tree_plugin.h 79.4 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/sched/debug.h>
31
#include <linux/smpboot.h>
32
#include <linux/sched/isolation.h>
33
#include <uapi/linux/sched/types.h>
34
#include "../time/tick-internal.h"
35

36
#ifdef CONFIG_RCU_BOOST
37

38
#include "../locking/rtmutex_common.h"
39

40 41 42 43 44 45 46 47 48
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

49 50 51 52 53 54 55 56 57 58 59
#else /* #ifdef CONFIG_RCU_BOOST */

/*
 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
 * all uses are in dead code.  Provide a definition to keep the compiler
 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
 * This probably needs to be excluded from -rt builds.
 */
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })

#endif /* #else #ifdef CONFIG_RCU_BOOST */
60

P
Paul E. McKenney 已提交
61 62 63
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
64
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
65 66
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

67 68
/*
 * Check the RCU kernel configuration parameters and print informative
69
 * messages about anything out of the ordinary.
70 71 72
 */
static void __init rcu_bootup_announce_oddness(void)
{
73
	if (IS_ENABLED(CONFIG_RCU_TRACE))
P
Paul E. McKenney 已提交
74
		pr_info("\tRCU event tracing is enabled.\n");
75 76
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78
		       RCU_FANOUT);
79
	if (rcu_fanout_exact)
80 81 82
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83
	if (IS_ENABLED(CONFIG_PROVE_RCU))
84
		pr_info("\tRCU lockdep checking is enabled.\n");
85 86
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87
	if (RCU_FANOUT_LEAF != 16)
88
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 90
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92
	if (nr_cpu_ids != NR_CPUS)
93
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#ifdef CONFIG_RCU_BOOST
	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
#endif
	if (blimit != DEFAULT_RCU_BLIMIT)
		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
	if (qhimark != DEFAULT_RCU_QHIMARK)
		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
	if (qlowmark != DEFAULT_RCU_QLOMARK)
		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
	if (jiffies_till_first_fqs != ULONG_MAX)
		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
	if (jiffies_till_next_fqs != ULONG_MAX)
		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
	if (rcu_kick_kthreads)
		pr_info("\tKick kthreads if too-long grace period.\n");
	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111
	if (gp_preinit_delay)
112
		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113
	if (gp_init_delay)
114
		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115
	if (gp_cleanup_delay)
116 117 118
		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
		pr_info("\tRCU debug extended QS entry/exit.\n");
119
	rcupdate_announce_bootup_oddness();
120 121
}

122
#ifdef CONFIG_PREEMPT_RCU
123

124
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
127

128 129
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
130

131 132 133
/*
 * Tell them what RCU they are running.
 */
134
static void __init rcu_bootup_announce(void)
135
{
136
	pr_info("Preemptible hierarchical RCU implementation.\n");
137
	rcu_bootup_announce_oddness();
138 139
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS	0x8
#define RCU_EXP_TASKS	0x4
#define RCU_GP_BLKD	0x2
#define RCU_EXP_BLKD	0x1

/*
 * Queues a task preempted within an RCU-preempt read-side critical
 * section into the appropriate location within the ->blkd_tasks list,
 * depending on the states of any ongoing normal and expedited grace
 * periods.  The ->gp_tasks pointer indicates which element the normal
 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 * indicates which element the expedited grace period is waiting on (again,
 * NULL if none).  If a grace period is waiting on a given element in the
 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 * adding a task to the tail of the list blocks any grace period that is
 * already waiting on one of the elements.  In contrast, adding a task
 * to the head of the list won't block any grace period that is already
 * waiting on one of the elements.
 *
 * This queuing is imprecise, and can sometimes make an ongoing grace
 * period wait for a task that is not strictly speaking blocking it.
 * Given the choice, we needlessly block a normal grace period rather than
 * blocking an expedited grace period.
 *
 * Note that an endless sequence of expedited grace periods still cannot
 * indefinitely postpone a normal grace period.  Eventually, all of the
 * fixed number of preempted tasks blocking the normal grace period that are
 * not also blocking the expedited grace period will resume and complete
 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 * pointer will equal the ->exp_tasks pointer, at which point the end of
 * the corresponding expedited grace period will also be the end of the
 * normal grace period.
 */
174 175
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
	__releases(rnp->lock) /* But leaves rrupts disabled. */
176 177 178 179 180 181 182
{
	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
	struct task_struct *t = current;

183
	lockdep_assert_held(&rnp->lock);
184 185
	WARN_ON_ONCE(rdp->mynode != rnp);
	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	/*
	 * Decide where to queue the newly blocked task.  In theory,
	 * this could be an if-statement.  In practice, when I tried
	 * that, it was quite messy.
	 */
	switch (blkd_state) {
	case 0:
	case                RCU_EXP_TASKS:
	case                RCU_EXP_TASKS + RCU_GP_BLKD:
	case RCU_GP_TASKS:
	case RCU_GP_TASKS + RCU_EXP_TASKS:

		/*
		 * Blocking neither GP, or first task blocking the normal
		 * GP but not blocking the already-waiting expedited GP.
		 * Queue at the head of the list to avoid unnecessarily
		 * blocking the already-waiting GPs.
		 */
		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                                              RCU_EXP_BLKD:
	case                                RCU_GP_BLKD:
	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:

