 440 441 442 443 444 445 446
	printk("-----------------------------------------------------\n");

	DBG(" <- setup_system()\n");
}

#ifdef CONFIG_IRQSTACKS
static void __init irqstack_early_init(void)
{
	unsigned int i;

	/*
	 * interrupt stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them.
	 */
447
	for_each_possible_cpu(i) {
448 449 450 451 452 453
		softirq_ctx[i] = (struct thread_info *)
			__va(lmb_alloc_base(THREAD_SIZE,
					    THREAD_SIZE, 0x10000000));
		hardirq_ctx[i] = (struct thread_info *)
			__va(lmb_alloc_base(THREAD_SIZE,
					    THREAD_SIZE, 0x10000000));
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	}
}
#else
#define irqstack_early_init()
#endif

/*
 * Stack space used when we detect a bad kernel stack pointer, and
 * early in SMP boots before relocation is enabled.
 */
static void __init emergency_stack_init(void)
{
	unsigned long limit;
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
	 * bringup, we need to get at them in real mode. This means they
	 * must also be within the RMO region.
	 */
	limit = min(0x10000000UL, lmb.rmo_size);

480
	for_each_possible_cpu(i)
481 482
		paca[i].emergency_sp =
		__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

/*
 * Called into from start_kernel, after lock_kernel has been called.
 * Initializes bootmem, which is unsed to manage page allocation until
 * mem_init is called.
 */
void __init setup_arch(char **cmdline_p)
{
	ppc64_boot_msg(0x12, "Setup Arch");

	*cmdline_p = cmd_line;

	/*
	 * Set cache line size based on type of cpu as a default.
	 * Systems with OF can look in the properties on the cpu node(s)
	 * for a possibly more accurate value.
	 */
	dcache_bsize = ppc64_caches.dline_size;
	icache_bsize = ppc64_caches.iline_size;

	/* reboot on panic */
	panic_timeout = 180;

	if (ppc_md.panic)
508
		setup_panic();
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

	init_mm.start_code = PAGE_OFFSET;
	init_mm.end_code = (unsigned long) _etext;
	init_mm.end_data = (unsigned long) _edata;
	init_mm.brk = klimit;
	
	irqstack_early_init();
	emergency_stack_init();

	stabs_alloc();

	/* set up the bootmem stuff with available memory */
	do_init_bootmem();
	sparse_init();

524 525 526 527
#ifdef CONFIG_DUMMY_CONSOLE
	conswitchp = &dummy_con;
#endif

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	ppc_md.setup_arch();

	paging_init();
	ppc64_boot_msg(0x15, "Setup Done");
}


/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000

static void ppc64_do_msg(unsigned int src, const char *msg)
{
	if (ppc_md.progress) {
		char buf[128];

		sprintf(buf, "%08X\n", src);
		ppc_md.progress(buf, 0);
		snprintf(buf, 128, "%s", msg);
		ppc_md.progress(buf, 0);
	}
}

/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
	printk("[boot]%04x %s\n", src, msg);
}

/* Print a termination message (print only -- does not stop the kernel) */
void ppc64_terminate_msg(unsigned int src, const char *msg)
{
	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
	printk("[terminate]%04x %s\n", src, msg);
}

void cpu_die(void)
{
	if (ppc_md.cpu_die)
		ppc_md.cpu_die();
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

#ifdef CONFIG_SMP
void __init setup_per_cpu_areas(void)
{
	int i;
	unsigned long size;
	char *ptr;

	/* Copy section for each CPU (we discard the original) */
	size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
#ifdef CONFIG_MODULES
	if (size < PERCPU_ENOUGH_ROOM)
		size = PERCPU_ENOUGH_ROOM;
#endif

586
	for_each_possible_cpu(i) {
587 588 589 590 591 592 593 594 595
		ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size);
		if (!ptr)
			panic("Cannot allocate cpu data for CPU %d\n", i);

		paca[i].data_offset = ptr - __per_cpu_start;
		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
	}
}
#endif