pgtable.h 37.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3
#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4

5 6
#include <asm-generic/5level-fixup.h>

7 8
#ifndef __ASSEMBLY__
#include <linux/mmdebug.h>
9
#include <linux/bug.h>
10
#endif
11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Common bits between hash and Radix page table
 */
#define _PAGE_BIT_SWAP_TYPE	0

#define _PAGE_EXEC		0x00001 /* execute permission */
#define _PAGE_WRITE		0x00002 /* write access allowed */
#define _PAGE_READ		0x00004	/* read access allowed */
#define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
#define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
#define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
#define _PAGE_SAO		0x00010 /* Strong access order */
#define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
#define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
#define _PAGE_DIRTY		0x00080 /* C: page changed */
#define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28
/*
29
 * Software bits
30
 */
31 32 33 34
#define _RPAGE_SW0		0x2000000000000000UL
#define _RPAGE_SW1		0x00800
#define _RPAGE_SW2		0x00400
#define _RPAGE_SW3		0x00200
35 36 37 38
#define _RPAGE_RSV1		0x1000000000000000UL
#define _RPAGE_RSV2		0x0800000000000000UL
#define _RPAGE_RSV3		0x0400000000000000UL
#define _RPAGE_RSV4		0x0200000000000000UL
39
#define _RPAGE_RSV5		0x00040UL
40 41 42

#define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
#define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 44 45 46 47 48 49 50 51 52
/*
 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
 * differentiate between two use a SW field when invalidating.
 *
 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
 *
 * This is used only when _PAGE_PRESENT is cleared.
 */
#define _PAGE_INVALID		_RPAGE_SW0
53 54 55 56 57 58

/*
 * Top and bottom bits of RPN which can be used by hash
 * translation mode, because we expect them to be zero
 * otherwise.
 */
59 60
#define _RPAGE_RPN0		0x01000
#define _RPAGE_RPN1		0x02000
61 62 63 64
#define _RPAGE_RPN44		0x0100000000000000UL
#define _RPAGE_RPN43		0x0080000000000000UL
#define _RPAGE_RPN42		0x0040000000000000UL
#define _RPAGE_RPN41		0x0020000000000000UL
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Max physical address bit as per radix table */
#define _RPAGE_PA_MAX		57

/*
 * Max physical address bit we will use for now.
 *
 * This is mostly a hardware limitation and for now Power9 has
 * a 51 bit limit.
 *
 * This is different from the number of physical bit required to address
 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
 * number of sections we can support (SECTIONS_SHIFT).
 *
 * This is different from Radix page table limitation above and
 * should always be less than that. The limit is done such that
 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
 * for hash linux page table specific bits.
 *
 * In order to be compatible with future hardware generations we keep
 * some offsets and limit this for now to 53
 */
#define _PAGE_PA_MAX		53

90 91
#define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
#define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
92 93 94
#define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
#define __HAVE_ARCH_PTE_DEVMAP

95 96 97 98 99 100 101
/*
 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
 * Instead of fixing all of them, add an alternate define which
 * maps CI pte mapping.
 */
#define _PAGE_NO_CACHE		_PAGE_TOLERANT
/*
102 103 104
 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
 * and every thing below PAGE_SHIFT;
105
 */
106
#define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 108 109 110 111 112
/*
 * set of bits not changed in pmd_modify. Even though we have hash specific bits
 * in here, on radix we expect them to be zero.
 */
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113
			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 * user access blocked by key
 */
#define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
#define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
#define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
				 _PAGE_RW | _PAGE_EXEC)
/*
 * _PAGE_CHG_MASK masks of bits that are to be preserved across
 * pgprot changes
 */
#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127
			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
128 129 130

#define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
131
/*
132 133 134 135
 * We define 2 sets of base prot bits, one for basic pages (ie,
 * cacheable kernel and user pages) and one for non cacheable
 * pages. We always set _PAGE_COHERENT when SMP is enabled or
 * the processor might need it for DMA coherency.
136
 */
137
#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#define _PAGE_BASE	(_PAGE_BASE_NC)

