vmscan.c 51.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

42 43
#include "internal.h"

L
Linus Torvalds 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	unsigned long nr_mapped;	/* From page_state */

	/* This context's GFP mask */
A
Al Viro 已提交
63
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
64 65 66

	int may_writepage;

67 68 69
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
};

/*
 * The list of shrinker callbacks used by to apply pressure to
 * ageable caches.
 */
struct shrinker {
	shrinker_t		shrinker;
	struct list_head	list;
	int			seeks;	/* seeks to recreate an obj */
	long			nr;	/* objs pending delete */
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
static long total_memory;

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

/*
 * Add a shrinker callback to be called from the vm
 */
struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
{
        struct shrinker *shrinker;

        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
        if (shrinker) {
	        shrinker->shrinker = theshrinker;
	        shrinker->seeks = seeks;
	        shrinker->nr = 0;
	        down_write(&shrinker_rwsem);
	        list_add_tail(&shrinker->list, &shrinker_list);
	        up_write(&shrinker_rwsem);
	}
	return shrinker;
}
EXPORT_SYMBOL(set_shrinker);

/*
 * Remove one
 */
void remove_shrinker(struct shrinker *shrinker)
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
	kfree(shrinker);
}
EXPORT_SYMBOL(remove_shrinker);

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
 * If the vm encounted mapped pages on the LRU it increase the pressure on
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
176 177
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
178
 */
179 180
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
181 182
{
	struct shrinker *shrinker;
183
	unsigned long ret = 0;
L
Linus Torvalds 已提交
184 185 186 187 188

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
189
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
190 191 192 193

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
194
		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
L
Linus Torvalds 已提交
195 196

		delta = (4 * scanned) / shrinker->seeks;
197
		delta *= max_pass;
L
Linus Torvalds 已提交
198 199
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
200 201 202 203 204 205 206 207 208 209 210 211 212
		if (shrinker->nr < 0) {
			printk(KERN_ERR "%s: nr=%ld\n",
					__FUNCTION__, shrinker->nr);
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
213 214 215 216 217 218 219

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
220
			int nr_before;
L
Linus Torvalds 已提交
221

222
			nr_before = (*shrinker->shrinker)(0, gfp_mask);
L
Linus Torvalds 已提交
223 224 225
			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
			if (shrink_ret == -1)
				break;
226 227
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236
			mod_page_state(slabs_scanned, this_scan);
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
237
	return ret;
L
Linus Torvalds 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
	return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
268
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
	if (page_mapping(page) == mapping) {
		if (error == -ENOSPC)
			set_bit(AS_ENOSPC, &mapping->flags);
		else
			set_bit(AS_EIO, &mapping->flags);
	}
	unlock_page(page);
}

/*
A
Andrew Morton 已提交
303 304
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
 */
static pageout_t pageout(struct page *page, struct address_space *mapping)
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
332
		if (PagePrivate(page)) {
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
				printk("%s: orphaned page\n", __FUNCTION__);
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
359
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}

		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (!mapping)
		return 0;		/* truncate got there first */

	write_lock_irq(&mapping->tree_lock);

	/*
	 * The non-racy check for busy page.  It is critical to check
	 * PageDirty _after_ making sure that the page is freeable and
	 * not in use by anybody. 	(pagecache + us == 2)
	 */
	if (unlikely(page_count(page) != 2))
		goto cannot_free;
	smp_rmb();
	if (unlikely(PageDirty(page)))
		goto cannot_free;

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
		write_unlock_irq(&mapping->tree_lock);
		swap_free(swap);
		__put_page(page);	/* The pagecache ref */
		return 1;
	}

	__remove_from_page_cache(page);
	write_unlock_irq(&mapping->tree_lock);
	__put_page(page);
	return 1;

cannot_free:
	write_unlock_irq(&mapping->tree_lock);
	return 0;
}

L
Linus Torvalds 已提交
411
/*
A
Andrew Morton 已提交
412
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
413
 */
A
Andrew Morton 已提交
414 415
static unsigned long shrink_page_list(struct list_head *page_list,
					struct scan_control *sc)
L
Linus Torvalds 已提交
416 417 418 419
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
420
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

		if (TestSetPageLocked(page))
			goto keep;

		BUG_ON(PageActive(page));

		sc->nr_scanned++;
442 443 444 445

		if (!sc->may_swap && page_mapped(page))
			goto keep_locked;

L
Linus Torvalds 已提交
446 447 448 449 450 451 452
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

		if (PageWriteback(page))
			goto keep_locked;

453
		referenced = page_referenced(page, 1);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462
		/* In active use or really unfreeable?  Activate it. */
		if (referenced && page_mapping_inuse(page))
			goto activate_locked;

