sstep.c 67.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Single-step support.
 *
 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
12
#include <linux/kprobes.h>
13
#include <linux/ptrace.h>
14
#include <linux/prefetch.h>
15 16
#include <asm/sstep.h>
#include <asm/processor.h>
17
#include <linux/uaccess.h>
18
#include <asm/cpu_has_feature.h>
19
#include <asm/cputable.h>
20 21 22

extern char system_call_common[];

23
#ifdef CONFIG_PPC64
24
/* Bits in SRR1 that are copied from MSR */
25
#define MSR_MASK	0xffffffff87c0ffffUL
26 27 28
#else
#define MSR_MASK	0x87c0ffff
#endif
29

30 31 32 33
/* Bits in XER */
#define XER_SO		0x80000000U
#define XER_OV		0x40000000U
#define XER_CA		0x20000000U
34 35
#define XER_OV32	0x00080000U
#define XER_CA32	0x00040000U
36

S
Sean MacLennan 已提交
37
#ifdef CONFIG_PPC_FPU
38 39 40
/*
 * Functions in ldstfp.S
 */
41 42 43 44
extern void get_fpr(int rn, double *p);
extern void put_fpr(int rn, const double *p);
extern void get_vr(int rn, __vector128 *p);
extern void put_vr(int rn, __vector128 *p);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
extern void load_vsrn(int vsr, const void *p);
extern void store_vsrn(int vsr, void *p);
extern void conv_sp_to_dp(const float *sp, double *dp);
extern void conv_dp_to_sp(const double *dp, float *sp);
#endif

#ifdef __powerpc64__
/*
 * Functions in quad.S
 */
extern int do_lq(unsigned long ea, unsigned long *regs);
extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
extern int do_lqarx(unsigned long ea, unsigned long *regs);
extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
		    unsigned int *crp);
#endif

#ifdef __LITTLE_ENDIAN__
#define IS_LE	1
#define IS_BE	0
#else
#define IS_LE	0
#define IS_BE	1
S
Sean MacLennan 已提交
68
#endif
69

70 71 72
/*
 * Emulate the truncation of 64 bit values in 32-bit mode.
 */
73 74
static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
							unsigned long val)
75 76 77 78 79 80 81 82
{
#ifdef __powerpc64__
	if ((msr & MSR_64BIT) == 0)
		val &= 0xffffffffUL;
#endif
	return val;
}

83 84 85
/*
 * Determine whether a conditional branch instruction would branch.
 */
86 87 88
static nokprobe_inline int branch_taken(unsigned int instr,
					const struct pt_regs *regs,
					struct instruction_op *op)
89 90 91 92 93 94
{
	unsigned int bo = (instr >> 21) & 0x1f;
	unsigned int bi;

	if ((bo & 4) == 0) {
		/* decrement counter */
95 96
		op->type |= DECCTR;
		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 98 99 100 101 102 103 104 105 106 107
			return 0;
	}
	if ((bo & 0x10) == 0) {
		/* check bit from CR */
		bi = (instr >> 16) & 0x1f;
		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
			return 0;
	}
	return 1;
}

108 109
static nokprobe_inline long address_ok(struct pt_regs *regs,
				       unsigned long ea, int nb)
110 111 112
{
	if (!user_mode(regs))
		return 1;
113 114 115 116 117 118 119 120
	if (__access_ok(ea, nb, USER_DS))
		return 1;
	if (__access_ok(ea, 1, USER_DS))
		/* Access overlaps the end of the user region */
		regs->dar = USER_DS.seg;
	else
		regs->dar = ea;
	return 0;
121 122 123 124 125
}

/*
 * Calculate effective address for a D-form instruction
 */
126 127
static nokprobe_inline unsigned long dform_ea(unsigned int instr,
					      const struct pt_regs *regs)
128 129 130 131 132 133
{
	int ra;
	unsigned long ea;

	ra = (instr >> 16) & 0x1f;
	ea = (signed short) instr;		/* sign-extend */
134
	if (ra)
135
		ea += regs->gpr[ra];
136

137
	return ea;
138 139 140 141 142 143
}

#ifdef __powerpc64__
/*
 * Calculate effective address for a DS-form instruction
 */
144 145
static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
					       const struct pt_regs *regs)
146 147 148 149 150 151
{
	int ra;
	unsigned long ea;

	ra = (instr >> 16) & 0x1f;
	ea = (signed short) (instr & ~3);	/* sign-extend */
152
	if (ra)
153
		ea += regs->gpr[ra];
154

155
	return ea;
156
}
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

/*
 * Calculate effective address for a DQ-form instruction
 */
static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
					       const struct pt_regs *regs)
{
	int ra;
	unsigned long ea;

	ra = (instr >> 16) & 0x1f;
	ea = (signed short) (instr & ~0xf);	/* sign-extend */
	if (ra)
		ea += regs->gpr[ra];

172
	return ea;
173
}
174 175 176 177 178
#endif /* __powerpc64 */

/*
 * Calculate effective address for an X-form instruction
 */
179
static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180
					      const struct pt_regs *regs)
181 182 183 184 185 186 187
{
	int ra, rb;
	unsigned long ea;

	ra = (instr >> 16) & 0x1f;
	rb = (instr >> 11) & 0x1f;
	ea = regs->gpr[rb];
188
	if (ra)
189
		ea += regs->gpr[ra];
190

191
	return ea;
192 193 194 195 196 197
}

/*
 * Return the largest power of 2, not greater than sizeof(unsigned long),
 * such that x is a multiple of it.
 */
198
static nokprobe_inline unsigned long max_align(unsigned long x)
199 200 201 202 203
{
	x |= sizeof(unsigned long);
	return x & -x;		/* isolates rightmost bit */
}

204
static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 206 207 208
{
	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
}

209
static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 211 212 213 214 215
{
	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
		((x & 0xff00) << 8) | ((x & 0xff) << 24);
}

#ifdef __powerpc64__
216
static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 218 219 220 221
{
	return (byterev_4(x) << 32) | byterev_4(x >> 32);
}
#endif

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
{
	switch (nb) {
	case 2:
		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
		break;
	case 4:
		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
		break;
#ifdef __powerpc64__
	case 8:
		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
		break;
	case 16: {
		unsigned long *up = (unsigned long *)ptr;
		unsigned long tmp;
		tmp = byterev_8(up[0]);
		up[0] = byterev_8(up[1]);
		up[1] = tmp;
		break;
	}
#endif
	default:
		WARN_ON_ONCE(1);
	}
}

249
static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 251
					    unsigned long ea, int nb,
					    struct pt_regs *regs)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
{
	int err = 0;
	unsigned long x = 0;

	switch (nb) {
	case 1:
		err = __get_user(x, (unsigned char __user *) ea);
		break;
	case 2:
		err = __get_user(x, (unsigned short __user *) ea);
		break;
	case 4:
		err = __get_user(x, (unsigned int __user *) ea);
		break;
#ifdef __powerpc64__
	case 8:
		err = __get_user(x, (unsigned long __user *) ea);
		break;
#endif
	}
	if (!err)
		*dest = x;
274 275
	else
		regs->dar = ea;
276 277 278
	return err;
}

279 280 281 282
/*
 * Copy from userspace to a buffer, using the largest possible
 * aligned accesses, up to sizeof(long).
 */
283 284
static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
				       struct pt_regs *regs)
285
{
286 287
	int err = 0;
	int c;
288 289 290 291 292

	for (; nb > 0; nb -= c) {
		c = max_align(ea);
		if (c > nb)
			c = max_align(nb);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		switch (c) {
		case 1:
			err = __get_user(*dest, (unsigned char __user *) ea);
			break;
		case 2:
			err = __get_user(*(u16 *)dest,
					 (unsigned short __user *) ea);
			break;
		case 4:
			err = __get_user(*(u32 *)dest,
					 (unsigned int __user *) ea);
			break;
#ifdef __powerpc64__
		case 8:
			err = __get_user(*(unsigned long *)dest,
					 (unsigned long __user *) ea);
			break;
#endif
		}
312 313
		if (err) {
			regs->dar = ea;
314
			return err;
315
		}
316
		dest += c;
317 318 319 320 321
		ea += c;
	}
	return 0;
}

322 323 324 325 326 327 328 329 330 331 332 333 334
static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
					      unsigned long ea, int nb,
					      struct pt_regs *regs)
{
	union {
		unsigned long ul;
		u8 b[sizeof(unsigned long)];
	} u;
	int i;
	int err;

	u.ul = 0;
	i = IS_BE ? sizeof(unsigned long) - nb : 0;
335
	err = copy_mem_in(&u.b[i], ea, nb, regs);
336 337 338 339 340
	if (!err)
		*dest = u.ul;
	return err;
}

341 342
/*
 * Read memory at address ea for nb bytes, return 0 for success
343 344
 * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
 * If nb < sizeof(long), the result is right-justified on BE systems.
345
 */
346
static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 348 349 350 351
			      struct pt_regs *regs)
{
	if (!address_ok(regs, ea, nb))
		return -EFAULT;
	if ((ea & (nb - 1)) == 0)
352
		return read_mem_aligned(dest, ea, nb, regs);
353 354
	return read_mem_unaligned(dest, ea, nb, regs);
}
355
NOKPROBE_SYMBOL(read_mem);
356

357
static nokprobe_inline int write_mem_aligned(unsigned long val,
358 359
					     unsigned long ea, int nb,
					     struct pt_regs *regs)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
{
	int err = 0;

	switch (nb) {
	case 1:
		err = __put_user(val, (unsigned char __user *) ea);
		break;
	case 2:
		err = __put_user(val, (unsigned short __user *) ea);
		break;
	case 4:
		err = __put_user(val, (unsigned int __user *) ea);
		break;
#ifdef __powerpc64__
	case 8:
		err = __put_user(val, (unsigned long __user *) ea);
		break;
#endif
	}
379 380
	if (err)
		regs->dar = ea;
381 382 383
	return err;
}

384 385 386 387
/*
 * Copy from a buffer to userspace, using the largest possible
 * aligned accesses, up to sizeof(long).
 */
388 389
static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
					struct pt_regs *regs)
390
{
391 392
	int err = 0;
	int c;
393 394 395 396 397

	for (; nb > 0; nb -= c) {
		c = max_align(ea);
		if (c > nb)
			c = max_align(nb);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		switch (c) {
		case 1:
			err = __put_user(*dest, (unsigned char __user *) ea);
			break;
		case 2:
			err = __put_user(*(u16 *)dest,
					 (unsigned short __user *) ea);
			break;
		case 4:
			err = __put_user(*(u32 *)dest,
					 (unsigned int __user *) ea);
			break;
#ifdef __powerpc64__
		case 8:
			err = __put_user(*(unsigned long *)dest,
					 (unsigned long __user *) ea);
			break;
#endif
		}
417 418
		if (err) {
			regs->dar = ea;
419
			return err;
420
		}
421
		dest += c;
422
		ea += c;
423 424 425 426
	}
	return 0;
}

427 428 429 430 431 432 433 434 435 436 437 438
static nokprobe_inline int write_mem_unaligned(unsigned long val,
					       unsigned long ea, int nb,
					       struct pt_regs *regs)
{
	union {
		unsigned long ul;
		u8 b[sizeof(unsigned long)];
	} u;
	int i;

	u.ul = val;
	i = IS_BE ? sizeof(unsigned long) - nb : 0;
439
	return copy_mem_out(&u.b[i], ea, nb, regs);
440 441
}

442 443
/*
 * Write memory at address ea for nb bytes, return 0 for success
444
 * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445
 */
446
static int write_mem(unsigned long val, unsigned long ea, int nb,
447 448 449 450 451
			       struct pt_regs *regs)
{
	if (!address_ok(regs, ea, nb))
		return -EFAULT;
	if ((ea & (nb - 1)) == 0)
452
		return write_mem_aligned(val, ea, nb, regs);
453 454
	return write_mem_unaligned(val, ea, nb, regs);
}
455
NOKPROBE_SYMBOL(write_mem);
456