		/*
		 * First task arriving that blocks either GP, or first task
		 * arriving that blocks the expedited GP (with the normal
		 * GP already waiting), or a task arriving that blocks
		 * both GPs with both GPs already waiting.  Queue at the
		 * tail of the list to avoid any GP waiting on any of the
		 * already queued tasks that are not blocking it.
		 */
		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:

		/*
		 * Second or subsequent task blocking the expedited GP.
		 * The task either does not block the normal GP, or is the
		 * first task blocking the normal GP.  Queue just after
		 * the first task blocking the expedited GP.
		 */
		list_add(&t->rcu_node_entry, rnp->exp_tasks);
		break;

	case RCU_GP_TASKS +                 RCU_GP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:

		/*
		 * Second or subsequent task blocking the normal GP.
		 * The task does not block the expedited GP. Queue just
		 * after the first task blocking the normal GP.
		 */
		list_add(&t->rcu_node_entry, rnp->gp_tasks);
		break;

	default:

		/* Yet another exercise in excessive paranoia. */
		WARN_ON_ONCE(1);
		break;
	}

	/*
	 * We have now queued the task.  If it was the first one to
	 * block either grace period, update the ->gp_tasks and/or
	 * ->exp_tasks pointers, respectively, to reference the newly
	 * blocked tasks.
	 */
	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
		rnp->gp_tasks = &t->rcu_node_entry;
	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
		rnp->exp_tasks = &t->rcu_node_entry;
267 268 269 270
	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
		     !(rnp->qsmask & rdp->grpmask));
	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
		     !(rnp->expmask & rdp->grpmask));
B
Boqun Feng 已提交
271
	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	/*
	 * Report the quiescent state for the expedited GP.  This expedited
	 * GP should not be able to end until we report, so there should be
	 * no need to check for a subsequent expedited GP.  (Though we are
	 * still in a quiescent state in any case.)
	 */
	if (blkd_state & RCU_EXP_BLKD &&
	    t->rcu_read_unlock_special.b.exp_need_qs) {
		t->rcu_read_unlock_special.b.exp_need_qs = false;
		rcu_report_exp_rdp(rdp->rsp, rdp, true);
	} else {
		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
	}
}

288
/*
P
Paul E. McKenney 已提交
289
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
290 291 292
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
293
 *
294 295
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
296
 */
297
static void rcu_preempt_qs(void)
298
{
299
	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300
	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301
		trace_rcu_grace_period(TPS("rcu_preempt"),
302
				       __this_cpu_read(rcu_data_p->gpnum),
303
				       TPS("cpuqs"));
304
		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305 306 307
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
308 309 310
}

/*
311 312 313
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
314 315 316 317 318 319
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
320
 *
321
 * Caller must disable interrupts.
322
 */
323
static void rcu_preempt_note_context_switch(bool preempt)
324 325 326 327 328
{
	struct task_struct *t = current;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

329
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
330
	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331
	if (t->rcu_read_lock_nesting > 0 &&
332
	    !t->rcu_read_unlock_special.b.blocked) {
333 334

		/* Possibly blocking in an RCU read-side critical section. */
335
		rdp = this_cpu_ptr(rcu_state_p->rda);
336
		rnp = rdp->mynode;
337
		raw_spin_lock_rcu_node(rnp);
338
		t->rcu_read_unlock_special.b.blocked = true;
339
		t->rcu_blocked_node = rnp;
340 341

		/*
342 343 344
		 * Verify the CPU's sanity, trace the preemption, and
		 * then queue the task as required based on the states
		 * of any ongoing and expedited grace periods.
345
		 */
346
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 349 350 351 352
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
353
		rcu_preempt_ctxt_queue(rnp, rdp);
354
	} else if (t->rcu_read_lock_nesting < 0 &&
355
		   t->rcu_read_unlock_special.s) {
356 357 358 359 360 361

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
362 363 364 365 366 367 368 369 370 371 372
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
373
	rcu_preempt_qs();
374 375
}

376 377 378 379 380
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
381
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382
{
383
	return rnp->gp_tasks != NULL;
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

401 402 403 404 405 406 407 408 409
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

410 411 412 413 414
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
415
void rcu_read_unlock_special(struct task_struct *t)
416
{
417 418 419
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
420
	unsigned long flags;
421
	struct list_head *np;
422
	bool drop_boost_mutex = false;
423
	struct rcu_data *rdp;
424
	struct rcu_node *rnp;
425
	union rcu_special special;
426 427 428 429 430 431 432 433

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
434 435
	 * If RCU core is waiting for this CPU to exit its critical section,
	 * report the fact that it has exited.  Because irqs are disabled,
436
	 * t->rcu_read_unlock_special cannot change.
437 438
	 */
	special = t->rcu_read_unlock_special;
439
	if (special.b.need_qs) {
440
		rcu_preempt_qs();
441
		t->rcu_read_unlock_special.b.need_qs = false;
442
		if (!t->rcu_read_unlock_special.s) {
443 444 445
			local_irq_restore(flags);
			return;
		}
446 447
	}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	/*
	 * Respond to a request for an expedited grace period, but only if
	 * we were not preempted, meaning that we were running on the same
	 * CPU throughout.  If we were preempted, the exp_need_qs flag
	 * would have been cleared at the time of the first preemption,
	 * and the quiescent state would be reported when we were dequeued.
	 */
	if (special.b.exp_need_qs) {
		WARN_ON_ONCE(special.b.blocked);
		t->rcu_read_unlock_special.b.exp_need_qs = false;
		rdp = this_cpu_ptr(rcu_state_p->rda);
		rcu_report_exp_rdp(rcu_state_p, rdp, true);
		if (!t->rcu_read_unlock_special.s) {
			local_irq_restore(flags);
			return;
		}
	}