/* Permission masks used to generate the __P and __S table,
 *
 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
 *
 * Write permissions imply read permissions for now (we could make write-only
 * pages on BookE but we don't bother for now). Execute permission control is
 * possible on platforms that define _PAGE_EXEC
 */
#define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)

/* Permission masks used for kernel mappings */
#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
				 _PAGE_TOLERANT)
#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
				 _PAGE_NON_IDEMPOTENT)
#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)

/*
 * Protection used for kernel text. We want the debuggers to be able to
 * set breakpoints anywhere, so don't write protect the kernel text
 * on platforms where such control is possible.
 */
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
#define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
#else
#define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
#endif

/* Make modules code happy. We don't set RO yet */
#define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
#define PAGE_AGP		(PAGE_KERNEL_NC)
181

182 183 184 185 186 187 188 189
#ifndef __ASSEMBLY__
/*
 * page table defines
 */
extern unsigned long __pte_index_size;
extern unsigned long __pmd_index_size;
extern unsigned long __pud_index_size;
extern unsigned long __pgd_index_size;
190
extern unsigned long __pud_cache_index;
191 192 193 194
#define PTE_INDEX_SIZE  __pte_index_size
#define PMD_INDEX_SIZE  __pmd_index_size
#define PUD_INDEX_SIZE  __pud_index_size
#define PGD_INDEX_SIZE  __pgd_index_size
195 196
/* pmd table use page table fragments */
#define PMD_CACHE_INDEX  0
197
#define PUD_CACHE_INDEX __pud_cache_index
198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Because of use of pte fragments and THP, size of page table
 * are not always derived out of index size above.
 */
extern unsigned long __pte_table_size;
extern unsigned long __pmd_table_size;
extern unsigned long __pud_table_size;
extern unsigned long __pgd_table_size;
#define PTE_TABLE_SIZE	__pte_table_size
#define PMD_TABLE_SIZE	__pmd_table_size
#define PUD_TABLE_SIZE	__pud_table_size
#define PGD_TABLE_SIZE	__pgd_table_size
210 211 212 213 214 215 216

extern unsigned long __pmd_val_bits;
extern unsigned long __pud_val_bits;
extern unsigned long __pgd_val_bits;
#define PMD_VAL_BITS	__pmd_val_bits
#define PUD_VAL_BITS	__pud_val_bits
#define PGD_VAL_BITS	__pgd_val_bits
217 218 219 220 221 222

extern unsigned long __pte_frag_nr;
#define PTE_FRAG_NR __pte_frag_nr
extern unsigned long __pte_frag_size_shift;
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
223

224 225 226 227 228 229
extern unsigned long __pmd_frag_nr;
#define PMD_FRAG_NR __pmd_frag_nr
extern unsigned long __pmd_frag_size_shift;
#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
#define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)

/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PUD_SHIFT determines what a third-level page table entry can map */
#define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
#define PUD_SIZE	(1UL << PUD_SHIFT)
#define PUD_MASK	(~(PUD_SIZE-1))

/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
#define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/* Bits to mask out from a PMD to get to the PTE page */
#define PMD_MASKED_BITS		0xc0000000000000ffUL
/* Bits to mask out from a PUD to get to the PMD page */
#define PUD_MASKED_BITS		0xc0000000000000ffUL
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS		0xc0000000000000ffUL
256

257 258 259 260 261 262 263 264
/*
 * Used as an indicator for rcu callback functions
 */
enum pgtable_index {
	PTE_INDEX = 0,
	PMD_INDEX,
	PUD_INDEX,
	PGD_INDEX,
265 266 267 268 269
	/*
	 * Below are used with 4k page size and hugetlb
	 */
	HTLB_16M_INDEX,
	HTLB_16G_INDEX,
270 271
};