S
Sean MacLennan 已提交
457
#ifdef CONFIG_PPC_FPU
458
/*
459 460
 * These access either the real FP register or the image in the
 * thread_struct, depending on regs->msr & MSR_FP.
461
 */
462 463
static int do_fp_load(struct instruction_op *op, unsigned long ea,
		      struct pt_regs *regs, bool cross_endian)
464
{
465
	int err, rn, nb;
466
	union {
467 468
		int i;
		unsigned int u;
469
		float f;
470 471 472
		double d[2];
		unsigned long l[2];
		u8 b[2 * sizeof(double)];
473
	} u;
474

475
	nb = GETSIZE(op->type);
476 477
	if (!address_ok(regs, ea, nb))
		return -EFAULT;
478
	rn = op->reg;
479
	err = copy_mem_in(u.b, ea, nb, regs);
480 481
	if (err)
		return err;
482 483 484 485 486
	if (unlikely(cross_endian)) {
		do_byte_reverse(u.b, min(nb, 8));
		if (nb == 16)
			do_byte_reverse(&u.b[8], 8);
	}
487
	preempt_disable();
488 489 490 491 492 493 494 495
	if (nb == 4) {
		if (op->type & FPCONV)
			conv_sp_to_dp(&u.f, &u.d[0]);
		else if (op->type & SIGNEXT)
			u.l[0] = u.i;
		else
			u.l[0] = u.u;
	}
496
	if (regs->msr & MSR_FP)
497
		put_fpr(rn, &u.d[0]);
498
	else
499 500 501 502 503 504 505 506 507
		current->thread.TS_FPR(rn) = u.l[0];
	if (nb == 16) {
		/* lfdp */
		rn |= 1;
		if (regs->msr & MSR_FP)
			put_fpr(rn, &u.d[1]);
		else
			current->thread.TS_FPR(rn) = u.l[1];
	}
508 509
	preempt_enable();
	return 0;
510
}
511
NOKPROBE_SYMBOL(do_fp_load);
512

513 514
static int do_fp_store(struct instruction_op *op, unsigned long ea,
		       struct pt_regs *regs, bool cross_endian)
515
{
516
	int rn, nb;
517
	union {
518
		unsigned int u;
519
		float f;
520 521 522
		double d[2];
		unsigned long l[2];
		u8 b[2 * sizeof(double)];
523
	} u;
524

525
	nb = GETSIZE(op->type);
526 527
	if (!address_ok(regs, ea, nb))
		return -EFAULT;
528
	rn = op->reg;
529 530
	preempt_disable();
	if (regs->msr & MSR_FP)
531
		get_fpr(rn, &u.d[0]);
532
	else
533
		u.l[0] = current->thread.TS_FPR(rn);
534 535 536 537 538 539
	if (nb == 4) {
		if (op->type & FPCONV)
			conv_dp_to_sp(&u.d[0], &u.f);
		else
			u.u = u.l[0];
	}
540 541 542 543 544 545 546
	if (nb == 16) {
		rn |= 1;
		if (regs->msr & MSR_FP)
			get_fpr(rn, &u.d[1]);
		else
			u.l[1] = current->thread.TS_FPR(rn);
	}
547
	preempt_enable();
548 549 550 551 552
	if (unlikely(cross_endian)) {
		do_byte_reverse(u.b, min(nb, 8));
		if (nb == 16)
			do_byte_reverse(&u.b[8], 8);
	}
553
	return copy_mem_out(u.b, ea, nb, regs);
554
}
555
NOKPROBE_SYMBOL(do_fp_store);
S
Sean MacLennan 已提交
556
#endif
557 558 559

#ifdef CONFIG_ALTIVEC
/* For Altivec/VMX, no need to worry about alignment */
560
static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 562
				       int size, struct pt_regs *regs,
				       bool cross_endian)
563
{
564 565 566 567 568 569
	int err;
	union {
		__vector128 v;
		u8 b[sizeof(__vector128)];
	} u = {};

570 571
	if (!address_ok(regs, ea & ~0xfUL, 16))
		return -EFAULT;
572 573
	/* align to multiple of size */
	ea &= ~(size - 1);
574
	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 576
	if (err)
		return err;
577 578
	if (unlikely(cross_endian))
		do_byte_reverse(&u.b[ea & 0xf], size);
579 580 581 582 583 584 585
	preempt_disable();
	if (regs->msr & MSR_VEC)
		put_vr(rn, &u.v);
	else
		current->thread.vr_state.vr[rn] = u.v;
	preempt_enable();
	return 0;
586 587
}

588
static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 590
					int size, struct pt_regs *regs,
					bool cross_endian)
591
{
592 593 594 595 596
	union {
		__vector128 v;
		u8 b[sizeof(__vector128)];
	} u;

597 598
	if (!address_ok(regs, ea & ~0xfUL, 16))
		return -EFAULT;
599 600 601 602 603 604 605 606 607
	/* align to multiple of size */
	ea &= ~(size - 1);

	preempt_disable();
	if (regs->msr & MSR_VEC)
		get_vr(rn, &u.v);
	else
		u.v = current->thread.vr_state.vr[rn];
	preempt_enable();
608 609
	if (unlikely(cross_endian))
		do_byte_reverse(&u.b[ea & 0xf], size);
610
	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 612 613
}
#endif /* CONFIG_ALTIVEC */

614 615
#ifdef __powerpc64__
static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616
				      int reg, bool cross_endian)
617 618 619 620 621
{
	int err;

	if (!address_ok(regs, ea, 16))
		return -EFAULT;
622
	/* if aligned, should be atomic */
623 624 625 626 627 628 629 630 631
	if ((ea & 0xf) == 0) {
		err = do_lq(ea, &regs->gpr[reg]);
	} else {
		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
		if (!err)
			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
	}
	if (!err && unlikely(cross_endian))
		do_byte_reverse(&regs->gpr[reg], 16);
632 633 634
	return err;
}

635
static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636
				       int reg, bool cross_endian)
637 638
{
	int err;
639
	unsigned long vals[2];
640 641 642

	if (!address_ok(regs, ea, 16))
		return -EFAULT;
643 644 645 646 647
	vals[0] = regs->gpr[reg];
	vals[1] = regs->gpr[reg + 1];
	if (unlikely(cross_endian))
		do_byte_reverse(vals, 16);

648 649
	/* if aligned, should be atomic */
	if ((ea & 0xf) == 0)
650
		return do_stq(ea, vals[0], vals[1]);
651

652
	err = write_mem(vals[IS_LE], ea, 8, regs);
653
	if (!err)
654
		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 656
	return err;
}
657 658 659 660
#endif /* __powerpc64 */

#ifdef CONFIG_VSX
void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661
		      const void *mem, bool rev)
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
{
	int size, read_size;
	int i, j;
	const unsigned int *wp;
	const unsigned short *hp;
	const unsigned char *bp;

	size = GETSIZE(op->type);
	reg->d[0] = reg->d[1] = 0;

	switch (op->element_size) {
	case 16:
		/* whole vector; lxv[x] or lxvl[l] */
		if (size == 0)
			break;
		memcpy(reg, mem, size);
678 679 680 681
		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
			rev = !rev;
		if (rev)
			do_byte_reverse(reg, 16);
682 683 684 685 686 687
		break;
	case 8:
		/* scalar loads, lxvd2x, lxvdsx */
		read_size = (size >= 8) ? 8 : size;
		i = IS_LE ? 8 : 8 - read_size;
		memcpy(&reg->b[i], mem, read_size);
688 689
		if (rev)
			do_byte_reverse(&reg->b[i], 8);
690 691 692 693 694 695 696 697 698 699 700
		if (size < 8) {
			if (op->type & SIGNEXT) {
				/* size == 4 is the only case here */
				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
			} else if (op->vsx_flags & VSX_FPCONV) {
				preempt_disable();
				conv_sp_to_dp(&reg->fp[1 + IS_LE],
					      &reg->dp[IS_LE]);
				preempt_enable();
			}
		} else {
701 702 703 704
			if (size == 16) {
				unsigned long v = *(unsigned long *)(mem + 8);
				reg->d[IS_BE] = !rev ? v : byterev_8(v);
			} else if (op->vsx_flags & VSX_SPLAT)
705 706 707 708 709 710 711 712
				reg->d[IS_BE] = reg->d[IS_LE];
		}
		break;
	case 4:
		/* lxvw4x, lxvwsx */
		wp = mem;
		for (j = 0; j < size / 4; ++j) {
			i = IS_LE ? 3 - j : j;
713
			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 715 716 717 718 719 720 721 722 723 724 725 726 727
		}
		if (op->vsx_flags & VSX_SPLAT) {
			u32 val = reg->w[IS_LE ? 3 : 0];
			for (; j < 4; ++j) {
				i = IS_LE ? 3 - j : j;
				reg->w[i] = val;
			}
		}
		break;
	case 2:
		/* lxvh8x */
		hp = mem;
		for (j = 0; j < size / 2; ++j) {
			i = IS_LE ? 7 - j : j;
728
			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		}
		break;
	case 1:
		/* lxvb16x */
		bp = mem;
		for (j = 0; j < size; ++j) {
			i = IS_LE ? 15 - j : j;
			reg->b[i] = *bp++;
		}
		break;
	}
}
EXPORT_SYMBOL_GPL(emulate_vsx_load);
NOKPROBE_SYMBOL(emulate_vsx_load);

void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745
		       void *mem, bool rev)
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
	int size, write_size;
	int i, j;
	union vsx_reg buf;
	unsigned int *wp;
	unsigned short *hp;
	unsigned char *bp;

	size = GETSIZE(op->type);

	switch (op->element_size) {
	case 16:
		/* stxv, stxvx, stxvl, stxvll */
		if (size == 0)
			break;
761 762 763
		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
			rev = !rev;
		if (rev) {
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
			/* reverse 16 bytes */
			buf.d[0] = byterev_8(reg->d[1]);
			buf.d[1] = byterev_8(reg->d[0]);
			reg = &buf;
		}
		memcpy(mem, reg, size);
		break;
	case 8:
		/* scalar stores, stxvd2x */
		write_size = (size >= 8) ? 8 : size;
		i = IS_LE ? 8 : 8 - write_size;
		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
			buf.d[0] = buf.d[1] = 0;
			preempt_disable();
			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
			preempt_enable();
			reg = &buf;
		}
		memcpy(mem, &reg->b[i], write_size);
		if (size == 16)
			memcpy(mem + 8, &reg->d[IS_BE], 8);
785 786 787 788 789
		if (unlikely(rev)) {
			do_byte_reverse(mem, write_size);
			if (size == 16)
				do_byte_reverse(mem + 8, 8);
		}
790 791 792 793 794 795
		break;
	case 4:
		/* stxvw4x */
		wp = mem;
		for (j = 0; j < size / 4; ++j) {
			i = IS_LE ? 3 - j : j;
796
			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 798 799 800 801 802 803
		}
		break;
	case 2:
		/* stxvh8x */
		hp = mem;
		for (j = 0; j < size / 2; ++j) {
			i = IS_LE ? 7 - j : j;
804
			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 806 807 808 809 810 811 812 813 814 815 816 817 818
		}
		break;
	case 1:
		/* stvxb16x */
		bp = mem;
		for (j = 0; j < size; ++j) {
			i = IS_LE ? 15 - j : j;
			*bp++ = reg->b[i];
		}
		break;
	}
}
EXPORT_SYMBOL_GPL(emulate_vsx_store);
NOKPROBE_SYMBOL(emulate_vsx_store);
819 820

static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 822
				       unsigned long ea, struct pt_regs *regs,
				       bool cross_endian)
823 824 825 826 827 828
{
	int reg = op->reg;
	u8 mem[16];
	union vsx_reg buf;
	int size = GETSIZE(op->type);