466
	/* Hardware IRQ handlers cannot block, complain if they get here. */
467 468 469
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
470
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
471 472
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
473
			 t->rcu_read_unlock_special.b.exp_need_qs,
474
			 t->rcu_read_unlock_special.b.need_qs);
475 476 477 478 479
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
480 481
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
482

483
		/*
484
		 * Remove this task from the list it blocked on.  The task
485 486 487
		 * now remains queued on the rcu_node corresponding to the
		 * CPU it first blocked on, so there is no longer any need
		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488
		 */
489 490 491
		rnp = t->rcu_blocked_node;
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492
		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
493
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494
		empty_exp = sync_rcu_preempt_exp_done(rnp);
495
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
496
		np = rcu_next_node_entry(t, rnp);
497
		list_del_init(&t->rcu_node_entry);
498
		t->rcu_blocked_node = NULL;
499
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
500
						rnp->gpnum, t->pid);
501 502 503 504
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
505 506 507
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
508 509
			if (&t->rcu_node_entry == rnp->boost_tasks)
				rnp->boost_tasks = np;
510
		}
511 512 513 514

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
515 516
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
517
		 */
518
		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
519
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
520
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
521 522 523 524 525 526
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
527
			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
528
		} else {
B
Boqun Feng 已提交
529
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
530
		}
531

532
		/* Unboost if we were boosted. */
533
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
534
			rt_mutex_unlock(&rnp->boost_mtx);
535

536 537 538 539
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
540
		if (!empty_exp && empty_exp_now)
541
			rcu_report_exp_rnp(rcu_state_p, rnp, true);
542 543
	} else {
		local_irq_restore(flags);
544 545 546
	}
}

547 548 549 550 551 552 553 554 555
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

556
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
557
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
558
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
559 560
		return;
	}
561
	t = list_entry(rnp->gp_tasks->prev,
562 563 564
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
B
Boqun Feng 已提交
565
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

581 582
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
583
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
584 585 586 587 588
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
589
	pr_cont("\n");
590 591
}

592 593 594 595
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
596
static int rcu_print_task_stall(struct rcu_node *rnp)
597 598
{
	struct task_struct *t;
599
	int ndetected = 0;
600

601
	if (!rcu_preempt_blocked_readers_cgp(rnp))
602
		return 0;
603
	rcu_print_task_stall_begin(rnp);
604
	t = list_entry(rnp->gp_tasks->prev,
605
		       struct task_struct, rcu_node_entry);
606
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
607
		pr_cont(" P%d", t->pid);
608 609
		ndetected++;
	}
610
	rcu_print_task_stall_end();
611
	return ndetected;
612 613
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each that is blocking the current
 * expedited grace period.
 */
static int rcu_print_task_exp_stall(struct rcu_node *rnp)
{
	struct task_struct *t;
	int ndetected = 0;

	if (!rnp->exp_tasks)
		return 0;
	t = list_entry(rnp->exp_tasks->prev,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
		pr_cont(" P%d", t->pid);
		ndetected++;
	}
	return ndetected;
}

635 636 637 638 639 640
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
641 642 643
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
644 645 646
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
647 648
	struct task_struct *t;

649
	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
650
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
651
	if (rcu_preempt_has_tasks(rnp)) {
652
		rnp->gp_tasks = rnp->blkd_tasks.next;
653 654 655 656 657
		t = container_of(rnp->gp_tasks, struct task_struct,
				 rcu_node_entry);
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
						rnp->gpnum, t->pid);
	}
658
	WARN_ON_ONCE(rnp->qsmask);
659 660
}

661 662 663 664 665 666 667
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
668
static void rcu_preempt_check_callbacks(void)
669 670 671 672
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
673
		rcu_preempt_qs();
674 675
		return;
	}
676
	if (t->rcu_read_lock_nesting > 0 &&
677
	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
678
	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
679
		t->rcu_read_unlock_special.b.need_qs = true;
680 681
}

682 683
#ifdef CONFIG_RCU_BOOST

684 685
static void rcu_preempt_do_callbacks(void)
{
686
	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
687 688
}

689 690
#endif /* #ifdef CONFIG_RCU_BOOST */

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing RCU read-side critical section.  On systems with more
 * than one CPU, this means that when "func()" is invoked, each CPU is
 * guaranteed to have executed a full memory barrier since the end of its
 * last RCU read-side critical section whose beginning preceded the call
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 * critical section that continues beyond the start of "func()" must have
 * executed a memory barrier after the call_rcu() but before the beginning
 * of that RCU read-side critical section.  Note that these guarantees
 * include CPUs that are offline, idle, or executing in user mode, as
 * well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 * guaranteed to execute a full memory barrier during the time interval
 * between the call to call_rcu() and the invocation of "func()" -- even
 * if CPU A and CPU B are the same CPU (but again only if the system has
 * more than one CPU).
722
 */
723
void call_rcu(struct rcu_head *head, rcu_callback_t func)
724
{
725
	__call_rcu(head, func, rcu_state_p, -1, 0);
726 727 728
}
EXPORT_SYMBOL_GPL(call_rcu);