272 273 274 275 276 277 278
extern unsigned long __vmalloc_start;
extern unsigned long __vmalloc_end;
#define VMALLOC_START	__vmalloc_start
#define VMALLOC_END	__vmalloc_end

extern unsigned long __kernel_virt_start;
extern unsigned long __kernel_virt_size;
279
extern unsigned long __kernel_io_start;
280 281
#define KERN_VIRT_START __kernel_virt_start
#define KERN_VIRT_SIZE  __kernel_virt_size
282
#define KERN_IO_START  __kernel_io_start
283 284
extern struct page *vmemmap;
extern unsigned long ioremap_bot;
285
extern unsigned long pci_io_base;
286
#endif /* __ASSEMBLY__ */
287

288
#include <asm/book3s/64/hash.h>
289
#include <asm/book3s/64/radix.h>
290

291 292 293 294 295 296
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/pgtable-64k.h>
#else
#include <asm/book3s/64/pgtable-4k.h>
#endif

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#include <asm/barrier.h>
/*
 * The second half of the kernel virtual space is used for IO mappings,
 * it's itself carved into the PIO region (ISA and PHB IO space) and
 * the ioremap space
 *
 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 */
#define FULL_IO_SIZE	0x80000000ul
#define  ISA_IO_BASE	(KERN_IO_START)
#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
#define  PHB_IO_BASE	(ISA_IO_END)
#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE	(PHB_IO_END)
#define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)

315 316 317
/* Advertise special mapping type for AGP */
#define HAVE_PAGE_AGP

318 319 320 321 322 323 324 325 326
#ifndef __ASSEMBLY__

/*
 * This is the default implementation of various PTE accessors, it's
 * used in all cases except Book3S with 64K pages where we have a
 * concept of sub-pages
 */
#ifndef __real_pte

327
#define __real_pte(e, p, o)		((real_pte_t){(e)})
328
#define __rpte_to_pte(r)	((r).pte)
329
#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
	do {							         \
		index = 0;					         \
		shift = mmu_psize_defs[psize].shift;		         \

#define pte_iterate_hashed_end() } while(0)

/*
 * We expect this to be called only for user addresses or kernel virtual
 * addresses other than the linear mapping.
 */
#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K

#endif /* __real_pte */

346 347 348 349 350 351 352 353
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
				       pte_t *ptep, unsigned long clr,
				       unsigned long set, int huge)
{
	if (radix_enabled())
		return radix__pte_update(mm, addr, ptep, clr, set, huge);
	return hash__pte_update(mm, addr, ptep, clr, set, huge);
}
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
 * We currently remove entries from the hashtable regardless of whether
 * the entry was young or dirty.
 *
 * We should be more intelligent about this but for the moment we override
 * these functions and force a tlb flush unconditionally
 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
 * function for both hash and radix.
 */
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
					      unsigned long addr, pte_t *ptep)
{
	unsigned long old;

369
	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
370 371 372 373 374 375 376 377 378 379 380 381 382
		return 0;
	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
	return (old & _PAGE_ACCESSED) != 0;
}

#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
({								\
	int __r;						\
	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
	__r;							\
})

383
static inline int __pte_write(pte_t pte)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
}

#ifdef CONFIG_NUMA_BALANCING
#define pte_savedwrite pte_savedwrite
static inline bool pte_savedwrite(pte_t pte)
{
	/*
	 * Saved write ptes are prot none ptes that doesn't have
	 * privileged bit sit. We mark prot none as one which has
	 * present and pviliged bit set and RWX cleared. To mark
	 * protnone which used to have _PAGE_WRITE set we clear
	 * the privileged bit.
	 */
	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
}
#else
#define pte_savedwrite pte_savedwrite
static inline bool pte_savedwrite(pte_t pte)
{
	return false;
}
#endif

409 410 411 412 413
static inline int pte_write(pte_t pte)
{
	return __pte_write(pte) || pte_savedwrite(pte);
}

414 415 416 417 418
static inline int pte_read(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
}

419 420 421 422
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pte_t *ptep)
{
423
	if (__pte_write(*ptep))
424 425 426
		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
	else if (unlikely(pte_savedwrite(*ptep)))
		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
427 428
}