829
	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 831
		return -EFAULT;

832
	emulate_vsx_load(op, &buf, mem, cross_endian);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	preempt_disable();
	if (reg < 32) {
		/* FP regs + extensions */
		if (regs->msr & MSR_FP) {
			load_vsrn(reg, &buf);
		} else {
			current->thread.fp_state.fpr[reg][0] = buf.d[0];
			current->thread.fp_state.fpr[reg][1] = buf.d[1];
		}
	} else {
		if (regs->msr & MSR_VEC)
			load_vsrn(reg, &buf);
		else
			current->thread.vr_state.vr[reg - 32] = buf.v;
	}
	preempt_enable();
	return 0;
}

static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 854
					unsigned long ea, struct pt_regs *regs,
					bool cross_endian)
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
{
	int reg = op->reg;
	u8 mem[16];
	union vsx_reg buf;
	int size = GETSIZE(op->type);

	if (!address_ok(regs, ea, size))
		return -EFAULT;

	preempt_disable();
	if (reg < 32) {
		/* FP regs + extensions */
		if (regs->msr & MSR_FP) {
			store_vsrn(reg, &buf);
		} else {
			buf.d[0] = current->thread.fp_state.fpr[reg][0];
			buf.d[1] = current->thread.fp_state.fpr[reg][1];
		}
	} else {
		if (regs->msr & MSR_VEC)
			store_vsrn(reg, &buf);
		else
			buf.v = current->thread.vr_state.vr[reg - 32];
	}
	preempt_enable();
880
	emulate_vsx_store(op, &buf, mem, cross_endian);
881
	return  copy_mem_out(mem, ea, size, regs);
882
}
883 884
#endif /* CONFIG_VSX */

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
{
	int err;
	unsigned long i, size;

#ifdef __powerpc64__
	size = ppc64_caches.l1d.block_size;
	if (!(regs->msr & MSR_64BIT))
		ea &= 0xffffffffUL;
#else
	size = L1_CACHE_BYTES;
#endif
	ea &= ~(size - 1);
	if (!address_ok(regs, ea, size))
		return -EFAULT;
	for (i = 0; i < size; i += sizeof(long)) {
		err = __put_user(0, (unsigned long __user *) (ea + i));
902 903
		if (err) {
			regs->dar = ea;
904
			return err;
905
		}
906 907 908 909 910
	}
	return 0;
}
NOKPROBE_SYMBOL(emulate_dcbz);

911 912 913 914 915 916 917 918 919
#define __put_user_asmx(x, addr, err, op, cr)		\
	__asm__ __volatile__(				\
		"1:	" op " %2,0,%3\n"		\
		"	mfcr	%1\n"			\
		"2:\n"					\
		".section .fixup,\"ax\"\n"		\
		"3:	li	%0,%4\n"		\
		"	b	2b\n"			\
		".previous\n"				\
920
		EX_TABLE(1b, 3b)			\
921 922 923 924 925 926 927 928 929 930 931
		: "=r" (err), "=r" (cr)			\
		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))

#define __get_user_asmx(x, addr, err, op)		\
	__asm__ __volatile__(				\
		"1:	"op" %1,0,%2\n"			\
		"2:\n"					\
		".section .fixup,\"ax\"\n"		\
		"3:	li	%0,%3\n"		\
		"	b	2b\n"			\
		".previous\n"				\
932
		EX_TABLE(1b, 3b)			\
933 934 935 936 937 938 939 940 941 942 943
		: "=r" (err), "=r" (x)			\
		: "r" (addr), "i" (-EFAULT), "0" (err))

#define __cacheop_user_asmx(addr, err, op)		\
	__asm__ __volatile__(				\
		"1:	"op" 0,%1\n"			\
		"2:\n"					\
		".section .fixup,\"ax\"\n"		\
		"3:	li	%0,%3\n"		\
		"	b	2b\n"			\
		".previous\n"				\
944
		EX_TABLE(1b, 3b)			\
945 946 947
		: "=r" (err)				\
		: "r" (addr), "i" (-EFAULT), "0" (err))

948
static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949
				    struct instruction_op *op)
950
{
951
	long val = op->val;
952

953 954
	op->type |= SETCC;
	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955
#ifdef __powerpc64__
956
	if (!(regs->msr & MSR_64BIT))
957 958 959
		val = (int) val;
#endif
	if (val < 0)
960
		op->ccval |= 0x80000000;
961
	else if (val > 0)
962
		op->ccval |= 0x40000000;
963
	else
964
		op->ccval |= 0x20000000;
965 966
}

967 968 969 970 971 972 973 974 975 976
static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
{
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		if (val)
			op->xerval |= XER_CA32;
		else
			op->xerval &= ~XER_CA32;
	}
}

977 978
static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
				     struct instruction_op *op, int rd,
979 980 981 982 983 984 985
				     unsigned long val1, unsigned long val2,
				     unsigned long carry_in)
{
	unsigned long val = val1 + val2;

	if (carry_in)
		++val;
986 987 988
	op->type = COMPUTE + SETREG + SETXER;
	op->reg = rd;
	op->val = val;
989
#ifdef __powerpc64__
990
	if (!(regs->msr & MSR_64BIT)) {
991 992 993 994
		val = (unsigned int) val;
		val1 = (unsigned int) val1;
	}
#endif
995
	op->xerval = regs->xer;
996
	if (val < val1 || (carry_in && val == val1))
997
		op->xerval |= XER_CA;
998
	else
999
		op->xerval &= ~XER_CA;
1000 1001 1002

	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
			(carry_in && (unsigned int)val == (unsigned int)val1));
1003 1004
}

1005 1006 1007
static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
					  struct instruction_op *op,
					  long v1, long v2, int crfld)
1008 1009 1010
{
	unsigned int crval, shift;

1011
	op->type = COMPUTE + SETCC;
1012 1013 1014 1015 1016 1017 1018 1019
	crval = (regs->xer >> 31) & 1;		/* get SO bit */
	if (v1 < v2)
		crval |= 8;
	else if (v1 > v2)
		crval |= 4;
	else
		crval |= 2;
	shift = (7 - crfld) * 4;
1020
	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 1022
}

1023 1024 1025 1026
static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
					    struct instruction_op *op,
					    unsigned long v1,
					    unsigned long v2, int crfld)
1027 1028 1029
{
	unsigned int crval, shift;

1030
	op->type = COMPUTE + SETCC;
1031 1032 1033 1034 1035 1036 1037 1038
	crval = (regs->xer >> 31) & 1;		/* get SO bit */
	if (v1 < v2)
		crval |= 8;
	else if (v1 > v2)
		crval |= 4;
	else
		crval |= 2;
	shift = (7 - crfld) * 4;
1039
	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 1041
}

1042 1043 1044
static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
				    struct instruction_op *op,
				    unsigned long v1, unsigned long v2)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
{
	unsigned long long out_val, mask;
	int i;

	out_val = 0;
	for (i = 0; i < 8; i++) {
		mask = 0xffUL << (i * 8);
		if ((v1 & mask) == (v2 & mask))
			out_val |= mask;
	}
1055
	op->val = out_val;
1056 1057
}

1058 1059 1060 1061
/*
 * The size parameter is used to adjust the equivalent popcnt instruction.
 * popcntb = 8, popcntw = 32, popcntd = 64
 */
1062 1063 1064
static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
				      struct instruction_op *op,
				      unsigned long v1, int size)
1065 1066 1067 1068 1069 1070 1071 1072
{
	unsigned long long out = v1;

	out -= (out >> 1) & 0x5555555555555555;
	out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;

	if (size == 8) {	/* popcntb */
1073
		op->val = out;
1074 1075 1076 1077 1078
		return;
	}
	out += out >> 8;
	out += out >> 16;
	if (size == 32) {	/* popcntw */
1079
		op->val = out & 0x0000003f0000003f;
1080 1081 1082 1083
		return;
	}

	out = (out + (out >> 32)) & 0x7f;
1084
	op->val = out;	/* popcntd */
1085 1086
}

1087
#ifdef CONFIG_PPC64
1088 1089 1090
static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
				      struct instruction_op *op,
				      unsigned long v1, unsigned long v2)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	unsigned char perm, idx;
	unsigned int i;

	perm = 0;
	for (i = 0; i < 8; i++) {
		idx = (v1 >> (i * 8)) & 0xff;
		if (idx < 64)
			if (v2 & PPC_BIT(idx))
				perm |= 1 << i;
	}
1102
	op->val = perm;
1103 1104
}
#endif /* CONFIG_PPC64 */
1105 1106 1107 1108
/*
 * The size parameter adjusts the equivalent prty instruction.
 * prtyw = 32, prtyd = 64
 */
1109 1110 1111
static nokprobe_inline void do_prty(const struct pt_regs *regs,
				    struct instruction_op *op,
				    unsigned long v, int size)
1112 1113 1114 1115 1116
{
	unsigned long long res = v ^ (v >> 8);

	res ^= res >> 16;
	if (size == 32) {		/* prtyw */
1117
		op->val = res & 0x0000000100000001;
1118 1119 1120 1121
		return;
	}

	res ^= res >> 32;
1122
	op->val = res & 1;	/*prtyd */
1123
}
1124

1125
static nokprobe_inline int trap_compare(long v1, long v2)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
{
	int ret = 0;

	if (v1 < v2)
		ret |= 0x10;
	else if (v1 > v2)
		ret |= 0x08;
	else
		ret |= 0x04;
	if ((unsigned long)v1 < (unsigned long)v2)
		ret |= 0x02;
	else if ((unsigned long)v1 > (unsigned long)v2)
		ret |= 0x01;
	return ret;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Elements of 32-bit rotate and mask instructions.
 */
#define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
#ifdef __powerpc64__
#define MASK64_L(mb)	(~0UL >> (mb))
#define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
#define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
#define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
#else
#define DATA32(x)	(x)
#endif
#define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))

/*
1158 1159 1160 1161 1162 1163 1164 1165 1166
 * Decode an instruction, and return information about it in *op
 * without changing *regs.
 * Integer arithmetic and logical instructions, branches, and barrier
 * instructions can be emulated just using the information in *op.
 *
 * Return value is 1 if the instruction can be emulated just by
 * updating *regs with the information in *op, -1 if we need the
 * GPRs but *regs doesn't contain the full register set, or 0
 * otherwise.
1167
 */
1168 1169
int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
		  unsigned int instr)
1170
{
1171
	unsigned int opcode, ra, rb, rd, spr, u;
1172
	unsigned long int imm;
1173
	unsigned long int val, val2;
1174
	unsigned int mb, me, sh;
1175
	long ival;
1176

1177 1178
	op->type = COMPUTE;

1179 1180 1181
	opcode = instr >> 26;
	switch (opcode) {
	case 16:	/* bc */
1182
		op->type = BRANCH;
1183 1184 1185
		imm = (signed short)(instr & 0xfffc);
		if ((instr & 2) == 0)
			imm += regs->nip;
1186
		op->val = truncate_if_32bit(regs->msr, imm);
1187
		if (instr & 1)
1188 1189 1190
			op->type |= SETLK;
		if (branch_taken(instr, regs, op))
			op->type |= BRTAKEN;
1191
		return 1;
1192
#ifdef CONFIG_PPC64
1193
	case 17:	/* sc */
1194 1195 1196 1197 1198
		if ((instr & 0xfe2) == 2)
			op->type = SYSCALL;
		else
			op->type = UNKNOWN;
		return 0;
1199
#endif
1200
	case 18:	/* b */
1201
		op->type = BRANCH | BRTAKEN;
1202 1203 1204 1205 1206
		imm = instr & 0x03fffffc;
		if (imm & 0x02000000)
			imm -= 0x04000000;
		if ((instr & 2) == 0)
			imm += regs->nip;
1207
		op->val = truncate_if_32bit(regs->msr, imm);
1208
		if (instr & 1)
1209
			op->type |= SETLK;
1210 1211
		return 1;
	case 19:
1212
		switch ((instr >> 1) & 0x3ff) {
1213
		case 0:		/* mcrf */
1214
			op->type = COMPUTE + SETCC;
1215 1216 1217 1218
			rd = 7 - ((instr >> 23) & 0x7);
			ra = 7 - ((instr >> 18) & 0x7);
			rd *= 4;
			ra *= 4;
1219
			val = (regs->ccr >> ra) & 0xf;
1220 1221
			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
			return 1;
1222