729 730 731 732 733
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
734 735 736 737 738
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
739
 *
740 741 742 743 744 745 746
 * See the description of synchronize_sched() for more detailed
 * information on memory-ordering guarantees.  However, please note
 * that -only- the memory-ordering guarantees apply.  For example,
 * synchronize_rcu() is -not- guaranteed to wait on things like code
 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
 * guaranteed to wait on RCU read-side critical sections, that is, sections
 * of code protected by rcu_read_lock().
747 748 749
 */
void synchronize_rcu(void)
{
750 751 752 753
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu() in RCU read-side critical section");
754
	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
755
		return;
756
	if (rcu_gp_is_expedited())
757 758 759
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
760 761 762
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

763 764
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
765 766 767 768 769
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
770 771 772
 */
void rcu_barrier(void)
{
773
	_rcu_barrier(rcu_state_p);
774 775 776
}
EXPORT_SYMBOL_GPL(rcu_barrier);

777
/*
P
Paul E. McKenney 已提交
778
 * Initialize preemptible RCU's state structures.
779 780 781
 */
static void __init __rcu_init_preempt(void)
{
782
	rcu_init_one(rcu_state_p);
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
799
	t->rcu_read_unlock_special.b.blocked = true;
800 801 802
	__rcu_read_unlock();
}

803
#else /* #ifdef CONFIG_PREEMPT_RCU */
804

805
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
806

807 808 809
/*
 * Tell them what RCU they are running.
 */
810
static void __init rcu_bootup_announce(void)
811
{
812
	pr_info("Hierarchical RCU implementation.\n");
813
	rcu_bootup_announce_oddness();
814 815
}

816 817 818 819
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
820
static void rcu_preempt_note_context_switch(bool preempt)
821 822 823
{
}

824
/*
P
Paul E. McKenney 已提交
825
 * Because preemptible RCU does not exist, there are never any preempted
826 827
 * RCU readers.
 */
828
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
829 830 831 832
{
	return 0;
}

833 834 835 836
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
837
{
838
	return false;
839 840
}

841
/*
P
Paul E. McKenney 已提交
842
 * Because preemptible RCU does not exist, we never have to check for
843 844 845 846 847 848
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

849
/*
P
Paul E. McKenney 已提交
850
 * Because preemptible RCU does not exist, we never have to check for
851 852
 * tasks blocked within RCU read-side critical sections.
 */
853
static int rcu_print_task_stall(struct rcu_node *rnp)
854
{
855
	return 0;
856 857
}

858 859 860 861 862 863 864 865 866 867
/*
 * Because preemptible RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections that are
 * blocking the current expedited grace period.
 */
static int rcu_print_task_exp_stall(struct rcu_node *rnp)
{
	return 0;
}

868
/*
P
Paul E. McKenney 已提交
869
 * Because there is no preemptible RCU, there can be no readers blocked,
870 871
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
872 873 874
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
875
	WARN_ON_ONCE(rnp->qsmask);
876 877
}

878
/*
P
Paul E. McKenney 已提交
879
 * Because preemptible RCU does not exist, it never has any callbacks
880 881
 * to check.
 */
882
static void rcu_preempt_check_callbacks(void)
883 884 885
{
}

886
/*
P
Paul E. McKenney 已提交
887
 * Because preemptible RCU does not exist, rcu_barrier() is just
888 889 890 891 892 893 894 895
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

896
/*
P
Paul E. McKenney 已提交
897
 * Because preemptible RCU does not exist, it need not be initialized.
898 899 900 901 902
 */
static void __init __rcu_init_preempt(void)
{
}

903 904 905 906 907 908 909 910
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

911
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
912

913 914
#ifdef CONFIG_RCU_BOOST

915
#include "../locking/rtmutex_common.h"
916

T
Thomas Gleixner 已提交
917 918 919 920 921 922 923 924 925 926
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

941 942
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
943 944
		return 0;  /* Nothing left to boost. */

945
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
946 947 948 949 950 951

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
B
Boqun Feng 已提交
952
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
953 954 955 956 957 958 959 960 961
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
962
	if (rnp->exp_tasks != NULL) {
963
		tb = rnp->exp_tasks;
964 965
		rnp->n_exp_boosts++;
	} else {
966
		tb = rnp->boost_tasks;
967 968 969
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
988
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
B
Boqun Feng 已提交
989
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
990 991 992
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
993

994 995
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
996 997 998
}

/*
999
 * Priority-boosting kthread, one per leaf rcu_node.
1000 1001 1002 1003 1004 1005 1006
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1007
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1008
	for (;;) {
1009
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1010
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1011
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1012
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1013
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1014 1015 1016 1017 1018 1019
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1020
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1021
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1022
			schedule_timeout_interruptible(2);
1023
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1024 1025 1026
			spincnt = 0;
		}
	}
1027
	/* NOTREACHED */
1028
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1029 1030 1031 1032 1033 1034 1035 1036 1037
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1038 1039 1040
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1041
 */
1042
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1043
	__releases(rnp->lock)
1044 1045 1046
{
	struct task_struct *t;

1047
	lockdep_assert_held(&rnp->lock);
1048
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
B
Boqun Feng 已提交
1049
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050
		return;
1051
	}
1052 1053 1054 1055 1056 1057 1058
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
B
Boqun Feng 已提交
1059
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1060
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1061 1062
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1063
	} else {
B
Boqun Feng 已提交
1064
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065
	}
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1077
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1078 1079 1080 1081
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1082 1083 1084
	local_irq_restore(flags);
}