429
#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
430 431 432
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
					   unsigned long addr, pte_t *ptep)
{
433 434 435 436
	/*
	 * We should not find protnone for hugetlb, but this complete the
	 * interface.
	 */
437
	if (__pte_write(*ptep))
438 439 440
		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
	else if (unlikely(pte_savedwrite(*ptep)))
		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
441 442 443 444 445 446 447 448 449 450
}

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
				       unsigned long addr, pte_t *ptep)
{
	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
	return __pte(old);
}

451 452 453 454 455 456 457
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
					    unsigned long addr,
					    pte_t *ptep, int full)
{
	if (full && radix_enabled()) {
		/*
458 459
		 * We know that this is a full mm pte clear and
		 * hence can be sure there is no parallel set_pte.
460 461 462 463 464 465 466
		 */
		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
	}
	return ptep_get_and_clear(mm, addr, ptep);
}


467 468 469 470 471
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
			     pte_t * ptep)
{
	pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

static inline int pte_dirty(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
}

static inline int pte_young(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
}

static inline int pte_special(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
}

488 489 490 491 492
static inline bool pte_exec(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
}

493 494 495 496

#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline bool pte_soft_dirty(pte_t pte)
{
497
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
498
}
499

500 501
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
502
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
503 504 505 506
}

static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
507
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
508 509 510 511 512 513
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */

#ifdef CONFIG_NUMA_BALANCING
static inline int pte_protnone(pte_t pte)
{
514 515 516 517 518 519 520 521 522 523 524 525 526 527
	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
}

#define pte_mk_savedwrite pte_mk_savedwrite
static inline pte_t pte_mk_savedwrite(pte_t pte)
{
	/*
	 * Used by Autonuma subsystem to preserve the write bit
	 * while marking the pte PROT_NONE. Only allow this
	 * on PROT_NONE pte
	 */
	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
528
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
529 530 531 532 533 534 535 536 537
}

#define pte_clear_savedwrite pte_clear_savedwrite
static inline pte_t pte_clear_savedwrite(pte_t pte)
{
	/*
	 * Used by KSM subsystem to make a protnone pte readonly.
	 */
	VM_BUG_ON(!pte_protnone(pte));
538
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
539
}
540 541 542 543 544
#else
#define pte_clear_savedwrite pte_clear_savedwrite
static inline pte_t pte_clear_savedwrite(pte_t pte)
{
	VM_WARN_ON(1);
545
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
546
}
547 548 549 550
#endif /* CONFIG_NUMA_BALANCING */

static inline int pte_present(pte_t pte)
{
551 552 553 554 555 556 557
	/*
	 * A pte is considerent present if _PAGE_PRESENT is set.
	 * We also need to consider the pte present which is marked
	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
	 * if we find _PAGE_PRESENT cleared.
	 */
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
558
}
559

560 561 562 563 564
static inline bool pte_hw_valid(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
}

565
#ifdef CONFIG_PPC_MEM_KEYS
566
extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
567 568 569 570 571 572
#else
static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
{
	return true;
}
#endif /* CONFIG_PPC_MEM_KEYS */
573

574 575 576 577 578
static inline bool pte_user(pte_t pte)
{
	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
}

579 580 581 582 583 584 585
#define pte_access_permitted pte_access_permitted
static inline bool pte_access_permitted(pte_t pte, bool write)
{
	/*
	 * _PAGE_READ is needed for any access and will be
	 * cleared for PROT_NONE
	 */
586
	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
587 588
		return false;

589
	if (write && !pte_write(pte))
590
		return false;
591 592

	return arch_pte_access_permitted(pte_val(pte), write, 0);
593 594
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 *
 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 * long for now.
 */
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
		     pgprot_val(pgprot));
}

static inline unsigned long pte_pfn(pte_t pte)
{
	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
}

/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
616 617
	if (unlikely(pte_savedwrite(pte)))
		return pte_clear_savedwrite(pte);
618
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
619 620
}