1223 1224
		case 16:	/* bclr */
		case 528:	/* bcctr */
1225
			op->type = BRANCH;
1226
			imm = (instr & 0x400)? regs->ctr: regs->link;
1227
			op->val = truncate_if_32bit(regs->msr, imm);
1228
			if (instr & 1)
1229 1230 1231
				op->type |= SETLK;
			if (branch_taken(instr, regs, op))
				op->type |= BRTAKEN;
1232
			return 1;
1233 1234

		case 18:	/* rfid, scary */
1235 1236 1237 1238
			if (regs->msr & MSR_PR)
				goto priv;
			op->type = RFI;
			return 0;
1239 1240

		case 150:	/* isync */
1241 1242
			op->type = BARRIER | BARRIER_ISYNC;
			return 1;
1243 1244 1245 1246 1247 1248 1249 1250 1251

		case 33:	/* crnor */
		case 129:	/* crandc */
		case 193:	/* crxor */
		case 225:	/* crnand */
		case 257:	/* crand */
		case 289:	/* creqv */
		case 417:	/* crorc */
		case 449:	/* cror */
1252
			op->type = COMPUTE + SETCC;
1253 1254 1255 1256 1257 1258
			ra = (instr >> 16) & 0x1f;
			rb = (instr >> 11) & 0x1f;
			rd = (instr >> 21) & 0x1f;
			ra = (regs->ccr >> (31 - ra)) & 1;
			rb = (regs->ccr >> (31 - rb)) & 1;
			val = (instr >> (6 + ra * 2 + rb)) & 1;
1259
			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1260
				(val << (31 - rd));
1261
			return 1;
1262 1263 1264 1265 1266
		}
		break;
	case 31:
		switch ((instr >> 1) & 0x3ff) {
		case 598:	/* sync */
1267
			op->type = BARRIER + BARRIER_SYNC;
1268 1269 1270
#ifdef __powerpc64__
			switch ((instr >> 21) & 3) {
			case 1:		/* lwsync */
1271 1272
				op->type = BARRIER + BARRIER_LWSYNC;
				break;
1273
			case 2:		/* ptesync */
1274 1275
				op->type = BARRIER + BARRIER_PTESYNC;
				break;
1276 1277
			}
#endif
1278
			return 1;
1279 1280

		case 854:	/* eieio */
1281 1282
			op->type = BARRIER + BARRIER_EIEIO;
			return 1;
1283 1284 1285 1286 1287 1288
		}
		break;
	}

	/* Following cases refer to regs->gpr[], so we need all regs */
	if (!FULL_REGS(regs))
1289
		return -1;
1290 1291 1292 1293 1294 1295

	rd = (instr >> 21) & 0x1f;
	ra = (instr >> 16) & 0x1f;
	rb = (instr >> 11) & 0x1f;

	switch (opcode) {
1296 1297 1298 1299
#ifdef __powerpc64__
	case 2:		/* tdi */
		if (rd & trap_compare(regs->gpr[ra], (short) instr))
			goto trap;
1300
		return 1;
1301 1302 1303 1304
#endif
	case 3:		/* twi */
		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
			goto trap;
1305
		return 1;
1306

1307
	case 7:		/* mulli */
1308 1309
		op->val = regs->gpr[ra] * (short) instr;
		goto compute_done;
1310 1311 1312

	case 8:		/* subfic */
		imm = (short) instr;
1313 1314
		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
		return 1;
1315 1316 1317 1318 1319 1320 1321 1322

	case 10:	/* cmpli */
		imm = (unsigned short) instr;
		val = regs->gpr[ra];
#ifdef __powerpc64__
		if ((rd & 1) == 0)
			val = (unsigned int) val;
#endif
1323 1324
		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
		return 1;
1325 1326 1327 1328 1329 1330 1331 1332

	case 11:	/* cmpi */
		imm = (short) instr;
		val = regs->gpr[ra];
#ifdef __powerpc64__
		if ((rd & 1) == 0)
			val = (int) val;
#endif
1333 1334
		do_cmp_signed(regs, op, val, imm, rd >> 2);
		return 1;
1335 1336 1337

	case 12:	/* addic */
		imm = (short) instr;
1338 1339
		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
		return 1;
1340 1341 1342

	case 13:	/* addic. */
		imm = (short) instr;
1343
		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1344
		set_cr0(regs, op);
1345
		return 1;
1346 1347 1348 1349 1350

	case 14:	/* addi */
		imm = (short) instr;
		if (ra)
			imm += regs->gpr[ra];
1351 1352
		op->val = imm;
		goto compute_done;
1353 1354 1355 1356 1357

	case 15:	/* addis */
		imm = ((short) instr) << 16;
		if (ra)
			imm += regs->gpr[ra];
1358 1359
		op->val = imm;
		goto compute_done;
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	case 19:
		if (((instr >> 1) & 0x1f) == 2) {
			/* addpcis */
			imm = (short) (instr & 0xffc1);	/* d0 + d2 fields */
			imm |= (instr >> 15) & 0x3e;	/* d1 field */
			op->val = regs->nip + (imm << 16) + 4;
			goto compute_done;
		}
		op->type = UNKNOWN;
		return 0;

1372 1373 1374 1375 1376
	case 20:	/* rlwimi */
		mb = (instr >> 6) & 0x1f;
		me = (instr >> 1) & 0x1f;
		val = DATA32(regs->gpr[rd]);
		imm = MASK32(mb, me);
1377
		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1378 1379 1380 1381 1382 1383
		goto logical_done;

	case 21:	/* rlwinm */
		mb = (instr >> 6) & 0x1f;
		me = (instr >> 1) & 0x1f;
		val = DATA32(regs->gpr[rd]);
1384
		op->val = ROTATE(val, rb) & MASK32(mb, me);
1385 1386 1387 1388 1389 1390 1391
		goto logical_done;

	case 23:	/* rlwnm */
		mb = (instr >> 6) & 0x1f;
		me = (instr >> 1) & 0x1f;
		rb = regs->gpr[rb] & 0x1f;
		val = DATA32(regs->gpr[rd]);
1392
		op->val = ROTATE(val, rb) & MASK32(mb, me);
1393 1394 1395
		goto logical_done;

	case 24:	/* ori */
1396 1397
		op->val = regs->gpr[rd] | (unsigned short) instr;
		goto logical_done_nocc;
1398 1399 1400

	case 25:	/* oris */
		imm = (unsigned short) instr;
1401 1402
		op->val = regs->gpr[rd] | (imm << 16);
		goto logical_done_nocc;
1403 1404

	case 26:	/* xori */
1405 1406
		op->val = regs->gpr[rd] ^ (unsigned short) instr;
		goto logical_done_nocc;
1407 1408 1409

	case 27:	/* xoris */
		imm = (unsigned short) instr;
1410 1411
		op->val = regs->gpr[rd] ^ (imm << 16);
		goto logical_done_nocc;
1412 1413

	case 28:	/* andi. */
1414
		op->val = regs->gpr[rd] & (unsigned short) instr;
1415
		set_cr0(regs, op);
1416
		goto logical_done_nocc;
1417 1418 1419

	case 29:	/* andis. */
		imm = (unsigned short) instr;
1420
		op->val = regs->gpr[rd] & (imm << 16);
1421
		set_cr0(regs, op);
1422
		goto logical_done_nocc;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

#ifdef __powerpc64__
	case 30:	/* rld* */
		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
		val = regs->gpr[rd];
		if ((instr & 0x10) == 0) {
			sh = rb | ((instr & 2) << 4);
			val = ROTATE(val, sh);
			switch ((instr >> 2) & 3) {
			case 0:		/* rldicl */
1433 1434
				val &= MASK64_L(mb);
				break;
1435
			case 1:		/* rldicr */
1436 1437
				val &= MASK64_R(mb);
				break;
1438
			case 2:		/* rldic */
1439 1440
				val &= MASK64(mb, 63 - sh);
				break;
1441 1442
			case 3:		/* rldimi */
				imm = MASK64(mb, 63 - sh);
1443
				val = (regs->gpr[ra] & ~imm) |
1444 1445
					(val & imm);
			}
1446 1447
			op->val = val;
			goto logical_done;
1448 1449 1450 1451 1452
		} else {
			sh = regs->gpr[rb] & 0x3f;
			val = ROTATE(val, sh);
			switch ((instr >> 1) & 7) {
			case 0:		/* rldcl */
1453
				op->val = val & MASK64_L(mb);
1454 1455
				goto logical_done;
			case 1:		/* rldcr */
1456
				op->val = val & MASK64_R(mb);
1457 1458
				goto logical_done;
			}
1459
		}
1460
#endif
1461 1462
		op->type = UNKNOWN;	/* illegal instruction */
		return 0;
1463

1464
	case 31:
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		/* isel occupies 32 minor opcodes */
		if (((instr >> 1) & 0x1f) == 15) {
			mb = (instr >> 6) & 0x1f; /* bc field */
			val = (regs->ccr >> (31 - mb)) & 1;
			val2 = (ra) ? regs->gpr[ra] : 0;

			op->val = (val) ? val2 : regs->gpr[rb];
			goto compute_done;
		}

1475
		switch ((instr >> 1) & 0x3ff) {
1476 1477 1478 1479 1480
		case 4:		/* tw */
			if (rd == 0x1f ||
			    (rd & trap_compare((int)regs->gpr[ra],
					       (int)regs->gpr[rb])))
				goto trap;
1481
			return 1;
1482 1483 1484 1485
#ifdef __powerpc64__
		case 68:	/* td */
			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
				goto trap;
1486
			return 1;
1487
#endif
1488 1489
		case 83:	/* mfmsr */
			if (regs->msr & MSR_PR)
1490 1491 1492 1493
				goto priv;
			op->type = MFMSR;
			op->reg = rd;
			return 0;
1494 1495
		case 146:	/* mtmsr */
			if (regs->msr & MSR_PR)
1496 1497 1498 1499 1500
				goto priv;
			op->type = MTMSR;
			op->reg = rd;
			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
			return 0;
1501
#ifdef CONFIG_PPC64
1502 1503
		case 178:	/* mtmsrd */
			if (regs->msr & MSR_PR)
1504 1505 1506 1507 1508 1509 1510 1511
				goto priv;
			op->type = MTMSR;
			op->reg = rd;
			/* only MSR_EE and MSR_RI get changed if bit 15 set */
			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
			op->val = imm;
			return 0;
1512
#endif
1513