1085 1086 1087 1088 1089 1090
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1091
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1109
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1110
				       struct rcu_node *rnp)
1111
{
T
Thomas Gleixner 已提交
1112
	int rnp_index = rnp - &rsp->node[0];
1113 1114 1115 1116
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

1117
	if (rcu_state_p != rsp)
1118
		return 0;
T
Thomas Gleixner 已提交
1119

1120
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1121 1122
		return 0;

1123
	rsp->boost = 1;
1124 1125 1126
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1127
			   "rcub/%d", rnp_index);
1128 1129
	if (IS_ERR(t))
		return PTR_ERR(t);
1130
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1131
	rnp->boost_kthread_task = t;
B
Boqun Feng 已提交
1132
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1133
	sp.sched_priority = kthread_prio;
1134
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1135
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1136 1137 1138
	return 0;
}

1139 1140
static void rcu_kthread_do_work(void)
{
1141 1142
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1143 1144 1145
	rcu_preempt_do_callbacks();
}

1146
static void rcu_cpu_kthread_setup(unsigned int cpu)
1147 1148 1149
{
	struct sched_param sp;

1150
	sp.sched_priority = kthread_prio;
1151
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1152 1153
}

1154
static void rcu_cpu_kthread_park(unsigned int cpu)
1155
{
1156
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1157 1158
}

1159
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1160
{
1161
	return __this_cpu_read(rcu_cpu_has_work);
1162 1163 1164 1165
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1166 1167
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1168
 */
1169
static void rcu_cpu_kthread(unsigned int cpu)
1170
{
1171 1172
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1173
	int spincnt;
1174

1175
	for (spincnt = 0; spincnt < 10; spincnt++) {
1176
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1177 1178
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1179 1180
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1181 1182
		work = *workp;
		*workp = 0;
1183
		local_irq_enable();
1184 1185 1186
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1187
		if (*workp == 0) {
1188
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1189 1190
			*statusp = RCU_KTHREAD_WAITING;
			return;
1191 1192
		}
	}
1193
	*statusp = RCU_KTHREAD_YIELDING;
1194
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1195
	schedule_timeout_interruptible(2);
1196
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1197
	*statusp = RCU_KTHREAD_WAITING;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1209
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210
{
T
Thomas Gleixner 已提交
1211
	struct task_struct *t = rnp->boost_kthread_task;
1212
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1213 1214 1215
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1216
	if (!t)
1217
		return;
T
Thomas Gleixner 已提交
1218
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1219
		return;
1220 1221 1222
	for_each_leaf_node_possible_cpu(rnp, cpu)
		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
		    cpu != outgoingcpu)
1223
			cpumask_set_cpu(cpu, cm);
1224
	if (cpumask_weight(cm) == 0)
1225
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1226
	set_cpus_allowed_ptr(t, cm);
1227 1228 1229
	free_cpumask_var(cm);
}

1230 1231 1232 1233 1234 1235 1236 1237
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1238 1239

/*
1240
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1241
 */
1242
static void __init rcu_spawn_boost_kthreads(void)
1243 1244
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1245
	int cpu;
1246

1247
	for_each_possible_cpu(cpu)
1248
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1249
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1250 1251
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1252 1253
}

1254
static void rcu_prepare_kthreads(int cpu)
1255
{
1256
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1257 1258 1259
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1260
	if (rcu_scheduler_fully_active)
1261
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262 1263
}

1264 1265
#else /* #ifdef CONFIG_RCU_BOOST */

1266
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1267
	__releases(rnp->lock)
1268
{
B
Boqun Feng 已提交
1269
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270 1271
}

1272
static void invoke_rcu_callbacks_kthread(void)
1273
{
1274
	WARN_ON_ONCE(1);
1275 1276
}

1277 1278 1279 1280 1281
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1282 1283 1284 1285
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1286
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1287 1288 1289
{
}

1290
static void __init rcu_spawn_boost_kthreads(void)
1291 1292 1293
{
}

1294
static void rcu_prepare_kthreads(int cpu)
1295 1296 1297
{
}

1298 1299
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1300 1301 1302 1303 1304 1305 1306 1307
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1308 1309
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1310
 */
1311
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1312
{
1313
	*nextevt = KTIME_MAX;
1314
	return rcu_cpu_has_callbacks(NULL);
1315 1316 1317 1318 1319 1320
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1321
static void rcu_cleanup_after_idle(void)
1322 1323 1324
{
}

1325
/*
1326
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1327 1328
 * is nothing.
 */
1329
static void rcu_prepare_for_idle(void)
1330 1331 1332
{
}

1333 1334 1335 1336 1337 1338 1339 1340
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1341 1342
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1358 1359 1360
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1361 1362 1363 1364 1365
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1366
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1367
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1368

1369 1370 1371 1372
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1373 1374

/*
1375 1376 1377
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1378
 */
1379
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1380
{
1381 1382
	bool cbs_ready = false;
	struct rcu_data *rdp;
1383
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1384 1385
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1386

1387 1388
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1389
		return false;
1390 1391
	rdtp->last_advance_all = jiffies;

1392 1393 1394
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1395

1396 1397 1398 1399 1400
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1401
		if ((rdp->completed != rnp->completed ||
1402
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1403
		    rcu_segcblist_pend_cbs(&rdp->cblist))
1404
			note_gp_changes(rsp, rdp);
1405

1406
		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1407 1408 1409
			cbs_ready = true;
	}
	return cbs_ready;
1410 1411
}