#ifdef CONFIG_SWAP
		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
463
		if (PageAnon(page) && !PageSwapCache(page)) {
464 465
			if (!sc->may_swap)
				goto keep_locked;
466
			if (!add_to_swap(page, GFP_ATOMIC))
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479
				goto activate_locked;
		}
#endif /* CONFIG_SWAP */

		mapping = page_mapping(page);
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
480 481 482 483 484 485
			/*
			 * No unmapping if we do not swap
			 */
			if (!sc->may_swap)
				goto keep_locked;

486
			switch (try_to_unmap(page, 0)) {
L
Linus Torvalds 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
			if (referenced)
				goto keep_locked;
			if (!may_enter_fs)
				goto keep_locked;
501
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
				goto keep_locked;

			/* Page is dirty, try to write it out here */
			switch(pageout(page, mapping)) {
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
				if (PageWriteback(page) || PageDirty(page))
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
				if (TestSetPageLocked(page))
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
		 * will do this, as well as the blockdev mapping. 
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
		if (PagePrivate(page)) {
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
			if (!mapping && page_count(page) == 1)
				goto free_it;
		}

555 556
		if (!remove_mapping(mapping, page))
			goto keep_locked;
L
Linus Torvalds 已提交
557 558 559

free_it:
		unlock_page(page);
560
		nr_reclaimed++;
L
Linus Torvalds 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		if (!pagevec_add(&freed_pvec, page))
			__pagevec_release_nonlru(&freed_pvec);
		continue;

activate_locked:
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
		BUG_ON(PageLRU(page));
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
		__pagevec_release_nonlru(&freed_pvec);
	mod_page_state(pgactivate, pgactivate);
578
	return nr_reclaimed;
L
Linus Torvalds 已提交
579 580
}

581
#ifdef CONFIG_MIGRATION
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void move_to_lru(struct page *page)
{
	list_del(&page->lru);
	if (PageActive(page)) {
		/*
		 * lru_cache_add_active checks that
		 * the PG_active bit is off.
		 */
		ClearPageActive(page);
		lru_cache_add_active(page);
	} else {
		lru_cache_add(page);
	}
	put_page(page);
}

/*
599
 * Add isolated pages on the list back to the LRU.
600 601 602
 *
 * returns the number of pages put back.
 */
603
unsigned long putback_lru_pages(struct list_head *l)
604 605 606
{
	struct page *page;
	struct page *page2;
607
	unsigned long count = 0;
608 609 610 611 612 613 614 615

	list_for_each_entry_safe(page, page2, l, lru) {
		move_to_lru(page);
		count++;
	}
	return count;
}

616 617 618 619 620 621 622 623 624
/*
 * Non migratable page
 */
int fail_migrate_page(struct page *newpage, struct page *page)
{
	return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);

625 626 627 628 629 630 631 632 633
/*
 * swapout a single page
 * page is locked upon entry, unlocked on exit
 */
static int swap_page(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

	if (page_mapped(page) && mapping)
634
		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
			goto unlock_retry;

	if (PageDirty(page)) {
		/* Page is dirty, try to write it out here */
		switch(pageout(page, mapping)) {
		case PAGE_KEEP:
		case PAGE_ACTIVATE:
			goto unlock_retry;

		case PAGE_SUCCESS:
			goto retry;

		case PAGE_CLEAN:
			; /* try to free the page below */
		}
	}

	if (PagePrivate(page)) {
		if (!try_to_release_page(page, GFP_KERNEL) ||
		    (!mapping && page_count(page) == 1))
			goto unlock_retry;
	}

	if (remove_mapping(mapping, page)) {
		/* Success */
		unlock_page(page);
		return 0;
	}

unlock_retry:
	unlock_page(page);

retry:
668
	return -EAGAIN;
669
}
670
EXPORT_SYMBOL(swap_page);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

/*
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
 * Christoph Lameter <clameter@sgi.com>
 */

/*
 * Remove references for a page and establish the new page with the correct
 * basic settings to be able to stop accesses to the page.
 */
686
int migrate_page_remove_references(struct page *newpage,
687 688 689 690 691 692 693 694 695 696 697
				struct page *page, int nr_refs)
{
	struct address_space *mapping = page_mapping(page);
	struct page **radix_pointer;

	/*
	 * Avoid doing any of the following work if the page count
	 * indicates that the page is in use or truncate has removed
	 * the page.
	 */
	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
698
		return -EAGAIN;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

	/*
	 * Establish swap ptes for anonymous pages or destroy pte
	 * maps for files.
	 *
	 * In order to reestablish file backed mappings the fault handlers
	 * will take the radix tree_lock which may then be used to stop
  	 * processses from accessing this page until the new page is ready.
	 *
	 * A process accessing via a swap pte (an anonymous page) will take a
	 * page_lock on the old page which will block the process until the
	 * migration attempt is complete. At that time the PageSwapCache bit
	 * will be examined. If the page was migrated then the PageSwapCache
	 * bit will be clear and the operation to retrieve the page will be
	 * retried which will find the new page in the radix tree. Then a new
	 * direct mapping may be generated based on the radix tree contents.
	 *
	 * If the page was not migrated then the PageSwapCache bit
	 * is still set and the operation may continue.
	 */
719 720 721
	if (try_to_unmap(page, 1) == SWAP_FAIL)
		/* A vma has VM_LOCKED set -> Permanent failure */
		return -EPERM;
722 723 724 725 726