621 622
static inline pte_t pte_exprotect(pte_t pte)
{
623
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
624 625 626 627
}

static inline pte_t pte_mkclean(pte_t pte)
{
628
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
629 630 631 632
}

static inline pte_t pte_mkold(pte_t pte)
{
633
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
634 635
}

636 637
static inline pte_t pte_mkexec(pte_t pte)
{
638
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
639 640 641 642
}

static inline pte_t pte_mkpte(pte_t pte)
{
643
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
644 645 646 647 648 649 650
}

static inline pte_t pte_mkwrite(pte_t pte)
{
	/*
	 * write implies read, hence set both
	 */
651
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
652 653 654 655
}

static inline pte_t pte_mkdirty(pte_t pte)
{
656
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
657 658 659 660
}

static inline pte_t pte_mkyoung(pte_t pte)
{
661
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
662 663 664 665
}

static inline pte_t pte_mkspecial(pte_t pte)
{
666
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
667 668 669 670 671 672 673
}

static inline pte_t pte_mkhuge(pte_t pte)
{
	return pte;
}

674 675
static inline pte_t pte_mkdevmap(pte_t pte)
{
676
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
677 678
}

679 680
static inline pte_t pte_mkprivileged(pte_t pte)
{
681
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
682 683 684 685
}

static inline pte_t pte_mkuser(pte_t pte)
{
686
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
687 688
}

689 690 691 692 693 694
/*
 * This is potentially called with a pmd as the argument, in which case it's not
 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
 * use in page directory entries (ie. non-ptes).
 */
695 696
static inline int pte_devmap(pte_t pte)
{
697 698 699
	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);

	return (pte_raw(pte) & mask) == mask;
700 701
}

702 703 704
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	/* FIXME!! check whether this need to be a conditional */
705 706
	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
			 cpu_to_be64(pgprot_val(newprot)));
707 708 709 710 711 712 713 714 715 716 717 718
}

/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
	/*							\
	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
	 * We filter HPTEFLAGS on set_pte.			\
	 */							\
	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
	} while (0)
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
#define SWP_TYPE_BITS 5
#define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
				& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
#define __swp_entry(type, offset)	((swp_entry_t) { \
				((type) << _PAGE_BIT_SWAP_TYPE) \
				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
/*
 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
 * swap type and offset we get from swap and convert that to pte to find a
 * matching pte in linux page table.
 * Clear bits not found in swap entries here.
 */
#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
#define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
735 736
#define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
#define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
737 738 739 740 741 742 743 744 745 746

#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
#else
#define _PAGE_SWP_SOFT_DIRTY	0UL
#endif /* CONFIG_MEM_SOFT_DIRTY */

#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
747
	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
748
}
749

750 751
static inline bool pte_swp_soft_dirty(pte_t pte)
{
752
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
753
}
754

755 756
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
757
	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */

static inline bool check_pte_access(unsigned long access, unsigned long ptev)
{
	/*
	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
	 */
	if (access & ~ptev)
		return false;
	/*
	 * This check for access to privilege space
	 */
	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
		return false;

	return true;
}
776 777 778 779
/*
 * Generic functions with hash/radix callbacks
 */

780
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
781
					   pte_t *ptep, pte_t entry,
782 783
					   unsigned long address,
					   int psize)
784 785
{
	if (radix_enabled())
786 787
		return radix__ptep_set_access_flags(vma, ptep, entry,
						    address, psize);
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	return hash__ptep_set_access_flags(ptep, entry);
}

#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
	if (radix_enabled())
		return radix__pte_same(pte_a, pte_b);
	return hash__pte_same(pte_a, pte_b);
}

static inline int pte_none(pte_t pte)
{
	if (radix_enabled())
		return radix__pte_none(pte);
	return hash__pte_none(pte);
}

static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, pte_t pte, int percpu)
{
	if (radix_enabled())
		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
}
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)

#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
			_PAGE_NON_IDEMPOTENT);
}

#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
			_PAGE_TOLERANT);
}

#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
}

#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
	return pgprot_noncached_wc(prot);
}
/*
 * check a pte mapping have cache inhibited property
 */
static inline bool pte_ci(pte_t pte)
{
846
	__be64 pte_v = pte_raw(pte);
847