1412
/*
1413 1414 1415 1416
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1417
 *
1418
 * The caller must have disabled interrupts.
1419
 */
1420
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1421
{
1422
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423
	unsigned long dj;
1424

1425
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
1426

1427 1428 1429
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1430
	/* If no callbacks, RCU doesn't need the CPU. */
1431
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1432
		*nextevt = KTIME_MAX;
1433 1434
		return 0;
	}
1435 1436 1437 1438 1439

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1440 1441
		return 1;
	}
1442 1443 1444
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1445
	if (!rdtp->all_lazy) {
1446
		dj = round_up(rcu_idle_gp_delay + jiffies,
1447
			       rcu_idle_gp_delay) - jiffies;
1448
	} else {
1449
		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1450
	}
1451
	*nextevt = basemono + dj * TICK_NSEC;
1452 1453 1454
	return 0;
}

1455
/*
1456 1457 1458 1459 1460 1461
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1462 1463
 *
 * The caller must have disabled interrupts.
1464
 */
1465
static void rcu_prepare_for_idle(void)
1466
{
1467
	bool needwake;
1468
	struct rcu_data *rdp;
1469
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1470 1471
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1472 1473
	int tne;

1474
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
1475
	if (rcu_is_nocb_cpu(smp_processor_id()))
1476 1477
		return;

1478
	/* Handle nohz enablement switches conservatively. */
1479
	tne = READ_ONCE(tick_nohz_active);
1480
	if (tne != rdtp->tick_nohz_enabled_snap) {
1481
		if (rcu_cpu_has_callbacks(NULL))
1482 1483 1484 1485 1486 1487
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1488

1489
	/*
1490 1491 1492
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1493
	 */
1494 1495
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1496 1497
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1498
		invoke_rcu_core();
1499 1500 1501
		return;
	}

1502
	/*
1503 1504
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1505
	 */
1506
	if (rdtp->last_accelerate == jiffies)
1507
		return;
1508 1509
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1510
		rdp = this_cpu_ptr(rsp->rda);
1511
		if (rcu_segcblist_pend_cbs(&rdp->cblist))
1512 1513
			continue;
		rnp = rdp->mynode;
1514
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1515
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
B
Boqun Feng 已提交
1516
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1517 1518
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1519
	}
1520
}
1521

1522 1523 1524 1525 1526
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1527
static void rcu_cleanup_after_idle(void)
1528
{
1529
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
1530
	if (rcu_is_nocb_cpu(smp_processor_id()))
1531
		return;
1532 1533
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1534 1535
}

1536
/*
1537 1538 1539 1540 1541 1542
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1543 1544 1545
 */
static void rcu_idle_count_callbacks_posted(void)
{
1546
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1578
		rdp = raw_cpu_ptr(rsp->rda);
1579
		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1600
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1601 1602 1603 1604 1605 1606 1607 1608 1609

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1610
		cond_resched_rcu_qs();
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	}

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1630
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1631 1632 1633 1634 1635

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1636
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1637
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1638

1639 1640 1641 1642 1643
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1644 1645 1646 1647 1648 1649
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1650
	*cp = '\0';
1651 1652 1653 1654 1655 1656 1657
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1658
	pr_cont("\n");
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1689 1690 1691 1692 1693 1694
	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
	       cpu,
	       "O."[!!cpu_online(cpu)],
	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
	       ticks_value, ticks_title,
1695
	       rcu_dynticks_snap(rdtp) & 0xfff,
1696
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1697
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1698
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1699 1700 1701 1702 1703 1704
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1705
	pr_err("\t");
1706 1707 1708 1709 1710 1711
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1712
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1713 1714 1715 1716 1717
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1718 1719 1720
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1721
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1722 1723
}

P
Paul E. McKenney 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1757 1758
static int __init parse_rcu_nocb_poll(char *arg)
{
1759
	rcu_nocb_poll = true;
1760 1761 1762 1763
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1764
/*
1765 1766
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1767
 */
1768
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1769
{
1770
	swake_up_all(sq);
1771 1772 1773
}

/*
1774
 * Set the root rcu_node structure's ->need_future_gp field
1775 1776 1777 1778 1779
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1780
 */
1781 1782
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1783
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1784 1785
}

1786
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1787 1788 1789 1790
{
	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
}

1791
static void rcu_init_one_nocb(struct rcu_node *rnp)
1792
{
1793 1794
	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1795 1796
}

L
Liu Ping Fan 已提交
1797
/* Is the specified CPU a no-CBs CPU? */
1798
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1799 1800 1801 1802 1803 1804
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}

1805
/*
1806 1807
 * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
 * and this function releases it.
1808
 */
1809 1810 1811
static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
			       unsigned long flags)
	__releases(rdp->nocb_lock)
1812 1813 1814
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1815 1816 1817
	lockdep_assert_held(&rdp->nocb_lock);
	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1818
		return;
1819 1820
	}
	if (rdp_leader->nocb_leader_sleep || force) {
1821
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1822
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1823 1824
		del_timer(&rdp->nocb_timer);
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1825
		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1826
		swake_up(&rdp_leader->nocb_wq);
1827 1828
	} else {
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1829 1830 1831
	}
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/*
 * Kick the leader kthread for this NOCB group, but caller has not
 * acquired locks.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
	__wake_nocb_leader(rdp, force, flags);
}

/*
 * Arrange to wake the leader kthread for this NOCB group at some
 * future time when it is safe to do so.
 */
static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
				   const char *reason)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
		mod_timer(&rdp->nocb_timer, jiffies + 1);
	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
}