1514
		case 19:	/* mfcr */
1515
			imm = 0xffffffffUL;
1516 1517 1518
			if ((instr >> 20) & 1) {
				imm = 0xf0000000UL;
				for (sh = 0; sh < 8; ++sh) {
1519
					if (instr & (0x80000 >> sh))
1520 1521 1522 1523
						break;
					imm >>= 4;
				}
			}
1524 1525
			op->val = regs->ccr & imm;
			goto compute_done;
1526 1527

		case 144:	/* mtcrf */
1528
			op->type = COMPUTE + SETCC;
1529 1530
			imm = 0xf0000000UL;
			val = regs->gpr[rd];
1531
			op->ccval = regs->ccr;
1532 1533
			for (sh = 0; sh < 8; ++sh) {
				if (instr & (0x80000 >> sh))
1534
					op->ccval = (op->ccval & ~imm) |
1535 1536 1537
						(val & imm);
				imm >>= 4;
			}
1538
			return 1;
1539 1540

		case 339:	/* mfspr */
1541
			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1542 1543 1544 1545 1546 1547 1548
			op->type = MFSPR;
			op->reg = rd;
			op->spr = spr;
			if (spr == SPRN_XER || spr == SPRN_LR ||
			    spr == SPRN_CTR)
				return 1;
			return 0;
1549 1550

		case 467:	/* mtspr */
1551
			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1552 1553 1554 1555 1556 1557 1558
			op->type = MTSPR;
			op->val = regs->gpr[rd];
			op->spr = spr;
			if (spr == SPRN_XER || spr == SPRN_LR ||
			    spr == SPRN_CTR)
				return 1;
			return 0;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

/*
 * Compare instructions
 */
		case 0:	/* cmp */
			val = regs->gpr[ra];
			val2 = regs->gpr[rb];
#ifdef __powerpc64__
			if ((rd & 1) == 0) {
				/* word (32-bit) compare */
				val = (int) val;
				val2 = (int) val2;
			}
#endif
1573 1574
			do_cmp_signed(regs, op, val, val2, rd >> 2);
			return 1;
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

		case 32:	/* cmpl */
			val = regs->gpr[ra];
			val2 = regs->gpr[rb];
#ifdef __powerpc64__
			if ((rd & 1) == 0) {
				/* word (32-bit) compare */
				val = (unsigned int) val;
				val2 = (unsigned int) val2;
			}
#endif
1586 1587
			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
			return 1;
1588

1589
		case 508: /* cmpb */
1590 1591
			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
			goto logical_done_nocc;
1592

1593 1594 1595 1596
/*
 * Arithmetic instructions
 */
		case 8:	/* subfc */
1597
			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1598 1599 1600 1601
				       regs->gpr[rb], 1);
			goto arith_done;
#ifdef __powerpc64__
		case 9:	/* mulhdu */
1602
			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1603 1604 1605 1606
			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
			goto arith_done;
#endif
		case 10:	/* addc */
1607
			add_with_carry(regs, op, rd, regs->gpr[ra],
1608 1609 1610 1611
				       regs->gpr[rb], 0);
			goto arith_done;

		case 11:	/* mulhwu */
1612
			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1613 1614 1615 1616
			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
			goto arith_done;

		case 40:	/* subf */
1617
			op->val = regs->gpr[rb] - regs->gpr[ra];
1618 1619 1620
			goto arith_done;
#ifdef __powerpc64__
		case 73:	/* mulhd */
1621
			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1622 1623 1624 1625
			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
			goto arith_done;
#endif
		case 75:	/* mulhw */
1626
			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1627 1628 1629 1630
			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
			goto arith_done;

		case 104:	/* neg */
1631
			op->val = -regs->gpr[ra];
1632 1633 1634
			goto arith_done;

		case 136:	/* subfe */
1635 1636
			add_with_carry(regs, op, rd, ~regs->gpr[ra],
				       regs->gpr[rb], regs->xer & XER_CA);
1637 1638 1639
			goto arith_done;

		case 138:	/* adde */
1640 1641
			add_with_carry(regs, op, rd, regs->gpr[ra],
				       regs->gpr[rb], regs->xer & XER_CA);
1642 1643 1644
			goto arith_done;

		case 200:	/* subfze */
1645
			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1646 1647 1648 1649
				       regs->xer & XER_CA);
			goto arith_done;

		case 202:	/* addze */
1650
			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1651 1652 1653 1654
				       regs->xer & XER_CA);
			goto arith_done;

		case 232:	/* subfme */
1655
			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1656 1657 1658 1659
				       regs->xer & XER_CA);
			goto arith_done;
#ifdef __powerpc64__
		case 233:	/* mulld */
1660
			op->val = regs->gpr[ra] * regs->gpr[rb];
1661 1662 1663
			goto arith_done;
#endif
		case 234:	/* addme */
1664
			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1665 1666 1667 1668
				       regs->xer & XER_CA);
			goto arith_done;

		case 235:	/* mullw */
1669 1670 1671
			op->val = (long)(int) regs->gpr[ra] *
				(int) regs->gpr[rb];

1672 1673 1674
			goto arith_done;

		case 266:	/* add */
1675
			op->val = regs->gpr[ra] + regs->gpr[rb];
1676 1677 1678
			goto arith_done;
#ifdef __powerpc64__
		case 457:	/* divdu */
1679
			op->val = regs->gpr[ra] / regs->gpr[rb];
1680 1681 1682
			goto arith_done;
#endif
		case 459:	/* divwu */
1683
			op->val = (unsigned int) regs->gpr[ra] /
1684 1685 1686 1687
				(unsigned int) regs->gpr[rb];
			goto arith_done;
#ifdef __powerpc64__
		case 489:	/* divd */
1688
			op->val = (long int) regs->gpr[ra] /
1689 1690 1691 1692
				(long int) regs->gpr[rb];
			goto arith_done;
#endif
		case 491:	/* divw */
1693
			op->val = (int) regs->gpr[ra] /
1694 1695 1696 1697 1698 1699 1700 1701
				(int) regs->gpr[rb];
			goto arith_done;


/*
 * Logical instructions
 */
		case 26:	/* cntlzw */
1702 1703
			val = (unsigned int) regs->gpr[rd];
			op->val = ( val ? __builtin_clz(val) : 32 );
1704 1705 1706
			goto logical_done;
#ifdef __powerpc64__
		case 58:	/* cntlzd */
1707 1708
			val = regs->gpr[rd];
			op->val = ( val ? __builtin_clzl(val) : 64 );
1709 1710 1711
			goto logical_done;
#endif
		case 28:	/* and */
1712
			op->val = regs->gpr[rd] & regs->gpr[rb];
1713 1714 1715
			goto logical_done;

		case 60:	/* andc */
1716
			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1717 1718
			goto logical_done;

1719
		case 122:	/* popcntb */
1720
			do_popcnt(regs, op, regs->gpr[rd], 8);
1721
			goto logical_done_nocc;
1722

1723
		case 124:	/* nor */
1724
			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1725
			goto logical_done;
1726 1727

		case 154:	/* prtyw */
1728
			do_prty(regs, op, regs->gpr[rd], 32);
1729
			goto logical_done_nocc;
1730 1731

		case 186:	/* prtyd */
1732
			do_prty(regs, op, regs->gpr[rd], 64);
1733
			goto logical_done_nocc;
1734 1735
#ifdef CONFIG_PPC64
		case 252:	/* bpermd */
1736
			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1737
			goto logical_done_nocc;
1738
#endif
1739
		case 284:	/* xor */
1740
			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1741 1742 1743
			goto logical_done;

		case 316:	/* xor */
1744
			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1745 1746
			goto logical_done;

1747
		case 378:	/* popcntw */
1748
			do_popcnt(regs, op, regs->gpr[rd], 32);
1749
			goto logical_done_nocc;
1750

1751
		case 412:	/* orc */
1752
			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1753 1754 1755
			goto logical_done;

		case 444:	/* or */
1756
			op->val = regs->gpr[rd] | regs->gpr[rb];
1757 1758 1759
			goto logical_done;

		case 476:	/* nand */
1760
			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1761
			goto logical_done;
1762 1763
#ifdef CONFIG_PPC64
		case 506:	/* popcntd */
1764
			do_popcnt(regs, op, regs->gpr[rd], 64);
1765
			goto logical_done_nocc;
1766
#endif
1767
		case 922:	/* extsh */
1768
			op->val = (signed short) regs->gpr[rd];
1769 1770 1771
			goto logical_done;

		case 954:	/* extsb */
1772
			op->val = (signed char) regs->gpr[rd];
1773 1774 1775
			goto logical_done;
#ifdef __powerpc64__
		case 986:	/* extsw */
1776
			op->val = (signed int) regs->gpr[rd];
1777 1778 1779 1780 1781 1782 1783 1784 1785
			goto logical_done;
#endif

/*
 * Shift instructions
 */
		case 24:	/* slw */
			sh = regs->gpr[rb] & 0x3f;
			if (sh < 32)
1786
				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1787
			else
1788
				op->val = 0;
1789 1790 1791 1792 1793
			goto logical_done;

		case 536:	/* srw */
			sh = regs->gpr[rb] & 0x3f;
			if (sh < 32)
1794
				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1795
			else
1796
				op->val = 0;
1797 1798 1799
			goto logical_done;

		case 792:	/* sraw */
1800
			op->type = COMPUTE + SETREG + SETXER;
1801 1802
			sh = regs->gpr[rb] & 0x3f;
			ival = (signed int) regs->gpr[rd];
1803 1804
			op->val = ival >> (sh < 32 ? sh : 31);
			op->xerval = regs->xer;
1805
			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1806
				op->xerval |= XER_CA;
1807
			else
1808
				op->xerval &= ~XER_CA;
1809
			set_ca32(op, op->xerval & XER_CA);
1810 1811 1812
			goto logical_done;

		case 824:	/* srawi */
1813
			op->type = COMPUTE + SETREG + SETXER;
1814 1815
			sh = rb;
			ival = (signed int) regs->gpr[rd];
1816 1817
			op->val = ival >> sh;
			op->xerval = regs->xer;
1818
			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1819
				op->xerval |= XER_CA;
1820
			else
1821
				op->xerval &= ~XER_CA;
1822
			set_ca32(op, op->xerval & XER_CA);
1823 1824 1825 1826
			goto logical_done;

#ifdef __powerpc64__
		case 27:	/* sld */
1827
			sh = regs->gpr[rb] & 0x7f;
1828
			if (sh < 64)
1829
				op->val = regs->gpr[rd] << sh;
1830
			else
1831
				op->val = 0;
1832 1833 1834 1835 1836
			goto logical_done;

		case 539:	/* srd */
			sh = regs->gpr[rb] & 0x7f;
			if (sh < 64)
1837
				op->val = regs->gpr[rd] >> sh;
1838
			else
1839
				op->val = 0;
1840 1841 1842
			goto logical_done;

		case 794:	/* srad */
1843
			op->type = COMPUTE + SETREG + SETXER;
1844 1845
			sh = regs->gpr[rb] & 0x7f;
			ival = (signed long int) regs->gpr[rd];
1846 1847
			op->val = ival >> (sh < 64 ? sh : 63);
			op->xerval = regs->xer;
1848
			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1849
				op->xerval |= XER_CA;
1850
			else
1851
				op->xerval &= ~XER_CA;
1852
			set_ca32(op, op->xerval & XER_CA);
1853 1854 1855 1856
			goto logical_done;

		case 826:	/* sradi with sh_5 = 0 */
		case 827:	/* sradi with sh_5 = 1 */
1857
			op->type = COMPUTE + SETREG + SETXER;
1858 1859
			sh = rb | ((instr & 2) << 4);
			ival = (signed long int) regs->gpr[rd];
1860 1861
			op->val = ival >> sh;
			op->xerval = regs->xer;
1862
			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1863
				op->xerval |= XER_CA;
1864
			else
1865
				op->xerval &= ~XER_CA;
1866
			set_ca32(op, op->xerval & XER_CA);
1867 1868 1869 1870 1871 1872 1873
			goto logical_done;
#endif /* __powerpc64__ */