	/*
	 * Give up if we were unable to remove all mappings.
	 */
	if (page_mapcount(page))
727
		return -EAGAIN;
728 729 730 731 732 733 734 735 736 737

	write_lock_irq(&mapping->tree_lock);

	radix_pointer = (struct page **)radix_tree_lookup_slot(
						&mapping->page_tree,
						page_index(page));

	if (!page_mapping(page) || page_count(page) != nr_refs ||
			*radix_pointer != page) {
		write_unlock_irq(&mapping->tree_lock);
738
		return -EAGAIN;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	}

	/*
	 * Now we know that no one else is looking at the page.
	 *
	 * Certain minimal information about a page must be available
	 * in order for other subsystems to properly handle the page if they
	 * find it through the radix tree update before we are finished
	 * copying the page.
	 */
	get_page(newpage);
	newpage->index = page->index;
	newpage->mapping = page->mapping;
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

	*radix_pointer = newpage;
	__put_page(page);
	write_unlock_irq(&mapping->tree_lock);

	return 0;
}
763
EXPORT_SYMBOL(migrate_page_remove_references);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

/*
 * Copy the page to its new location
 */
void migrate_page_copy(struct page *newpage, struct page *page)
{
	copy_highpage(newpage, page);

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
	if (PageActive(page))
		SetPageActive(newpage);
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
		set_page_dirty(newpage);
 	}

	ClearPageSwapCache(page);
	ClearPageActive(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);
	page->mapping = NULL;

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}
803
EXPORT_SYMBOL(migrate_page_copy);
804 805 806 807 808 809 810 811 812

/*
 * Common logic to directly migrate a single page suitable for
 * pages that do not use PagePrivate.
 *
 * Pages are locked upon entry and exit.
 */
int migrate_page(struct page *newpage, struct page *page)
{
813 814
	int rc;

815 816
	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

817 818 819 820
	rc = migrate_page_remove_references(newpage, page, 2);

	if (rc)
		return rc;
821 822 823

	migrate_page_copy(newpage, page);

824 825 826 827 828 829 830 831 832
	/*
	 * Remove auxiliary swap entries and replace
	 * them with real ptes.
	 *
	 * Note that a real pte entry will allow processes that are not
	 * waiting on the page lock to use the new page via the page tables
	 * before the new page is unlocked.
	 */
	remove_from_swap(newpage);
833 834
	return 0;
}
835
EXPORT_SYMBOL(migrate_page);
836

837 838 839 840 841 842 843 844 845 846
/*
 * migrate_pages
 *
 * Two lists are passed to this function. The first list
 * contains the pages isolated from the LRU to be migrated.
 * The second list contains new pages that the pages isolated
 * can be moved to. If the second list is NULL then all
 * pages are swapped out.
 *
 * The function returns after 10 attempts or if no pages
847
 * are movable anymore because to has become empty
848 849
 * or no retryable pages exist anymore.
 *
850
 * Return: Number of pages not migrated when "to" ran empty.
851
 */
852
unsigned long migrate_pages(struct list_head *from, struct list_head *to,
853
		  struct list_head *moved, struct list_head *failed)
854
{
855 856
	unsigned long retry;
	unsigned long nr_failed = 0;
857 858 859 860
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
861
	int rc;
862 863 864 865 866 867 868

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

redo:
	retry = 0;

869
	list_for_each_entry_safe(page, page2, from, lru) {
870 871 872
		struct page *newpage = NULL;
		struct address_space *mapping;

873 874
		cond_resched();

875 876
		rc = 0;
		if (page_count(page) == 1)
877
			/* page was freed from under us. So we are done. */
878 879
			goto next;

880 881 882
		if (to && list_empty(to))
			break;

883 884
		/*
		 * Skip locked pages during the first two passes to give the
885 886 887
		 * functions holding the lock time to release the page. Later we
		 * use lock_page() to have a higher chance of acquiring the
		 * lock.
888
		 */
889
		rc = -EAGAIN;
890 891 892 893
		if (pass > 2)
			lock_page(page);
		else
			if (TestSetPageLocked(page))
894
				goto next;
895 896 897 898 899

		/*
		 * Only wait on writeback if we have already done a pass where
		 * we we may have triggered writeouts for lots of pages.
		 */
900
		if (pass > 0) {
901
			wait_on_page_writeback(page);
902
		} else {
903 904
			if (PageWriteback(page))
				goto unlock_page;
905
		}
906

907 908 909 910 911
		/*
		 * Anonymous pages must have swap cache references otherwise
		 * the information contained in the page maps cannot be
		 * preserved.
		 */
912
		if (PageAnon(page) && !PageSwapCache(page)) {
913
			if (!add_to_swap(page, GFP_KERNEL)) {
914 915
				rc = -ENOMEM;
				goto unlock_page;
916 917 918
			}
		}