1861 1862 1863 1864 1865 1866 1867
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1868 1869
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1870
	struct rcu_head *rhp;
1871
#endif /* #ifdef CONFIG_PROVE_RCU */
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1886

1887
#ifdef CONFIG_PROVE_RCU
1888
	rhp = READ_ONCE(rdp->nocb_head);
1889
	if (!rhp)
1890
		rhp = READ_ONCE(rdp->nocb_gp_head);
1891
	if (!rhp)
1892
		rhp = READ_ONCE(rdp->nocb_follower_head);
1893 1894

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1895
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1896
	    rcu_scheduler_fully_active) {
1897 1898 1899 1900 1901
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1902
#endif /* #ifdef CONFIG_PROVE_RCU */
1903

1904
	return !!ret;
1905 1906
}

P
Paul E. McKenney 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1918 1919
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1920 1921 1922 1923 1924 1925
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1926 1927
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1928
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1929
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1930
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1931
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1932 1933

	/* If we are not being polled and there is a kthread, awaken it ... */
1934
	t = READ_ONCE(rdp->nocb_kthread);
1935
	if (rcu_nocb_poll || !t) {
1936 1937
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1938
		return;
1939
	}
P
Paul E. McKenney 已提交
1940 1941
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1942
		if (!irqs_disabled_flags(flags)) {
1943 1944
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1945 1946 1947
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1948 1949
			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
					       TPS("WakeEmptyIsDeferred"));
1950
		}
P
Paul E. McKenney 已提交
1951 1952
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1953
		/* ... or if many callbacks queued. */
1954 1955 1956 1957 1958
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
1959 1960
			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
					       TPS("WakeOvfIsDeferred"));
1961
		}
P
Paul E. McKenney 已提交
1962
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1963 1964
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1979
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
1980 1981
{

1982
	if (!rcu_is_nocb_cpu(rdp->cpu))
1983
		return false;
1984
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1985 1986 1987
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
1988 1989
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
1990 1991
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
1992 1993
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

2005
	return true;
P
Paul E. McKenney 已提交
2006 2007 2008 2009 2010 2011
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
2012
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2013 2014
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2015
{
2016
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_nocb_adopt_orphan_cbs() invoked with irqs enabled!!!");
2017
	if (!rcu_is_nocb_cpu(smp_processor_id()))
2018 2019 2020 2021 2022 2023 2024
		return false; /* Not NOCBs CPU, caller must migrate CBs. */
	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
				rcu_segcblist_tail(&rdp->cblist),
				rcu_segcblist_n_cbs(&rdp->cblist),
				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
	rcu_segcblist_init(&rdp->cblist);
	rcu_segcblist_disable(&rdp->cblist);
2025
	return true;
P
Paul E. McKenney 已提交
2026 2027 2028
}

/*
2029 2030
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2031
 */
2032
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2033
{
2034
	unsigned long c;
2035
	bool d;
2036
	unsigned long flags;
2037
	bool needwake;
2038 2039
	struct rcu_node *rnp = rdp->mynode;

2040
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2041
	needwake = rcu_start_future_gp(rnp, rdp, &c);
B
Boqun Feng 已提交
2042
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2043 2044
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2045 2046

	/*
2047 2048
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2049
	 */
2050
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2051
	for (;;) {
2052
		swait_event_interruptible(
2053
			rnp->nocb_gp_wq[c & 0x1],
2054
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2055
		if (likely(d))
2056
			break;
2057
		WARN_ON(signal_pending(current));
2058
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2059
	}
2060
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2061
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2062 2063
}

2064 2065 2066 2067 2068 2069 2070
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
2071
	unsigned long flags;
2072 2073 2074 2075 2076 2077 2078 2079
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
2080
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2081
		swait_event_interruptible(my_rdp->nocb_wq,
2082
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2083 2084 2085 2086 2087
		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
		my_rdp->nocb_leader_sleep = true;
		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
		del_timer(&my_rdp->nocb_timer);
		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2088 2089
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
2090
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2091 2092 2093 2094 2095 2096 2097 2098
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
2099
	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2100
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2101
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2102 2103 2104 2105
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2106
		WRITE_ONCE(rdp->nocb_head, NULL);
2107 2108 2109 2110
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

2111
	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2112
	if (unlikely(!gotcbs)) {
2113
		WARN_ON(signal_pending(current));
2114 2115 2116
		if (rcu_nocb_poll) {
			schedule_timeout_interruptible(1);
		} else {
2117
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2118
					    TPS("WokeEmpty"));
2119
		}
2120 2121 2122 2123 2124 2125 2126 2127
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2128 2129 2130 2131
		if (!rcu_nocb_poll &&
		    READ_ONCE(rdp->nocb_head) &&
		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2132
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2133 2134
			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
		}
2135 2136 2137 2138
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
2139 2140 2141
		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
		tail = rdp->nocb_follower_tail;
		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2142
		*tail = rdp->nocb_gp_head;
2143
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2144
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2145
			/* List was empty, so wake up the follower.  */
2146
			swake_up(&rdp->nocb_wq);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	for (;;) {
2162
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2163 2164
		swait_event_interruptible(rdp->nocb_wq,
					 READ_ONCE(rdp->nocb_follower_head));
2165 2166 2167 2168
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
2169
		WARN_ON(signal_pending(current));
2170
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2171 2172 2173
	}
}