/*
 * Cache instructions
 */
		case 54:	/* dcbst */
1874 1875 1876
			op->type = MKOP(CACHEOP, DCBST, 0);
			op->ea = xform_ea(instr, regs);
			return 0;
1877 1878

		case 86:	/* dcbf */
1879 1880 1881
			op->type = MKOP(CACHEOP, DCBF, 0);
			op->ea = xform_ea(instr, regs);
			return 0;
1882 1883

		case 246:	/* dcbtst */
1884 1885 1886 1887
			op->type = MKOP(CACHEOP, DCBTST, 0);
			op->ea = xform_ea(instr, regs);
			op->reg = rd;
			return 0;
1888 1889

		case 278:	/* dcbt */
1890 1891 1892 1893
			op->type = MKOP(CACHEOP, DCBTST, 0);
			op->ea = xform_ea(instr, regs);
			op->reg = rd;
			return 0;
1894 1895 1896 1897 1898

		case 982:	/* icbi */
			op->type = MKOP(CACHEOP, ICBI, 0);
			op->ea = xform_ea(instr, regs);
			return 0;
1899 1900 1901 1902 1903

		case 1014:	/* dcbz */
			op->type = MKOP(CACHEOP, DCBZ, 0);
			op->ea = xform_ea(instr, regs);
			return 0;
1904
		}
1905
		break;
1906
	}
1907

1908 1909 1910
/*
 * Loads and stores.
 */
1911 1912 1913 1914 1915
	op->type = UNKNOWN;
	op->update_reg = ra;
	op->reg = rd;
	op->val = regs->gpr[rd];
	u = (instr >> 20) & UPDATE;
1916
	op->vsx_flags = 0;
1917 1918 1919

	switch (opcode) {
	case 31:
1920 1921
		u = instr & UPDATE;
		op->ea = xform_ea(instr, regs);
1922 1923
		switch ((instr >> 1) & 0x3ff) {
		case 20:	/* lwarx */
1924 1925
			op->type = MKOP(LARX, 0, 4);
			break;
1926 1927

		case 150:	/* stwcx. */
1928 1929
			op->type = MKOP(STCX, 0, 4);
			break;
1930 1931 1932

#ifdef __powerpc64__
		case 84:	/* ldarx */
1933 1934
			op->type = MKOP(LARX, 0, 8);
			break;
1935 1936

		case 214:	/* stdcx. */
1937 1938
			op->type = MKOP(STCX, 0, 8);
			break;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		case 52:	/* lbarx */
			op->type = MKOP(LARX, 0, 1);
			break;

		case 694:	/* stbcx. */
			op->type = MKOP(STCX, 0, 1);
			break;

		case 116:	/* lharx */
			op->type = MKOP(LARX, 0, 2);
			break;

		case 726:	/* sthcx. */
			op->type = MKOP(STCX, 0, 2);
			break;

		case 276:	/* lqarx */
			if (!((rd & 1) || rd == ra || rd == rb))
				op->type = MKOP(LARX, 0, 16);
			break;

		case 182:	/* stqcx. */
			if (!(rd & 1))
				op->type = MKOP(STCX, 0, 16);
1964
			break;
1965 1966 1967 1968
#endif

		case 23:	/* lwzx */
		case 55:	/* lwzux */
1969 1970
			op->type = MKOP(LOAD, u, 4);
			break;
1971 1972 1973

		case 87:	/* lbzx */
		case 119:	/* lbzux */
1974 1975
			op->type = MKOP(LOAD, u, 1);
			break;
1976 1977

#ifdef CONFIG_ALTIVEC
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		/*
		 * Note: for the load/store vector element instructions,
		 * bits of the EA say which field of the VMX register to use.
		 */
		case 7:		/* lvebx */
			op->type = MKOP(LOAD_VMX, 0, 1);
			op->element_size = 1;
			break;

		case 39:	/* lvehx */
			op->type = MKOP(LOAD_VMX, 0, 2);
			op->element_size = 2;
			break;

		case 71:	/* lvewx */
			op->type = MKOP(LOAD_VMX, 0, 4);
			op->element_size = 4;
			break;

1997 1998
		case 103:	/* lvx */
		case 359:	/* lvxl */
1999
			op->type = MKOP(LOAD_VMX, 0, 16);
2000
			op->element_size = 16;
2001
			break;
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		case 135:	/* stvebx */
			op->type = MKOP(STORE_VMX, 0, 1);
			op->element_size = 1;
			break;

		case 167:	/* stvehx */
			op->type = MKOP(STORE_VMX, 0, 2);
			op->element_size = 2;
			break;

		case 199:	/* stvewx */
			op->type = MKOP(STORE_VMX, 0, 4);
			op->element_size = 4;
			break;

2018 2019
		case 231:	/* stvx */
		case 487:	/* stvxl */
2020 2021
			op->type = MKOP(STORE_VMX, 0, 16);
			break;
2022 2023 2024
#endif /* CONFIG_ALTIVEC */

#ifdef __powerpc64__
2025 2026 2027 2028 2029
		case 21:	/* ldx */
		case 53:	/* ldux */
			op->type = MKOP(LOAD, u, 8);
			break;

2030 2031
		case 149:	/* stdx */
		case 181:	/* stdux */
2032 2033
			op->type = MKOP(STORE, u, 8);
			break;
2034 2035 2036 2037
#endif

		case 151:	/* stwx */
		case 183:	/* stwux */
2038 2039
			op->type = MKOP(STORE, u, 4);
			break;
2040 2041 2042

		case 215:	/* stbx */
		case 247:	/* stbux */
2043 2044
			op->type = MKOP(STORE, u, 1);
			break;
2045 2046 2047

		case 279:	/* lhzx */
		case 311:	/* lhzux */
2048 2049
			op->type = MKOP(LOAD, u, 2);
			break;
2050 2051 2052 2053

#ifdef __powerpc64__
		case 341:	/* lwax */
		case 373:	/* lwaux */
2054 2055
			op->type = MKOP(LOAD, SIGNEXT | u, 4);
			break;
2056 2057 2058 2059
#endif

		case 343:	/* lhax */
		case 375:	/* lhaux */
2060 2061
			op->type = MKOP(LOAD, SIGNEXT | u, 2);
			break;
2062 2063 2064

		case 407:	/* sthx */
		case 439:	/* sthux */
2065 2066
			op->type = MKOP(STORE, u, 2);
			break;
2067 2068 2069

#ifdef __powerpc64__
		case 532:	/* ldbrx */
2070 2071
			op->type = MKOP(LOAD, BYTEREV, 8);
			break;
2072 2073

#endif
2074 2075 2076
		case 533:	/* lswx */
			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
			break;
2077 2078

		case 534:	/* lwbrx */
2079 2080
			op->type = MKOP(LOAD, BYTEREV, 4);
			break;
2081

2082 2083 2084 2085
		case 597:	/* lswi */
			if (rb == 0)
				rb = 32;	/* # bytes to load */
			op->type = MKOP(LOAD_MULTI, 0, rb);
2086
			op->ea = ra ? regs->gpr[ra] : 0;
2087 2088
			break;

P
Paul Bolle 已提交
2089
#ifdef CONFIG_PPC_FPU
2090 2091
		case 535:	/* lfsx */
		case 567:	/* lfsux */
2092
			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2093
			break;
2094 2095 2096

		case 599:	/* lfdx */
		case 631:	/* lfdux */
2097 2098
			op->type = MKOP(LOAD_FP, u, 8);
			break;
2099 2100 2101

		case 663:	/* stfsx */
		case 695:	/* stfsux */
2102
			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2103
			break;
2104 2105 2106

		case 727:	/* stfdx */
		case 759:	/* stfdux */
2107 2108
			op->type = MKOP(STORE_FP, u, 8);
			break;
2109 2110 2111 2112 2113 2114

#ifdef __powerpc64__
		case 791:	/* lfdpx */
			op->type = MKOP(LOAD_FP, 0, 16);
			break;

2115 2116 2117 2118 2119 2120 2121 2122
		case 855:	/* lfiwax */
			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
			break;

		case 887:	/* lfiwzx */
			op->type = MKOP(LOAD_FP, 0, 4);
			break;

2123 2124 2125
		case 919:	/* stfdpx */
			op->type = MKOP(STORE_FP, 0, 16);
			break;
2126 2127 2128 2129

		case 983:	/* stfiwx */
			op->type = MKOP(STORE_FP, 0, 4);
			break;
2130 2131
#endif /* __powerpc64 */
#endif /* CONFIG_PPC_FPU */
2132 2133 2134

#ifdef __powerpc64__
		case 660:	/* stdbrx */
2135 2136 2137
			op->type = MKOP(STORE, BYTEREV, 8);
			op->val = byterev_8(regs->gpr[rd]);
			break;
2138 2139

#endif
2140 2141 2142 2143
		case 661:	/* stswx */
			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
			break;

2144
		case 662:	/* stwbrx */
2145 2146 2147
			op->type = MKOP(STORE, BYTEREV, 4);
			op->val = byterev_4(regs->gpr[rd]);
			break;
2148

2149
		case 725:	/* stswi */
2150 2151 2152
			if (rb == 0)
				rb = 32;	/* # bytes to store */
			op->type = MKOP(STORE_MULTI, 0, rb);
2153
			op->ea = ra ? regs->gpr[ra] : 0;
2154 2155
			break;

2156
		case 790:	/* lhbrx */
2157 2158
			op->type = MKOP(LOAD, BYTEREV, 2);
			break;
2159 2160

		case 918:	/* sthbrx */
2161 2162 2163
			op->type = MKOP(STORE, BYTEREV, 2);
			op->val = byterev_2(regs->gpr[rd]);
			break;
2164 2165

#ifdef CONFIG_VSX
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		case 12:	/* lxsiwzx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 4);
			op->element_size = 8;
			break;

		case 76:	/* lxsiwax */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
			op->element_size = 8;
			break;

		case 140:	/* stxsiwx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 4);
			op->element_size = 8;
			break;

		case 268:	/* lxvx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 16);
			op->element_size = 16;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 269:	/* lxvl */
		case 301: {	/* lxvll */
			int nb;
			op->reg = rd | ((instr & 1) << 5);
			op->ea = ra ? regs->gpr[ra] : 0;
			nb = regs->gpr[rb] & 0xff;
			if (nb > 16)
				nb = 16;
			op->type = MKOP(LOAD_VSX, 0, nb);
			op->element_size = 16;
			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
				VSX_CHECK_VEC;
			break;
		}
		case 332:	/* lxvdsx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 8);
			op->element_size = 8;
			op->vsx_flags = VSX_SPLAT;
			break;

		case 364:	/* lxvwsx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 4);
			op->element_size = 4;
			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
			break;

		case 396:	/* stxvx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 16);
			op->element_size = 16;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 397:	/* stxvl */
		case 429: {	/* stxvll */
			int nb;
			op->reg = rd | ((instr & 1) << 5);
			op->ea = ra ? regs->gpr[ra] : 0;
			nb = regs->gpr[rb] & 0xff;
			if (nb > 16)
				nb = 16;
			op->type = MKOP(STORE_VSX, 0, nb);
			op->element_size = 16;
			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
				VSX_CHECK_VEC;
			break;
		}
		case 524:	/* lxsspx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 4);
			op->element_size = 8;
			op->vsx_flags = VSX_FPCONV;
			break;

		case 588:	/* lxsdx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 8);
			op->element_size = 8;
			break;

		case 652:	/* stxsspx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 4);
			op->element_size = 8;
			op->vsx_flags = VSX_FPCONV;
			break;

		case 716:	/* stxsdx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 8);
			op->element_size = 8;
			break;

		case 780:	/* lxvw4x */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 16);
			op->element_size = 4;
			break;

		case 781:	/* lxsibzx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 1);
			op->element_size = 8;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 812:	/* lxvh8x */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 16);
			op->element_size = 2;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 813:	/* lxsihzx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 2);
			op->element_size = 8;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