919 920 921 922 923 924 925 926
		if (!to) {
			rc = swap_page(page);
			goto next;
		}

		newpage = lru_to_page(to);
		lock_page(newpage);

927
		/*
928
		 * Pages are properly locked and writeback is complete.
929 930
		 * Try to migrate the page.
		 */
931 932 933 934
		mapping = page_mapping(page);
		if (!mapping)
			goto unlock_both;

935
		if (mapping->a_ops->migratepage) {
936 937 938 939 940 941 942
			/*
			 * Most pages have a mapping and most filesystems
			 * should provide a migration function. Anonymous
			 * pages are part of swap space which also has its
			 * own migration function. This is the most common
			 * path for page migration.
			 */
943 944 945 946
			rc = mapping->a_ops->migratepage(newpage, page);
			goto unlock_both;
                }

947
		/*
948 949 950
		 * Default handling if a filesystem does not provide
		 * a migration function. We can only migrate clean
		 * pages so try to write out any dirty pages first.
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		 */
		if (PageDirty(page)) {
			switch (pageout(page, mapping)) {
			case PAGE_KEEP:
			case PAGE_ACTIVATE:
				goto unlock_both;

			case PAGE_SUCCESS:
				unlock_page(newpage);
				goto next;

			case PAGE_CLEAN:
				; /* try to migrate the page below */
			}
                }
966

967
		/*
968 969
		 * Buffers are managed in a filesystem specific way.
		 * We must have no buffers or drop them.
970 971 972 973 974 975 976 977 978 979 980 981 982 983
		 */
		if (!page_has_buffers(page) ||
		    try_to_release_page(page, GFP_KERNEL)) {
			rc = migrate_page(newpage, page);
			goto unlock_both;
		}

		/*
		 * On early passes with mapped pages simply
		 * retry. There may be a lock held for some
		 * buffers that may go away. Later
		 * swap them out.
		 */
		if (pass > 4) {
984 985 986 987 988
			/*
			 * Persistently unable to drop buffers..... As a
			 * measure of last resort we fall back to
			 * swap_page().
			 */
989 990 991 992 993 994 995 996
			unlock_page(newpage);
			newpage = NULL;
			rc = swap_page(page);
			goto next;
		}

unlock_both:
		unlock_page(newpage);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

unlock_page:
		unlock_page(page);

next:
		if (rc == -EAGAIN) {
			retry++;
		} else if (rc) {
			/* Permanent failure */
			list_move(&page->lru, failed);
			nr_failed++;
		} else {
1009 1010 1011 1012
			if (newpage) {
				/* Successful migration. Return page to LRU */
				move_to_lru(newpage);
			}
1013 1014
			list_move(&page->lru, moved);
		}
1015 1016 1017 1018 1019 1020 1021 1022 1023
	}
	if (retry && pass++ < 10)
		goto redo;

	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

	return nr_failed + retry;
}
1024 1025 1026

/*
 * Isolate one page from the LRU lists and put it on the
1027
 * indicated list with elevated refcount.
1028 1029 1030 1031 1032 1033 1034
 *
 * Result:
 *  0 = page not on LRU list
 *  1 = page removed from LRU list and added to the specified list.
 */
int isolate_lru_page(struct page *page)
{
1035
	int ret = 0;
1036

1037 1038 1039
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
N
Nick Piggin 已提交
1040
		if (PageLRU(page)) {
1041 1042
			ret = 1;
			get_page(page);
N
Nick Piggin 已提交
1043
			ClearPageLRU(page);
1044 1045 1046 1047 1048 1049
			if (PageActive(page))
				del_page_from_active_list(zone, page);
			else
				del_page_from_inactive_list(zone, page);
		}
		spin_unlock_irq(&zone->lru_lock);
1050
	}
1051 1052

	return ret;
1053
}
1054
#endif
1055

L
Linus Torvalds 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
 *
 * returns how many pages were moved onto *@dst.
 */
1073 1074 1075
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
		unsigned long *scanned)
L
Linus Torvalds 已提交
1076
{
1077
	unsigned long nr_taken = 0;
L
Linus Torvalds 已提交
1078
	struct page *page;
1079
	unsigned long scan;
L
Linus Torvalds 已提交
1080

1081
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1082
		struct list_head *target;
L
Linus Torvalds 已提交
1083 1084 1085
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1086 1087
		BUG_ON(!PageLRU(page));

1088
		list_del(&page->lru);
1089 1090
		target = src;
		if (likely(get_page_unless_zero(page))) {
1091
			/*
1092 1093 1094
			 * Be careful not to clear PageLRU until after we're
			 * sure the page is not being freed elsewhere -- the
			 * page release code relies on it.
1095
			 */
1096 1097 1098 1099
			ClearPageLRU(page);
			target = dst;
			nr_taken++;
		} /* else it is being freed elsewhere */
1100