P
Paul E. McKenney 已提交
2174 2175
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2176 2177 2178
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2179 2180 2181 2182
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
2183
	unsigned long flags;
P
Paul E. McKenney 已提交
2184 2185 2186 2187 2188 2189 2190
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2191 2192 2193 2194 2195 2196 2197
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2198 2199 2200 2201 2202 2203
		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
		list = rdp->nocb_follower_head;
		rdp->nocb_follower_head = NULL;
		tail = rdp->nocb_follower_tail;
		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2204
		BUG_ON(!list);
2205
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
P
Paul E. McKenney 已提交
2206 2207

		/* Each pass through the following loop invokes a callback. */
2208 2209 2210
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2211 2212 2213 2214 2215
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2216 2217
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2218
				schedule_timeout_interruptible(1);
2219 2220
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2221 2222 2223 2224 2225 2226 2227 2228
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
2229
			cond_resched_rcu_qs();
P
Paul E. McKenney 已提交
2230 2231 2232
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2233 2234 2235
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2236
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2237 2238 2239 2240
	}
	return 0;
}

2241
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2242
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2243
{
2244
	return READ_ONCE(rdp->nocb_defer_wakeup);
2245 2246 2247
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
2248
static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2249
{
2250
	unsigned long flags;
2251 2252
	int ndw;

2253 2254 2255
	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2256
		return;
2257
	}
2258
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2259
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2260
	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2261
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
static void do_nocb_deferred_wakeup_timer(unsigned long x)
{
	do_nocb_deferred_wakeup_common((struct rcu_data *)x);
}

/*
 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
 * This means we do an inexact common-case check.  Note that if
 * we miss, ->nocb_timer will eventually clean things up.
 */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	if (rcu_nocb_need_deferred_wakeup(rdp))
		do_nocb_deferred_wakeup_common(rdp);
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2293 2294 2295 2296
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2312 2313
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2314 2315 2316 2317
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2318 2319
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2320
		rcu_organize_nocb_kthreads(rsp);
2321
	}
2322 2323
}

P
Paul E. McKenney 已提交
2324 2325 2326 2327
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
2328
	init_swait_queue_head(&rdp->nocb_wq);
2329
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2330 2331 2332
	raw_spin_lock_init(&rdp->nocb_lock);
	setup_timer(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer,
		    (unsigned long)rdp);
P
Paul E. McKenney 已提交
2333 2334
}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2365 2366 2367 2368 2369 2370 2371
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2372 2373 2374 2375 2376 2377 2378 2379
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2380
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2410 2411 2412 2413 2414
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2415
 * Initialize leader-follower relationships for all no-CBs CPU.
2416
 */
2417
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2418 2419
{
	int cpu;
2420 2421
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2422
	struct rcu_data *rdp;
2423 2424
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2425

2426
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2427
		return;
2428 2429 2430 2431 2432 2433
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
2434 2435 2436
	 * Each pass through this loop sets up one rcu_data structure.
	 * Should the corresponding CPU come online in the future, then
	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2437
	 */
P
Paul E. McKenney 已提交
2438 2439
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2451 2452 2453 2454
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2455
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2456
{
2457
	if (!rcu_is_nocb_cpu(rdp->cpu))
2458
		return false;
2459

2460
	/* If there are early-boot callbacks, move them to nocb lists. */
2461 2462 2463 2464 2465 2466 2467 2468
	if (!rcu_segcblist_empty(&rdp->cblist)) {
		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
		atomic_long_set(&rdp->nocb_q_count,
				rcu_segcblist_n_cbs(&rdp->cblist));
		atomic_long_set(&rdp->nocb_q_count_lazy,
				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
		rcu_segcblist_init(&rdp->cblist);
2469
	}
2470
	rcu_segcblist_disable(&rdp->cblist);
2471
	return true;
P
Paul E. McKenney 已提交
2472 2473
}

2474 2475
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2476 2477 2478 2479 2480 2481
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2482
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
P
Paul E. McKenney 已提交
2483 2484 2485
{
}

2486 2487 2488 2489
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

2490
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2491 2492 2493 2494
{
	return NULL;
}

2495 2496 2497
static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2498 2499

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2500
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2501
{
2502
	return false;
P
Paul E. McKenney 已提交
2503 2504
}

2505
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2506 2507
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2508
{
2509
	return false;
P
Paul E. McKenney 已提交
2510 2511 2512 2513 2514 2515
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2516
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2517 2518 2519 2520 2521 2522 2523 2524
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2525 2526 2527 2528 2529
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2530 2531 2532
{
}

2533
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2534
{
2535
	return false;
P
Paul E. McKenney 已提交
2536 2537 2538
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2549
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2550 2551 2552 2553 2554 2555
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2556

2557 2558 2559 2560 2561 2562 2563
/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2564
 * CONFIG_RCU_NOCB_CPU CPUs.
2565 2566 2567 2568 2569 2570
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
2571
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2572
		return true;
2573
#endif /* #ifdef CONFIG_NO_HZ_FULL */
2574
	return false;
2575
}
2576 2577 2578 2579 2580 2581 2582

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
2583
	int __maybe_unused cpu;
2584

2585
	if (!tick_nohz_full_enabled())
2586
		return;
2587
	housekeeping_affine(current);
2588
}
2589 2590 2591 2592 2593

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2594
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2595 2596 2597 2598 2599 2600 2601
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2602
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2603 2604
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}