2293
		case 844:	/* lxvd2x */
2294
			op->reg = rd | ((instr & 1) << 5);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
			op->type = MKOP(LOAD_VSX, 0, 16);
			op->element_size = 8;
			break;

		case 876:	/* lxvb16x */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(LOAD_VSX, 0, 16);
			op->element_size = 1;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 908:	/* stxvw4x */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 16);
			op->element_size = 4;
			break;

		case 909:	/* stxsibx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 1);
			op->element_size = 8;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 940:	/* stxvh8x */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 16);
			op->element_size = 2;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 941:	/* stxsihx */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 2);
			op->element_size = 8;
			op->vsx_flags = VSX_CHECK_VEC;
2331
			break;
2332 2333

		case 972:	/* stxvd2x */
2334
			op->reg = rd | ((instr & 1) << 5);
2335 2336 2337 2338 2339 2340 2341 2342 2343
			op->type = MKOP(STORE_VSX, 0, 16);
			op->element_size = 8;
			break;

		case 1004:	/* stxvb16x */
			op->reg = rd | ((instr & 1) << 5);
			op->type = MKOP(STORE_VSX, 0, 16);
			op->element_size = 1;
			op->vsx_flags = VSX_CHECK_VEC;
2344
			break;
2345 2346 2347 2348 2349 2350 2351

#endif /* CONFIG_VSX */
		}
		break;

	case 32:	/* lwz */
	case 33:	/* lwzu */
2352 2353 2354
		op->type = MKOP(LOAD, u, 4);
		op->ea = dform_ea(instr, regs);
		break;
2355 2356 2357

	case 34:	/* lbz */
	case 35:	/* lbzu */
2358 2359 2360
		op->type = MKOP(LOAD, u, 1);
		op->ea = dform_ea(instr, regs);
		break;
2361 2362

	case 36:	/* stw */
2363
	case 37:	/* stwu */
2364 2365 2366
		op->type = MKOP(STORE, u, 4);
		op->ea = dform_ea(instr, regs);
		break;
2367

2368 2369
	case 38:	/* stb */
	case 39:	/* stbu */
2370 2371 2372
		op->type = MKOP(STORE, u, 1);
		op->ea = dform_ea(instr, regs);
		break;
2373 2374 2375

	case 40:	/* lhz */
	case 41:	/* lhzu */
2376 2377 2378
		op->type = MKOP(LOAD, u, 2);
		op->ea = dform_ea(instr, regs);
		break;
2379 2380 2381

	case 42:	/* lha */
	case 43:	/* lhau */
2382 2383 2384
		op->type = MKOP(LOAD, SIGNEXT | u, 2);
		op->ea = dform_ea(instr, regs);
		break;
2385 2386 2387

	case 44:	/* sth */
	case 45:	/* sthu */
2388 2389 2390
		op->type = MKOP(STORE, u, 2);
		op->ea = dform_ea(instr, regs);
		break;
2391 2392 2393 2394

	case 46:	/* lmw */
		if (ra >= rd)
			break;		/* invalid form, ra in range to load */
2395
		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2396 2397
		op->ea = dform_ea(instr, regs);
		break;
2398 2399

	case 47:	/* stmw */
2400
		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2401 2402
		op->ea = dform_ea(instr, regs);
		break;
2403

S
Sean MacLennan 已提交
2404
#ifdef CONFIG_PPC_FPU
2405 2406
	case 48:	/* lfs */
	case 49:	/* lfsu */
2407
		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2408 2409
		op->ea = dform_ea(instr, regs);
		break;
2410 2411 2412

	case 50:	/* lfd */
	case 51:	/* lfdu */
2413 2414 2415
		op->type = MKOP(LOAD_FP, u, 8);
		op->ea = dform_ea(instr, regs);
		break;
2416 2417 2418

	case 52:	/* stfs */
	case 53:	/* stfsu */
2419
		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2420 2421
		op->ea = dform_ea(instr, regs);
		break;
2422 2423 2424

	case 54:	/* stfd */
	case 55:	/* stfdu */
2425 2426 2427
		op->type = MKOP(STORE_FP, u, 8);
		op->ea = dform_ea(instr, regs);
		break;
S
Sean MacLennan 已提交
2428
#endif
2429

2430 2431 2432 2433 2434 2435 2436 2437 2438
#ifdef __powerpc64__
	case 56:	/* lq */
		if (!((rd & 1) || (rd == ra)))
			op->type = MKOP(LOAD, 0, 16);
		op->ea = dqform_ea(instr, regs);
		break;
#endif

#ifdef CONFIG_VSX
2439
	case 57:	/* lfdp, lxsd, lxssp */
2440 2441
		op->ea = dsform_ea(instr, regs);
		switch (instr & 3) {
2442 2443 2444 2445 2446
		case 0:		/* lfdp */
			if (rd & 1)
				break;		/* reg must be even */
			op->type = MKOP(LOAD_FP, 0, 16);
			break;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
		case 2:		/* lxsd */
			op->reg = rd + 32;
			op->type = MKOP(LOAD_VSX, 0, 8);
			op->element_size = 8;
			op->vsx_flags = VSX_CHECK_VEC;
			break;
		case 3:		/* lxssp */
			op->reg = rd + 32;
			op->type = MKOP(LOAD_VSX, 0, 4);
			op->element_size = 8;
			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
			break;
		}
		break;
#endif /* CONFIG_VSX */

2463 2464
#ifdef __powerpc64__
	case 58:	/* ld[u], lwa */
2465
		op->ea = dsform_ea(instr, regs);
2466 2467
		switch (instr & 3) {
		case 0:		/* ld */
2468 2469
			op->type = MKOP(LOAD, 0, 8);
			break;
2470
		case 1:		/* ldu */
2471 2472
			op->type = MKOP(LOAD, UPDATE, 8);
			break;
2473
		case 2:		/* lwa */
2474 2475
			op->type = MKOP(LOAD, SIGNEXT, 4);
			break;
2476 2477
		}
		break;
2478 2479 2480
#endif

#ifdef CONFIG_VSX
2481
	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2482
		switch (instr & 7) {
2483 2484 2485 2486 2487 2488
		case 0:		/* stfdp with LSB of DS field = 0 */
		case 4:		/* stfdp with LSB of DS field = 1 */
			op->ea = dsform_ea(instr, regs);
			op->type = MKOP(STORE_FP, 0, 16);
			break;

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
		case 1:		/* lxv */
			op->ea = dqform_ea(instr, regs);
			if (instr & 8)
				op->reg = rd + 32;
			op->type = MKOP(LOAD_VSX, 0, 16);
			op->element_size = 16;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 2:		/* stxsd with LSB of DS field = 0 */
		case 6:		/* stxsd with LSB of DS field = 1 */
			op->ea = dsform_ea(instr, regs);
			op->reg = rd + 32;
			op->type = MKOP(STORE_VSX, 0, 8);
			op->element_size = 8;
			op->vsx_flags = VSX_CHECK_VEC;
			break;

		case 3:		/* stxssp with LSB of DS field = 0 */
		case 7:		/* stxssp with LSB of DS field = 1 */
			op->ea = dsform_ea(instr, regs);
			op->reg = rd + 32;
			op->type = MKOP(STORE_VSX, 0, 4);
			op->element_size = 8;
			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
			break;

		case 5:		/* stxv */
			op->ea = dqform_ea(instr, regs);
			if (instr & 8)
				op->reg = rd + 32;
			op->type = MKOP(STORE_VSX, 0, 16);
			op->element_size = 16;
			op->vsx_flags = VSX_CHECK_VEC;
			break;
		}
		break;
#endif /* CONFIG_VSX */
2527

2528
#ifdef __powerpc64__
2529
	case 62:	/* std[u] */
2530
		op->ea = dsform_ea(instr, regs);
2531 2532
		switch (instr & 3) {
		case 0:		/* std */
2533 2534
			op->type = MKOP(STORE, 0, 8);
			break;
2535
		case 1:		/* stdu */
2536 2537
			op->type = MKOP(STORE, UPDATE, 8);
			break;
2538 2539 2540 2541
		case 2:		/* stq */
			if (!(rd & 1))
				op->type = MKOP(STORE, 0, 16);
			break;
2542 2543 2544 2545 2546
		}
		break;
#endif /* __powerpc64__ */

	}
2547
	return 0;
2548 2549 2550

 logical_done:
	if (instr & 1)
2551
		set_cr0(regs, op);
2552 2553 2554 2555
 logical_done_nocc:
	op->reg = ra;
	op->type |= SETREG;
	return 1;
2556 2557 2558

 arith_done:
	if (instr & 1)
2559
		set_cr0(regs, op);
2560 2561 2562
 compute_done:
	op->reg = rd;
	op->type |= SETREG;
2563 2564 2565 2566 2567 2568 2569
	return 1;

 priv:
	op->type = INTERRUPT | 0x700;
	op->val = SRR1_PROGPRIV;
	return 0;

2570 2571 2572 2573
 trap:
	op->type = INTERRUPT | 0x700;
	op->val = SRR1_PROGTRAP;
	return 0;
2574 2575
}
EXPORT_SYMBOL_GPL(analyse_instr);
2576
NOKPROBE_SYMBOL(analyse_instr);
2577 2578 2579 2580 2581 2582 2583 2584 2585

/*
 * For PPC32 we always use stwu with r1 to change the stack pointer.
 * So this emulated store may corrupt the exception frame, now we
 * have to provide the exception frame trampoline, which is pushed
 * below the kprobed function stack. So we only update gpr[1] but
 * don't emulate the real store operation. We will do real store
 * operation safely in exception return code by checking this flag.
 */
2586
static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
{
#ifdef CONFIG_PPC32
	/*
	 * Check if we will touch kernel stack overflow
	 */
	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
		return -EINVAL;
	}
#endif /* CONFIG_PPC32 */
	/*
	 * Check if we already set since that means we'll
	 * lose the previous value.
	 */
	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
	set_thread_flag(TIF_EMULATE_STACK_STORE);
	return 0;
}

2606
static nokprobe_inline void do_signext(unsigned long *valp, int size)
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
{
	switch (size) {
	case 2:
		*valp = (signed short) *valp;
		break;
	case 4:
		*valp = (signed int) *valp;
		break;
	}
}