1101
		list_add(&page->lru, target);
L
Linus Torvalds 已提交
1102 1103 1104 1105 1106 1107 1108
	}

	*scanned = scan;
	return nr_taken;
}

/*
A
Andrew Morton 已提交
1109 1110
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1111
 */
A
Andrew Morton 已提交
1112 1113
static unsigned long shrink_inactive_list(unsigned long max_scan,
				struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
1114 1115 1116
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1117
	unsigned long nr_scanned = 0;
1118
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1124
	do {
L
Linus Torvalds 已提交
1125
		struct page *page;
1126 1127 1128
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133 1134 1135 1136

		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
					     &zone->inactive_list,
					     &page_list, &nr_scan);
		zone->nr_inactive -= nr_taken;
		zone->pages_scanned += nr_scan;
		spin_unlock_irq(&zone->lru_lock);

1137
		nr_scanned += nr_scan;
A
Andrew Morton 已提交
1138
		nr_freed = shrink_page_list(&page_list, sc);
1139
		nr_reclaimed += nr_freed;
N
Nick Piggin 已提交
1140 1141 1142 1143 1144 1145 1146 1147
		local_irq_disable();
		if (current_is_kswapd()) {
			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
			__mod_page_state(kswapd_steal, nr_freed);
		} else
			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
		__mod_page_state_zone(zone, pgsteal, nr_freed);

1148 1149 1150
		if (nr_taken == 0)
			goto done;

N
Nick Piggin 已提交
1151
		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1157 1158
			BUG_ON(PageLRU(page));
			SetPageLRU(page);
L
Linus Torvalds 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			list_del(&page->lru);
			if (PageActive(page))
				add_page_to_active_list(zone, page);
			else
				add_page_to_inactive_list(zone, page);
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
1170
  	} while (nr_scanned < max_scan);
1171
	spin_unlock(&zone->lru_lock);
L
Linus Torvalds 已提交
1172
done:
1173
	local_irq_enable();
L
Linus Torvalds 已提交
1174
	pagevec_release(&pvec);
1175
	return nr_reclaimed;
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
A
Andrew Morton 已提交
1195 1196
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
1197
{
1198
	unsigned long pgmoved;
L
Linus Torvalds 已提交
1199
	int pgdeactivate = 0;
1200
	unsigned long pgscanned;
L
Linus Torvalds 已提交
1201 1202 1203 1204 1205 1206
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
	struct page *page;
	struct pagevec pvec;
	int reclaim_mapped = 0;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	if (unlikely(sc->may_swap)) {
		long mapped_ratio;
		long distress;
		long swap_tendency;

		/*
		 * `distress' is a measure of how much trouble we're having
		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
		 */
		distress = 100 >> zone->prev_priority;

		/*
		 * The point of this algorithm is to decide when to start
		 * reclaiming mapped memory instead of just pagecache.  Work out
		 * how much memory
		 * is mapped.
		 */
		mapped_ratio = (sc->nr_mapped * 100) / total_memory;

		/*
		 * Now decide how much we really want to unmap some pages.  The
		 * mapped ratio is downgraded - just because there's a lot of
		 * mapped memory doesn't necessarily mean that page reclaim
		 * isn't succeeding.
		 *
		 * The distress ratio is important - we don't want to start
		 * going oom.
		 *
		 * A 100% value of vm_swappiness overrides this algorithm
		 * altogether.
		 */
		swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;

		/*
		 * Now use this metric to decide whether to start moving mapped
		 * memory onto the inactive list.
		 */
		if (swap_tendency >= 100)
			reclaim_mapped = 1;
	}
L
Linus Torvalds 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
				    &l_hold, &pgscanned);
	zone->pages_scanned += pgscanned;
	zone->nr_active -= pgmoved;
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
		if (page_mapped(page)) {
			if (!reclaim_mapped ||
			    (total_swap_pages == 0 && PageAnon(page)) ||
1264
			    page_referenced(page, 0)) {
L
Linus Torvalds 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
				list_add(&page->lru, &l_active);
				continue;
			}
		}
		list_add(&page->lru, &l_inactive);
	}

	pagevec_init(&pvec, 1);
	pgmoved = 0;
	spin_lock_irq(&zone->lru_lock);
	while (!list_empty(&l_inactive)) {
		page = lru_to_page(&l_inactive);
		prefetchw_prev_lru_page(page, &l_inactive, flags);
N
Nick Piggin 已提交
1278 1279
		BUG_ON(PageLRU(page));
		SetPageLRU(page);
N
Nick Piggin 已提交
1280 1281 1282
		BUG_ON(!PageActive(page));
		ClearPageActive(page);

