slab.h 13.1 KB
Newer Older
1 2 3 4 5 6
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
	unsigned long flags;	/* Active flags on the slab */
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
41 42 43 44
#include <linux/fault-inject.h>
#include <linux/kmemcheck.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
45
#include <linux/random.h>
46

47 48 49 50 51 52 53 54 55 56 57
/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
58
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
59 60 61 62 63 64
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

65 66
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
67 68

/* The list of all slab caches on the system */
69 70
extern struct list_head slab_caches;

71 72 73
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

74 75 76
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size);

77 78
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
79
void setup_kmalloc_cache_index_table(void);
80
void create_kmalloc_caches(unsigned long);
81 82 83

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
84 85 86
#endif


87
/* Functions provided by the slab allocators */
88
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
89

90 91 92 93 94
extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
			unsigned long flags);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			size_t size, unsigned long flags);

95 96 97
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *));
J
Joonsoo Kim 已提交
98
#ifndef CONFIG_SLOB
99
struct kmem_cache *
100 101
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *));
102 103 104 105

unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *));
106
#else
107
static inline struct kmem_cache *
108 109
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
110
{ return NULL; }
111 112 113 114 115 116 117

static inline unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}
118 119 120
#endif


121 122 123 124 125 126 127 128
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 131 132 133 134 135
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
V
Vladimir Davydov 已提交
136 137
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
			  SLAB_NOTRACK | SLAB_ACCOUNT)
138 139
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
V
Vladimir Davydov 已提交
140
			  SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 142 143 144 145 146
#else
#define SLAB_CACHE_FLAGS (0)
#endif

#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

147
int __kmem_cache_shutdown(struct kmem_cache *);
148
void __kmem_cache_release(struct kmem_cache *);
149
int __kmem_cache_shrink(struct kmem_cache *, bool);
150
void slab_kmem_cache_release(struct kmem_cache *);
151

152 153 154
struct seq_file;
struct file;

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
170 171
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);
G
Glauber Costa 已提交
172

173 174 175
/*
 * Generic implementation of bulk operations
 * These are useful for situations in which the allocator cannot
J
Jesper Dangaard Brouer 已提交
176
 * perform optimizations. In that case segments of the object listed
177 178 179
 * may be allocated or freed using these operations.
 */
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
180
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
181

182
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
183 184 185 186 187 188 189 190
/*
 * Iterate over all memcg caches of the given root cache. The caller must hold
 * slab_mutex.
 */
#define for_each_memcg_cache(iter, root) \
	list_for_each_entry(iter, &(root)->memcg_params.list, \
			    memcg_params.list)

G
Glauber Costa 已提交
191 192
static inline bool is_root_cache(struct kmem_cache *s)
{
193
	return s->memcg_params.is_root_cache;
G
Glauber Costa 已提交
194
}
195

196
static inline bool slab_equal_or_root(struct kmem_cache *s,
197
				      struct kmem_cache *p)
198
{
199
	return p == s || p == s->memcg_params.root_cache;
200
}
201 202 203 204 205 206 207 208 209

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
210
		s = s->memcg_params.root_cache;
211 212 213
	return s->name;
}

214 215
/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
216 217
 * That said the caller must assure the memcg's cache won't go away by either
 * taking a css reference to the owner cgroup, or holding the slab_mutex.
218
 */
219 220
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
221
{
222
	struct kmem_cache *cachep;
223
	struct memcg_cache_array *arr;
224 225

	rcu_read_lock();
226
	arr = rcu_dereference(s->memcg_params.memcg_caches);
227 228 229 230

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
231
	 * memcg_create_kmem_cache()).
232
	 */
233
	cachep = lockless_dereference(arr->entries[idx]);
234 235
	rcu_read_unlock();

236
	return cachep;
237
}
G
Glauber Costa 已提交
238 239 240 241 242

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
243
	return s->memcg_params.root_cache;
G
Glauber Costa 已提交
244
}
245

246 247 248
static __always_inline int memcg_charge_slab(struct page *page,
					     gfp_t gfp, int order,
					     struct kmem_cache *s)
249
{
250 251
	int ret;

252 253 254 255
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	ret = __memcg_kmem_charge_memcg(page, gfp, order,
					s->memcg_params.memcg);
	if (ret)
		return ret;

	memcg_kmem_update_page_stat(page,
			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
			1 << order);
	return 0;
}

static __always_inline void memcg_uncharge_slab(struct page *page, int order,
						struct kmem_cache *s)
{
	memcg_kmem_update_page_stat(page,
			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
			-(1 << order));
	memcg_kmem_uncharge(page, order);
277
}
278 279 280

extern void slab_init_memcg_params(struct kmem_cache *);

281
#else /* CONFIG_MEMCG && !CONFIG_SLOB */
282

283 284 285
#define for_each_memcg_cache(iter, root) \
	for ((void)(iter), (void)(root); 0; )

G
Glauber Costa 已提交
286 287 288 289 290
static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

291 292 293 294 295
static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}
296 297 298 299 300 301

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

302 303
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
304 305 306
{
	return NULL;
}
G
Glauber Costa 已提交
307 308 309 310 311

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}
312

313 314
static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
				    struct kmem_cache *s)
315 316 317 318
{
	return 0;
}

319 320 321 322 323
static inline void memcg_uncharge_slab(struct page *page, int order,
				       struct kmem_cache *s)
{
}

324 325 326
static inline void slab_init_memcg_params(struct kmem_cache *s)
{
}
327
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
328 329 330 331 332 333 334 335 336 337 338 339 340

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
341 342
	if (!memcg_kmem_enabled() &&
	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
343 344 345 346 347 348 349 350
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
351
	       __func__, s->name, cachep->name);
352 353 354
	WARN_ON_ONCE(1);
	return s;
}
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(gfpflags_allow_blocking(flags));

391
	if (should_failslab(s, flags))
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
		return NULL;

	return memcg_kmem_get_cache(s, flags);
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
					size_t size, void **p)
{
	size_t i;

	flags &= gfp_allowed_mask;
	for (i = 0; i < size; i++) {
		void *object = p[i];

		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
		kmemleak_alloc_recursive(object, s->object_size, 1,
					 s->flags, flags);
409
		kasan_slab_alloc(s, object, flags);
410 411 412 413
	}
	memcg_kmem_put_cache(s);
}

414
#ifndef CONFIG_SLOB
415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
J
Joonsoo Kim 已提交
429
	struct alien_cache **alien;	/* on other nodes */
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};
445

446 447 448 449 450 451 452 453 454 455
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
456 457
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))
458 459 460

#endif

461
void *slab_start(struct seq_file *m, loff_t *pos);
462 463
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
464
int memcg_slab_show(struct seq_file *m, void *p);
465

466 467
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

468 469 470 471 472 473 474 475 476 477 478 479 480
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

481
#endif /* MM_SLAB_H */