848 849
	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
850 851 852 853
		return true;
	return false;
}

854 855 856 857 858 859 860 861 862 863
static inline void pmd_set(pmd_t *pmdp, unsigned long val)
{
	*pmdp = __pmd(val);
}

static inline void pmd_clear(pmd_t *pmdp)
{
	*pmdp = __pmd(0);
}

864 865 866 867 868 869 870
static inline int pmd_none(pmd_t pmd)
{
	return !pmd_raw(pmd);
}

static inline int pmd_present(pmd_t pmd)
{
871 872 873 874 875 876 877 878
	/*
	 * A pmd is considerent present if _PAGE_PRESENT is set.
	 * We also need to consider the pmd present which is marked
	 * invalid during a split. Hence we look for _PAGE_INVALID
	 * if we find _PAGE_PRESENT cleared.
	 */
	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
		return true;
879

880
	return false;
881
}
882

883 884 885 886 887 888 889
static inline int pmd_bad(pmd_t pmd)
{
	if (radix_enabled())
		return radix__pmd_bad(pmd);
	return hash__pmd_bad(pmd);
}

890 891 892 893 894 895 896 897 898 899
static inline void pud_set(pud_t *pudp, unsigned long val)
{
	*pudp = __pud(val);
}

static inline void pud_clear(pud_t *pudp)
{
	*pudp = __pud(0);
}

900 901 902 903 904 905 906
static inline int pud_none(pud_t pud)
{
	return !pud_raw(pud);
}

static inline int pud_present(pud_t pud)
{
907
	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
908
}
909 910

extern struct page *pud_page(pud_t pud);
911
extern struct page *pmd_page(pmd_t pmd);
912 913
static inline pte_t pud_pte(pud_t pud)
{
914
	return __pte_raw(pud_raw(pud));
915 916 917 918
}

static inline pud_t pte_pud(pte_t pte)
{
919
	return __pud_raw(pte_raw(pte));
920 921
}
#define pud_write(pud)		pte_write(pud_pte(pud))
922 923 924 925 926 927 928 929

static inline int pud_bad(pud_t pud)
{
	if (radix_enabled())
		return radix__pud_bad(pud);
	return hash__pud_bad(pud);
}

930 931 932 933 934
#define pud_access_permitted pud_access_permitted
static inline bool pud_access_permitted(pud_t pud, bool write)
{
	return pte_access_permitted(pud_pte(pud), write);
}
935

936
#define pgd_write(pgd)		pte_write(pgd_pte(pgd))
937 938 939 940
static inline void pgd_set(pgd_t *pgdp, unsigned long val)
{
	*pgdp = __pgd(val);
}
941

942 943 944 945 946
static inline void pgd_clear(pgd_t *pgdp)
{
	*pgdp = __pgd(0);
}

947 948 949 950 951 952 953
static inline int pgd_none(pgd_t pgd)
{
	return !pgd_raw(pgd);
}

static inline int pgd_present(pgd_t pgd)
{
954
	return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
955
}
956 957 958

static inline pte_t pgd_pte(pgd_t pgd)
{
959
	return __pte_raw(pgd_raw(pgd));
960 961 962 963
}

static inline pgd_t pte_pgd(pte_t pte)
{
964
	return __pgd_raw(pte_raw(pte));
965 966
}

967 968 969 970 971 972 973
static inline int pgd_bad(pgd_t pgd)
{
	if (radix_enabled())
		return radix__pgd_bad(pgd);
	return hash__pgd_bad(pgd);
}

974 975 976 977 978 979
#define pgd_access_permitted pgd_access_permitted
static inline bool pgd_access_permitted(pgd_t pgd, bool write)
{
	return pte_access_permitted(pgd_pte(pgd), write);
}

980 981
extern struct page *pgd_page(pgd_t pgd);