L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		list_move(&page->lru, &zone->inactive_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_inactive += pgmoved;
			spin_unlock_irq(&zone->lru_lock);
			pgdeactivate += pgmoved;
			pgmoved = 0;
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_inactive += pgmoved;
	pgdeactivate += pgmoved;
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		pagevec_strip(&pvec);
		spin_lock_irq(&zone->lru_lock);
	}

	pgmoved = 0;
	while (!list_empty(&l_active)) {
		page = lru_to_page(&l_active);
		prefetchw_prev_lru_page(page, &l_active, flags);
N
Nick Piggin 已提交
1308 1309
		BUG_ON(PageLRU(page));
		SetPageLRU(page);
L
Linus Torvalds 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		BUG_ON(!PageActive(page));
		list_move(&page->lru, &zone->active_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_active += pgmoved;
			pgmoved = 0;
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_active += pgmoved;
N
Nick Piggin 已提交
1322 1323 1324 1325 1326
	spin_unlock(&zone->lru_lock);

	__mod_page_state_zone(zone, pgrefill, pgscanned);
	__mod_page_state(pgdeactivate, pgdeactivate);
	local_irq_enable();
L
Linus Torvalds 已提交
1327

N
Nick Piggin 已提交
1328
	pagevec_release(&pvec);
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1334 1335
static unsigned long shrink_zone(int priority, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
1336 1337 1338
{
	unsigned long nr_active;
	unsigned long nr_inactive;
1339
	unsigned long nr_to_scan;
1340
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1341

1342 1343
	atomic_inc(&zone->reclaim_in_progress);

L
Linus Torvalds 已提交
1344 1345 1346 1347
	/*
	 * Add one to `nr_to_scan' just to make sure that the kernel will
	 * slowly sift through the active list.
	 */
1348
	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
L
Linus Torvalds 已提交
1349 1350 1351 1352 1353 1354
	nr_active = zone->nr_scan_active;
	if (nr_active >= sc->swap_cluster_max)
		zone->nr_scan_active = 0;
	else
		nr_active = 0;

1355
	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
L
Linus Torvalds 已提交
1356 1357 1358 1359 1360 1361 1362 1363
	nr_inactive = zone->nr_scan_inactive;
	if (nr_inactive >= sc->swap_cluster_max)
		zone->nr_scan_inactive = 0;
	else
		nr_inactive = 0;

	while (nr_active || nr_inactive) {
		if (nr_active) {
1364
			nr_to_scan = min(nr_active,
L
Linus Torvalds 已提交
1365
					(unsigned long)sc->swap_cluster_max);
1366
			nr_active -= nr_to_scan;
A
Andrew Morton 已提交
1367
			shrink_active_list(nr_to_scan, zone, sc);
L
Linus Torvalds 已提交
1368 1369 1370
		}

		if (nr_inactive) {
1371
			nr_to_scan = min(nr_inactive,
L
Linus Torvalds 已提交
1372
					(unsigned long)sc->swap_cluster_max);
1373
			nr_inactive -= nr_to_scan;
A
Andrew Morton 已提交
1374 1375
			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
								sc);
L
Linus Torvalds 已提交
1376 1377 1378 1379
		}
	}

	throttle_vm_writeout();
1380 1381

	atomic_dec(&zone->reclaim_in_progress);
1382
	return nr_reclaimed;
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
A
Andrew Morton 已提交
1401
static unsigned long shrink_zones(int priority, struct zone **zones,
1402
					struct scan_control *sc)
L
Linus Torvalds 已提交
1403
{
1404
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409
	int i;

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1410
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1411 1412
			continue;

1413
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1414 1415
			continue;

1416 1417 1418
		zone->temp_priority = priority;
		if (zone->prev_priority > priority)
			zone->prev_priority = priority;
L
Linus Torvalds 已提交
1419

1420
		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
1421 1422
			continue;	/* Let kswapd poll it */

1423
		nr_reclaimed += shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1424
	}
1425
	return nr_reclaimed;
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 */
1441
unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1442 1443 1444
{
	int priority;
	int ret = 0;
1445
	unsigned long total_scanned = 0;
1446
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1447 1448 1449
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
	int i;
1450 1451 1452 1453 1454 1455
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.may_swap = 1,
	};
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461

	inc_page_state(allocstall);

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1462
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471
			continue;

		zone->temp_priority = DEF_PRIORITY;
		lru_pages += zone->nr_active + zone->nr_inactive;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		sc.nr_mapped = read_page_state(nr_mapped);
		sc.nr_scanned = 0;
1472 1473
		if (!priority)
			disable_swap_token();
A
Andrew Morton 已提交
1474
		nr_reclaimed += shrink_zones(priority, zones, &sc);
L
Linus Torvalds 已提交
1475 1476
		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
		if (reclaim_state) {
1477
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1478 1479 1480
			reclaim_state->reclaimed_slab = 0;
		}
		total_scanned += sc.nr_scanned;
1481
		if (nr_reclaimed >= sc.swap_cluster_max) {
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			ret = 1;
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1493 1494
		if (total_scanned > sc.swap_cluster_max +
					sc.swap_cluster_max / 2) {
1495
			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
			sc.may_writepage = 1;
		}