2618
static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
{
	switch (size) {
	case 2:
		*valp = byterev_2(*valp);
		break;
	case 4:
		*valp = byterev_4(*valp);
		break;
#ifdef __powerpc64__
	case 8:
		*valp = byterev_8(*valp);
		break;
#endif
	}
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
/*
 * Emulate an instruction that can be executed just by updating
 * fields in *regs.
 */
void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
{
	unsigned long next_pc;

	next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
	switch (op->type & INSTR_TYPE_MASK) {
	case COMPUTE:
		if (op->type & SETREG)
			regs->gpr[op->reg] = op->val;
		if (op->type & SETCC)
			regs->ccr = op->ccval;
		if (op->type & SETXER)
			regs->xer = op->xerval;
		break;

	case BRANCH:
		if (op->type & SETLK)
			regs->link = next_pc;
		if (op->type & BRTAKEN)
			next_pc = op->val;
		if (op->type & DECCTR)
			--regs->ctr;
		break;

	case BARRIER:
		switch (op->type & BARRIER_MASK) {
		case BARRIER_SYNC:
			mb();
			break;
		case BARRIER_ISYNC:
			isync();
			break;
		case BARRIER_EIEIO:
			eieio();
			break;
		case BARRIER_LWSYNC:
			asm volatile("lwsync" : : : "memory");
			break;
		case BARRIER_PTESYNC:
			asm volatile("ptesync" : : : "memory");
			break;
		}
		break;

	case MFSPR:
		switch (op->spr) {
		case SPRN_XER:
			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
			break;
		case SPRN_LR:
			regs->gpr[op->reg] = regs->link;
			break;
		case SPRN_CTR:
			regs->gpr[op->reg] = regs->ctr;
			break;
		default:
			WARN_ON_ONCE(1);
		}
		break;

	case MTSPR:
		switch (op->spr) {
		case SPRN_XER:
			regs->xer = op->val & 0xffffffffUL;
			break;
		case SPRN_LR:
			regs->link = op->val;
			break;
		case SPRN_CTR:
			regs->ctr = op->val;
			break;
		default:
			WARN_ON_ONCE(1);
		}
		break;

	default:
		WARN_ON_ONCE(1);
	}
	regs->nip = next_pc;
}

2721
/*
2722 2723 2724 2725 2726 2727 2728
 * Emulate a previously-analysed load or store instruction.
 * Return values are:
 * 0 = instruction emulated successfully
 * -EFAULT = address out of range or access faulted (regs->dar
 *	     contains the faulting address)
 * -EACCES = misaligned access, instruction requires alignment
 * -EINVAL = unknown operation in *op
2729
 */
2730
int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2731
{
2732
	int err, size, type;
2733
	int i, rd, nb;
2734 2735
	unsigned int cr;
	unsigned long val;
2736
	unsigned long ea;
2737
	bool cross_endian;
2738 2739

	err = 0;
2740 2741
	size = GETSIZE(op->type);
	type = op->type & INSTR_TYPE_MASK;
2742
	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2743
	ea = truncate_if_32bit(regs->msr, op->ea);
2744 2745

	switch (type) {
2746
	case LARX:
2747
		if (ea & (size - 1))
2748
			return -EACCES;		/* can't handle misaligned */
2749
		if (!address_ok(regs, ea, size))
2750
			return -EFAULT;
2751
		err = 0;
2752
		val = 0;
2753
		switch (size) {
2754 2755
#ifdef __powerpc64__
		case 1:
2756
			__get_user_asmx(val, ea, err, "lbarx");
2757 2758
			break;
		case 2:
2759
			__get_user_asmx(val, ea, err, "lharx");
2760 2761
			break;
#endif
2762
		case 4:
2763
			__get_user_asmx(val, ea, err, "lwarx");
2764
			break;
2765
#ifdef __powerpc64__
2766
		case 8:
2767
			__get_user_asmx(val, ea, err, "ldarx");
2768
			break;
2769
		case 16:
2770
			err = do_lqarx(ea, &regs->gpr[op->reg]);
2771
			break;
2772
#endif
2773
		default:
2774
			return -EINVAL;
2775
		}
2776 2777
		if (err) {
			regs->dar = ea;
2778
			break;
2779 2780
		}
		if (size < 16)
2781 2782
			regs->gpr[op->reg] = val;
		break;
2783 2784

	case STCX:
2785
		if (ea & (size - 1))
2786
			return -EACCES;		/* can't handle misaligned */
2787
		if (!address_ok(regs, ea, size))
2788
			return -EFAULT;
2789 2790
		err = 0;
		switch (size) {
2791 2792
#ifdef __powerpc64__
		case 1:
2793
			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2794 2795
			break;
		case 2:
2796
			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2797 2798
			break;
#endif
2799
		case 4:
2800
			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
2801
			break;
2802
#ifdef __powerpc64__
2803
		case 8:
2804
			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
2805
			break;
2806
		case 16:
2807 2808
			err = do_stqcx(ea, regs->gpr[op->reg],
				       regs->gpr[op->reg + 1], &cr);
2809
			break;
2810
#endif
2811
		default:
2812
			return -EINVAL;
2813 2814 2815 2816 2817
		}
		if (!err)
			regs->ccr = (regs->ccr & 0x0fffffff) |
				(cr & 0xe0000000) |
				((regs->xer >> 3) & 0x10000000);
2818 2819
		else
			regs->dar = ea;
2820
		break;
2821 2822

	case LOAD:
2823 2824
#ifdef __powerpc64__
		if (size == 16) {
2825 2826
			err = emulate_lq(regs, ea, op->reg, cross_endian);
			break;
2827 2828
		}
#endif
2829
		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2830
		if (!err) {
2831 2832 2833 2834
			if (op->type & SIGNEXT)
				do_signext(&regs->gpr[op->reg], size);
			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
				do_byterev(&regs->gpr[op->reg], size);
2835
		}
2836
		break;
2837

2838
#ifdef CONFIG_PPC_FPU
2839
	case LOAD_FP:
2840 2841 2842 2843 2844 2845 2846
		/*
		 * If the instruction is in userspace, we can emulate it even
		 * if the VMX state is not live, because we have the state
		 * stored in the thread_struct.  If the instruction is in
		 * the kernel, we must not touch the state in the thread_struct.
		 */
		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2847
			return 0;
2848
		err = do_fp_load(op, ea, regs, cross_endian);
2849
		break;
2850
#endif
2851 2852
#ifdef CONFIG_ALTIVEC
	case LOAD_VMX:
2853
		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2854
			return 0;
2855 2856
		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
		break;
2857 2858
#endif
#ifdef CONFIG_VSX
2859 2860 2861 2862 2863 2864 2865
	case LOAD_VSX: {
		unsigned long msrbit = MSR_VSX;

		/*
		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
		 * when the target of the instruction is a vector register.
		 */
2866
		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2867
			msrbit = MSR_VEC;
2868
		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2869
			return 0;
2870 2871
		err = do_vsx_load(op, ea, regs, cross_endian);
		break;
2872
	}
2873 2874
#endif
	case LOAD_MULTI:
2875 2876
		if (!address_ok(regs, ea, size))
			return -EFAULT;
2877
		rd = op->reg;
2878
		for (i = 0; i < size; i += 4) {
2879 2880
			unsigned int v32 = 0;

2881 2882 2883
			nb = size - i;
			if (nb > 4)
				nb = 4;
2884
			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2885
			if (err)
2886
				break;
2887 2888 2889
			if (unlikely(cross_endian))
				v32 = byterev_4(v32);
			regs->gpr[rd] = v32;
2890
			ea += 4;
2891 2892
			/* reg number wraps from 31 to 0 for lsw[ix] */
			rd = (rd + 1) & 0x1f;
2893
		}
2894
		break;
2895 2896

	case STORE:
2897 2898
#ifdef __powerpc64__
		if (size == 16) {
2899 2900
			err = emulate_stq(regs, ea, op->reg, cross_endian);
			break;
2901 2902
		}
#endif
2903 2904
		if ((op->type & UPDATE) && size == sizeof(long) &&
		    op->reg == 1 && op->update_reg == 1 &&
2905
		    !(regs->msr & MSR_PR) &&
2906 2907
		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
			err = handle_stack_update(ea, regs);
2908
			break;
2909
		}
2910
		if (unlikely(cross_endian))
2911 2912 2913
			do_byterev(&op->val, size);
		err = write_mem(op->val, ea, size, regs);
		break;
2914

2915
#ifdef CONFIG_PPC_FPU
2916
	case STORE_FP:
2917
		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2918
			return 0;
2919
		err = do_fp_store(op, ea, regs, cross_endian);
2920
		break;
2921
#endif
2922 2923
#ifdef CONFIG_ALTIVEC
	case STORE_VMX:
2924
		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2925
			return 0;
2926 2927
		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
		break;
2928 2929
#endif
#ifdef CONFIG_VSX
2930 2931 2932 2933 2934 2935 2936
	case STORE_VSX: {
		unsigned long msrbit = MSR_VSX;

		/*
		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
		 * when the target of the instruction is a vector register.
		 */
2937
		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2938
			msrbit = MSR_VEC;
2939
		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2940
			return 0;
2941 2942
		err = do_vsx_store(op, ea, regs, cross_endian);
		break;
2943
	}
2944 2945
#endif
	case STORE_MULTI:
2946 2947
		if (!address_ok(regs, ea, size))
			return -EFAULT;
2948
		rd = op->reg;
2949
		for (i = 0; i < size; i += 4) {
2950 2951
			unsigned int v32 = regs->gpr[rd];

2952 2953 2954
			nb = size - i;
			if (nb > 4)
				nb = 4;
2955 2956 2957
			if (unlikely(cross_endian))
				v32 = byterev_4(v32);
			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2958
			if (err)
2959
				break;
2960
			ea += 4;
2961 2962
			/* reg number wraps from 31 to 0 for stsw[ix] */
			rd = (rd + 1) & 0x1f;
2963
		}
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
		break;

	default:
		return -EINVAL;
	}

	if (err)
		return err;

	if (op->type & UPDATE)
		regs->gpr[op->update_reg] = op->ea;

	return 0;
}
NOKPROBE_SYMBOL(emulate_loadstore);

/*
 * Emulate instructions that cause a transfer of control,
 * loads and stores, and a few other instructions.
 * Returns 1 if the step was emulated, 0 if not,
 * or -1 if the instruction is one that should not be stepped,
 * such as an rfid, or a mtmsrd that would clear MSR_RI.
 */
int emulate_step(struct pt_regs *regs, unsigned int instr)
{
	struct instruction_op op;
	int r, err, type;
	unsigned long val;
	unsigned long ea;

	r = analyse_instr(&op, regs, instr);
	if (r < 0)
		return r;
	if (r > 0) {
		emulate_update_regs(regs, &op);
		return 1;
	}

	err = 0;
	type = op.type & INSTR_TYPE_MASK;

	if (OP_IS_LOAD_STORE(type)) {
		err = emulate_loadstore(regs, &op);
		if (err)
			return 0;
		goto instr_done;
	}

	switch (type) {
	case CACHEOP:
		ea = truncate_if_32bit(regs->msr, op.ea);
		if (!address_ok(regs, ea, 8))
			return 0;
		switch (op.type & CACHEOP_MASK) {
		case DCBST:
			__cacheop_user_asmx(ea, err, "dcbst");
			break;
		case DCBF:
			__cacheop_user_asmx(ea, err, "dcbf");
			break;
		case DCBTST:
			if (op.reg == 0)
				prefetchw((void *) ea);
			break;
		case DCBT:
			if (op.reg == 0)
				prefetch((void *) ea);
			break;
		case ICBI:
			__cacheop_user_asmx(ea, err, "icbi");
			break;
		case DCBZ:
			err = emulate_dcbz(ea, regs);
			break;
		}
		if (err) {
			regs->dar = ea;
			return 0;
		}
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
		goto instr_done;

	case MFMSR:
		regs->gpr[op.reg] = regs->msr & MSR_MASK;
		goto instr_done;

	case MTMSR:
		val = regs->gpr[op.reg];
		if ((val & MSR_RI) == 0)
			/* can't step mtmsr[d] that would clear MSR_RI */
			return -1;
		/* here op.val is the mask of bits to change */
		regs->msr = (regs->msr & ~op.val) | (val & op.val);
		goto instr_done;

#ifdef CONFIG_PPC64
	case SYSCALL:	/* sc */
		/*
		 * N.B. this uses knowledge about how the syscall
		 * entry code works.  If that is changed, this will
		 * need to be changed also.
		 */
		if (regs->gpr[0] == 0x1ebe &&
		    cpu_has_feature(CPU_FTR_REAL_LE)) {
			regs->msr ^= MSR_LE;
			goto instr_done;
		}
		regs->gpr[9] = regs->gpr[13];
		regs->gpr[10] = MSR_KERNEL;
		regs->gpr[11] = regs->nip + 4;
		regs->gpr[12] = regs->msr & MSR_MASK;
		regs->gpr[13] = (unsigned long) get_paca();
		regs->nip = (unsigned long) &system_call_common;
		regs->msr = MSR_KERNEL;
		return 1;

	case RFI:
		return -1;
#endif
	}
	return 0;

 instr_done:
	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
	return 1;
3088
}
3089
NOKPROBE_SYMBOL(emulate_step);