982 983 984 985 986 987 988 989 990 991 992 993
/* Pointers in the page table tree are physical addresses */
#define __pgtable_ptr_val(ptr)	__pa(ptr)

#define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
#define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
#define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)

#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))

994 995 996 997 998 999 1000
/*
 * Find an entry in a page-table-directory.  We combine the address region
 * (the high order N bits) and the pgd portion of the address.
 */

#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))

1001 1002
#define pud_offset(pgdp, addr)	\
	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1003
#define pmd_offset(pudp,addr) \
1004
	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1005
#define pte_offset_kernel(dir,addr) \
1006
	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
#define pte_unmap(pte)			do { } while(0)

/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

#define pte_ERROR(e) \
	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1019 1020
#define pud_ERROR(e) \
	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1021 1022 1023
#define pgd_ERROR(e) \
	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))

1024
static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1025
{
1026 1027 1028 1029 1030
	if (radix_enabled()) {
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
#endif
1031
		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1032
	}
1033
	return hash__map_kernel_page(ea, pa, prot);
1034
}
1035 1036 1037 1038

static inline int __meminit vmemmap_create_mapping(unsigned long start,
						   unsigned long page_size,
						   unsigned long phys)
1039
{
1040 1041
	if (radix_enabled())
		return radix__vmemmap_create_mapping(start, page_size, phys);
1042
	return hash__vmemmap_create_mapping(start, page_size, phys);
1043
}
1044 1045 1046 1047

#ifdef CONFIG_MEMORY_HOTPLUG
static inline void vmemmap_remove_mapping(unsigned long start,
					  unsigned long page_size)
1048
{
1049 1050
	if (radix_enabled())
		return radix__vmemmap_remove_mapping(start, page_size);
1051
	return hash__vmemmap_remove_mapping(start, page_size);
1052
}
1053
#endif
1054 1055 1056

static inline pte_t pmd_pte(pmd_t pmd)
{
1057
	return __pte_raw(pmd_raw(pmd));
1058 1059 1060 1061
}

static inline pmd_t pte_pmd(pte_t pte)
{
1062
	return __pmd_raw(pte_raw(pte));
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
	return (pte_t *)pmd;
}
#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1075
#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1076 1077
#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1078 1079
#define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
#define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1080 1081 1082 1083 1084

#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1085 1086 1087 1088 1089 1090

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
#define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
#define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
#define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
#endif
1091 1092
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */

1093 1094 1095 1096 1097 1098
#ifdef CONFIG_NUMA_BALANCING
static inline int pmd_protnone(pmd_t pmd)
{
	return pte_protnone(pmd_pte(pmd));
}
#endif /* CONFIG_NUMA_BALANCING */
1099 1100

#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1101
#define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1102
#define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1103

1104 1105 1106 1107 1108 1109
#define pmd_access_permitted pmd_access_permitted
static inline bool pmd_access_permitted(pmd_t pmd, bool write)
{
	return pte_access_permitted(pmd_pte(pmd), write);
}

1110 1111 1112 1113 1114 1115 1116 1117
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		       pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
				 pmd_t *pmd);
1118 1119 1120
extern int hash__has_transparent_hugepage(void);
static inline int has_transparent_hugepage(void)
{
1121 1122
	if (radix_enabled())
		return radix__has_transparent_hugepage();
1123 1124
	return hash__has_transparent_hugepage();
}
1125
#define has_transparent_hugepage has_transparent_hugepage
1126

1127 1128 1129
static inline unsigned long
pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
		    unsigned long clr, unsigned long set)
1130
{
1131 1132
	if (radix_enabled())
		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1133 1134 1135
	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
}

1136 1137 1138 1139
/*
 * returns true for pmd migration entries, THP, devmap, hugetlb
 * But compile time dependent on THP config
 */
1140 1141
static inline int pmd_large(pmd_t pmd)
{
1142
	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
/*
 * For radix we should always find H_PAGE_HASHPTE zero. Hence
 * the below will work for radix too
 */
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
					      unsigned long addr, pmd_t *pmdp)
{
	unsigned long old;