		/* Take a nap, wait for some writeback to complete */
		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);
	}
out:
	for (i = 0; zones[i] != 0; i++) {
		struct zone *zone = zones[i];

1507
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
			continue;

		zone->prev_priority = zone->temp_priority;
	}
	return ret;
}

/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * If `nr_pages' is non-zero then it is the number of pages which are to be
 * reclaimed, regardless of the zone occupancies.  This is a software suspend
 * special.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
1540 1541
static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
				int order)
L
Linus Torvalds 已提交
1542
{
1543
	unsigned long to_free = nr_pages;
L
Linus Torvalds 已提交
1544 1545 1546
	int all_zones_ok;
	int priority;
	int i;
1547
	unsigned long total_scanned;
1548
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
1549
	struct reclaim_state *reclaim_state = current->reclaim_state;
1550 1551 1552 1553 1554
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 1,
		.swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
	};
L
Linus Torvalds 已提交
1555 1556 1557

loop_again:
	total_scanned = 0;
1558
	nr_reclaimed = 0;
1559
	sc.may_writepage = !laptop_mode,
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	sc.nr_mapped = read_page_state(nr_mapped);

	inc_page_state(pageoutrun);

	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->temp_priority = DEF_PRIORITY;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

1574 1575 1576 1577
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		all_zones_ok = 1;

		if (nr_pages == 0) {
			/*
			 * Scan in the highmem->dma direction for the highest
			 * zone which needs scanning
			 */
			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
				struct zone *zone = pgdat->node_zones + i;

1588
				if (!populated_zone(zone))
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593 1594 1595
					continue;

				if (zone->all_unreclaimable &&
						priority != DEF_PRIORITY)
					continue;

				if (!zone_watermark_ok(zone, order,
R
Rohit Seth 已提交
1596
						zone->pages_high, 0, 0)) {
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
					end_zone = i;
					goto scan;
				}
			}
			goto out;
		} else {
			end_zone = pgdat->nr_zones - 1;
		}
scan:
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			lru_pages += zone->nr_active + zone->nr_inactive;
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
1623
			int nr_slab;
L
Linus Torvalds 已提交
1624

1625
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			if (nr_pages == 0) {	/* Not software suspend */
				if (!zone_watermark_ok(zone, order,
R
Rohit Seth 已提交
1633
						zone->pages_high, end_zone, 0))
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639
					all_zones_ok = 0;
			}
			zone->temp_priority = priority;
			if (zone->prev_priority > priority)
				zone->prev_priority = priority;
			sc.nr_scanned = 0;
1640
			nr_reclaimed += shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
1641
			reclaim_state->reclaimed_slab = 0;
1642 1643
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
1644
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1645 1646 1647
			total_scanned += sc.nr_scanned;
			if (zone->all_unreclaimable)
				continue;
1648 1649
			if (nr_slab == 0 && zone->pages_scanned >=
				    (zone->nr_active + zone->nr_inactive) * 4)
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656
				zone->all_unreclaimable = 1;
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1657
			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
L
Linus Torvalds 已提交
1658 1659
				sc.may_writepage = 1;
		}
1660
		if (nr_pages && to_free > nr_reclaimed)
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
			continue;	/* swsusp: need to do more work */
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
		if (total_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
1677
		if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
			break;
	}
out:
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->prev_priority = zone->temp_priority;
	}
	if (!all_zones_ok) {
		cond_resched();
		goto loop_again;
	}

1691
	return nr_reclaimed;
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
	cpumask_t cpumask;

	daemonize("kswapd%d", pgdat->node_id);
	cpumask = node_to_cpumask(pgdat->node_id);
	if (!cpus_empty(cpumask))
		set_cpus_allowed(tsk, cpumask);
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
1736
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
L
Linus Torvalds 已提交
1737 1738 1739 1740

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
1741 1742

		try_to_freeze();
L
Linus Torvalds 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
			schedule();
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

		balance_pgdat(pgdat, 0, order);
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

1771
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
1772 1773 1774
		return;

	pgdat = zone->zone_pgdat;
R
Rohit Seth 已提交
1775
	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
L
Linus Torvalds 已提交
1776 1777 1778
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
1779
	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1780
		return;
1781
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
1782
		return;
1783
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790
}

#ifdef CONFIG_PM
/*
 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
 * pages.
 */
1791
unsigned long shrink_all_memory(unsigned long nr_pages)
L
Linus Torvalds 已提交
1792 1793
{
	pg_data_t *pgdat;
1794 1795
	unsigned long nr_to_free = nr_pages;
	unsigned long ret = 0;
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800 1801
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};

	current->reclaim_state = &reclaim_state;
	for_each_pgdat(pgdat) {
1802 1803
		unsigned long freed;

L
Linus Torvalds 已提交
1804 1805 1806
		freed = balance_pgdat(pgdat, nr_to_free, 0);
		ret += freed;
		nr_to_free -= freed;
1807
		if ((long)nr_to_free <= 0)
L
Linus Torvalds 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
			break;
	}
	current->reclaim_state = NULL;
	return ret;
}
#endif

#ifdef CONFIG_HOTPLUG_CPU
/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
static int __devinit cpu_callback(struct notifier_block *nfb,
1821
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
{
	pg_data_t *pgdat;
	cpumask_t mask;

	if (action == CPU_ONLINE) {
		for_each_pgdat(pgdat) {
			mask = node_to_cpumask(pgdat->node_id);
			if (any_online_cpu(mask) != NR_CPUS)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed(pgdat->kswapd, mask);
		}
	}
	return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */

static int __init kswapd_init(void)
{
	pg_data_t *pgdat;
1841

L
Linus Torvalds 已提交
1842
	swap_setup();
1843 1844 1845 1846 1847 1848 1849
	for_each_pgdat(pgdat) {
		pid_t pid;

		pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
		BUG_ON(pid < 0);
		pgdat->kswapd = find_task_by_pid(pid);
	}
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855
	total_memory = nr_free_pagecache_pages();
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 *
 * In the future we may add flags to the mode. However, the page allocator
 * should only have to check that zone_reclaim_mode != 0 before calling
 * zone_reclaim().
 */
int zone_reclaim_mode __read_mostly;

1870 1871 1872 1873
#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1874
#define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1875

1876 1877 1878
/*
 * Mininum time between zone reclaim scans
 */
1879
int zone_reclaim_interval __read_mostly = 30*HZ;
1880 1881 1882 1883 1884 1885 1886 1887

/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

1888 1889 1890
/*
 * Try to free up some pages from this zone through reclaim.
 */
1891
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1892
{
1893
	/* Minimum pages needed in order to stay on node */
1894
	const unsigned long nr_pages = 1 << order;
1895 1896
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
1897
	int priority;
1898
	unsigned long nr_reclaimed = 0;
1899 1900 1901 1902
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.nr_mapped = read_page_state(nr_mapped),
1903 1904
		.swap_cluster_max = max_t(unsigned long, nr_pages,
					SWAP_CLUSTER_MAX),
1905 1906
		.gfp_mask = gfp_mask,
	};
1907 1908 1909

	disable_swap_token();
	cond_resched();
1910 1911 1912 1913 1914 1915
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1916 1917
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
1918

1919 1920 1921 1922
	/*
	 * Free memory by calling shrink zone with increasing priorities
	 * until we have enough memory freed.
	 */
1923
	priority = ZONE_RECLAIM_PRIORITY;
1924
	do {
1925
		nr_reclaimed += shrink_zone(priority, zone, &sc);
1926
		priority--;
1927
	} while (priority >= 0 && nr_reclaimed < nr_pages);
1928

1929
	if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1930
		/*
1931 1932 1933 1934 1935 1936
		 * shrink_slab() does not currently allow us to determine how
		 * many pages were freed in this zone. So we just shake the slab
		 * a bit and then go off node for this particular allocation
		 * despite possibly having freed enough memory to allocate in
		 * this zone.  If we freed local memory then the next
		 * allocations will be local again.
1937 1938 1939 1940 1941 1942 1943
		 *
		 * shrink_slab will free memory on all zones and may take
		 * a long time.
		 */
		shrink_slab(sc.nr_scanned, gfp_mask, order);
	}

1944
	p->reclaim_state = NULL;
1945
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1946

1947 1948 1949 1950 1951 1952
	if (nr_reclaimed == 0) {
		/*
		 * We were unable to reclaim enough pages to stay on node.  We
		 * now allow off node accesses for a certain time period before
		 * trying again to reclaim pages from the local zone.
		 */
1953
		zone->last_unsuccessful_zone_reclaim = jiffies;
1954
	}
1955

1956
	return nr_reclaimed >= nr_pages;
1957
}
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	cpumask_t mask;
	int node_id;

	/*
	 * Do not reclaim if there was a recent unsuccessful attempt at zone
	 * reclaim.  In that case we let allocations go off node for the
	 * zone_reclaim_interval.  Otherwise we would scan for each off-node
	 * page allocation.
	 */
	if (time_before(jiffies,
		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
			return 0;

	/*
	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
	 * not have reclaimable pages and if we should not delay the allocation
	 * then do not scan.
	 */
	if (!(gfp_mask & __GFP_WAIT) ||
		zone->all_unreclaimable ||
		atomic_read(&zone->reclaim_in_progress) > 0 ||
		(current->flags & PF_MEMALLOC))
			return 0;

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
	node_id = zone->zone_pgdat->node_id;
	mask = node_to_cpumask(node_id);
	if (!cpus_empty(mask) && node_id != numa_node_id())
		return 0;
	return __zone_reclaim(zone, gfp_mask, order);
}
1997
#endif