1158
	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1159 1160 1161 1162 1163 1164 1165 1166 1167
		return 0;
	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
	return ((old & _PAGE_ACCESSED) != 0);
}

#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pmd_t *pmdp)
{
1168
	if (__pmd_write((*pmdp)))
1169 1170 1171
		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
	else if (unlikely(pmd_savedwrite(*pmdp)))
		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1172 1173
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*
 * Only returns true for a THP. False for pmd migration entry.
 * We also need to return true when we come across a pte that
 * in between a thp split. While splitting THP, we mark the pmd
 * invalid (pmdp_invalidate()) before we set it with pte page
 * address. A pmd_trans_huge() check against a pmd entry during that time
 * should return true.
 * We should not call this on a hugetlb entry. We should check for HugeTLB
 * entry using vma->vm_flags
 * The page table walk rule is explained in Documentation/vm/transhuge.rst
 */
1185 1186
static inline int pmd_trans_huge(pmd_t pmd)
{
1187 1188 1189
	if (!pmd_present(pmd))
		return false;

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	if (radix_enabled())
		return radix__pmd_trans_huge(pmd);
	return hash__pmd_trans_huge(pmd);
}

#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
	if (radix_enabled())
		return radix__pmd_same(pmd_a, pmd_b);
	return hash__pmd_same(pmd_a, pmd_b);
}

1203 1204
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
1205 1206 1207
	if (radix_enabled())
		return radix__pmd_mkhuge(pmd);
	return hash__pmd_mkhuge(pmd);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
}

#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp,
				 pmd_t entry, int dirty);

#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
				     unsigned long address, pmd_t *pmdp);

#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1220 1221 1222
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
					    unsigned long addr, pmd_t *pmdp)
{
1223 1224
	if (radix_enabled())
		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1225 1226
	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
}
1227

1228 1229 1230
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
					unsigned long address, pmd_t *pmdp)
{
1231 1232
	if (radix_enabled())
		return radix__pmdp_collapse_flush(vma, address, pmdp);
1233 1234
	return hash__pmdp_collapse_flush(vma, address, pmdp);
}
1235 1236 1237
#define pmdp_collapse_flush pmdp_collapse_flush

#define __HAVE_ARCH_PGTABLE_DEPOSIT
1238 1239 1240
static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
					      pmd_t *pmdp, pgtable_t pgtable)
{
1241 1242
	if (radix_enabled())
		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1243 1244 1245
	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
}

1246
#define __HAVE_ARCH_PGTABLE_WITHDRAW
1247 1248 1249
static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
						    pmd_t *pmdp)
{
1250 1251
	if (radix_enabled())
		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1252 1253
	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
}
1254 1255

#define __HAVE_ARCH_PMDP_INVALIDATE
1256 1257
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
			     pmd_t *pmdp);
1258 1259 1260

#define pmd_move_must_withdraw pmd_move_must_withdraw
struct spinlock;
1261 1262 1263 1264 1265 1266 1267
extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
				  struct spinlock *old_pmd_ptl,
				  struct vm_area_struct *vma);
/*
 * Hash translation mode use the deposited table to store hash pte
 * slot information.
 */
1268 1269 1270 1271 1272 1273 1274
#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
static inline bool arch_needs_pgtable_deposit(void)
{
	if (radix_enabled())
		return false;
	return true;
}
1275
extern void serialize_against_pte_lookup(struct mm_struct *mm);
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
}

static inline int pmd_devmap(pmd_t pmd)
{
	return pte_devmap(pmd_pte(pmd));
}

static inline int pud_devmap(pud_t pud)
{
	return 0;
}

static inline int pgd_devmap(pgd_t pgd)
{
	return 0;
}
1297
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1298

1299
static inline int pud_pfn(pud_t pud)
1300 1301 1302 1303 1304 1305 1306 1307 1308
{
	/*
	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
	 * check so this should never be used. If it grows another user we
	 * want to know about it.
	 */
	BUILD_BUG();
	return 0;
}
1309

1310 1311
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */