process.c 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69
extern unsigned long _get_SP(void);

70
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71
static void check_if_tm_restore_required(struct task_struct *tsk)
72 73 74 75 76 77 78 79 80 81
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
82
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 84 85 86
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
87
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 89
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

90 91 92 93 94 95 96 97 98 99 100 101 102
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
103
{
104 105
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
106

107
	newmsr = oldmsr | bits;
108 109

#ifdef CONFIG_VSX
110
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 112
		newmsr |= MSR_VSX;
#endif
113

114 115
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
116
}
117

118
void __msr_check_and_clear(unsigned long bits)
119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
133
EXPORT_SYMBOL(__msr_check_and_clear);
134 135 136 137 138 139 140

#ifdef CONFIG_PPC_FPU
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
141
	__giveup_fpu(tsk);
142
	msr_check_and_clear(MSR_FP);
143 144 145
}
EXPORT_SYMBOL(giveup_fpu);

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
166
			 * the FP register state on context switch,
167 168 169 170
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
171
			giveup_fpu(tsk);
172 173 174 175
		}
		preempt_enable();
	}
}
176
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177 178 179 180 181

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

182
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
183

184 185
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
186
		__giveup_fpu(current);
187
	}
188 189
}
EXPORT_SYMBOL(enable_kernel_fp);
190 191 192 193 194 195 196 197 198 199 200

static int restore_fp(struct task_struct *tsk) {
	if (tsk->thread.load_fp) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
201
#endif /* CONFIG_PPC_FPU */
202 203

#ifdef CONFIG_ALTIVEC
204 205
#define loadvec(thr) ((thr).load_vec)

206 207 208 209
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

210
	msr_check_and_set(MSR_VEC);
211
	__giveup_altivec(tsk);
212
	msr_check_and_clear(MSR_VEC);
213 214 215
}
EXPORT_SYMBOL(giveup_altivec);

216 217 218 219
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

220
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
221

222 223
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
224
		__giveup_altivec(current);
225
	}
226 227 228 229 230 231 232 233 234 235 236 237 238
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
239
			giveup_altivec(tsk);
240 241 242 243
		}
		preempt_enable();
	}
}
244
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
260 261
#endif /* CONFIG_ALTIVEC */

262
#ifdef CONFIG_VSX
263 264 265 266
void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

267
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
268 269 270 271 272
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
	__giveup_vsx(tsk);
273
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
274 275 276
}
EXPORT_SYMBOL(giveup_vsx);

277 278 279 280
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

281
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
282

283
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
284
		check_if_tm_restore_required(current);
285 286 287 288 289
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
290
	}
291 292 293 294 295 296 297 298 299 300 301 302 303 304
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
305
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
306 307 308 309 310 311 312 313 314 315 316 317

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
318 319
#endif /* CONFIG_VSX */

320
#ifdef CONFIG_SPE
321 322 323 324
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

325
	msr_check_and_set(MSR_SPE);
326
	__giveup_spe(tsk);
327
	msr_check_and_clear(MSR_SPE);
328 329
}
EXPORT_SYMBOL(giveup_spe);
330 331 332 333 334

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

335
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
336

337 338
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
339
		__giveup_spe(current);
340
	}
341 342 343 344 345 346 347 348 349
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
350
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
351
			giveup_spe(tsk);
352 353 354 355 356 357
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
		giveup_all(tsk);

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

464 465 466 467 468 469
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

470
	current->thread.trap_nr = signal_code;
471 472 473 474 475 476 477 478 479 480 481 482
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
483
void do_break (struct pt_regs *regs, unsigned long address,
484 485 486 487
		    unsigned long error_code)
{
	siginfo_t info;

488
	current->thread.trap_nr = TRAP_HWBKPT;
489 490 491 492
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

493
	if (debugger_break_match(regs))
494 495
		return;

496 497
	/* Clear the breakpoint */
	hw_breakpoint_disable();
498 499 500 501 502 503 504 505

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
506
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
507

508
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
509

510 511 512 513 514 515
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
516
	thread->debug.iac1 = thread->debug.iac2 = 0;
517
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
518
	thread->debug.iac3 = thread->debug.iac4 = 0;
519
#endif
520
	thread->debug.dac1 = thread->debug.dac2 = 0;
521
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
522
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
523
#endif
524
	thread->debug.dbcr0 = 0;
525 526 527 528
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
529
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
530 531 532 533 534
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
535
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
536
#else
537
	thread->debug.dbcr1 = 0;
538 539 540
#endif
}

541
static void prime_debug_regs(struct debug_reg *debug)
542
{
543 544 545 546 547 548 549
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

550 551
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
552
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
553 554
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
555
#endif
556 557
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
558
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
559 560
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
561
#endif
562 563
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
564
#ifdef CONFIG_BOOKE
565
	mtspr(SPRN_DBCR2, debug->dbcr2);
566 567 568 569 570 571 572
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
573
void switch_booke_debug_regs(struct debug_reg *new_debug)
574
{
575
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
576 577
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
578
}
579
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
580
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
581
#ifndef CONFIG_HAVE_HW_BREAKPOINT
582 583
static void set_debug_reg_defaults(struct thread_struct *thread)
{
584 585
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
586
	set_breakpoint(&thread->hw_brk);
587
}
588
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
589 590
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

591
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
592 593
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
594
	mtspr(SPRN_DAC1, dabr);
595 596 597
#ifdef CONFIG_PPC_47x
	isync();
#endif
598 599
	return 0;
}
600
#elif defined(CONFIG_PPC_BOOK3S)
601 602
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
603
	mtspr(SPRN_DABR, dabr);
604 605
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
606
	return 0;
607
}
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

628 629
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
630
	unsigned long dawr, dawrx, mrd;
631 632 633 634 635 636 637 638 639

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
640 641 642 643 644 645 646 647
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
648 649 650 651 652 653 654 655

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

656
void __set_breakpoint(struct arch_hw_breakpoint *brk)
657
{
658
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
659

660
	if (cpu_has_feature(CPU_FTR_DAWR))
661 662 663
		set_dawr(brk);
	else
		set_dabr(brk);
664
}
665

666 667 668 669 670 671 672
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

673 674 675
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
676

677 678 679 680 681 682 683 684 685 686 687
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
688

689
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
690 691 692 693 694 695 696 697 698 699 700 701
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
702
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
703 704 705 706 707 708 709 710 711 712
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
	 * benifit of checking for a potential TM bad thing exception.
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
770
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
771
	 * ckpt_regs.msr is already set.
772
	 */
773
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
774
		thr->ckpt_regs.msr = thr->regs->msr;
775 776 777 778 779 780 781

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

782
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
783 784 785 786 787 788 789 790 791 792 793 794 795

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

821
static inline void tm_recheckpoint_new_task(struct task_struct *new)
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

839 840
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
841
		return;
842
	}
843
	msr = new->thread.ckpt_regs.msr;
844 845 846 847 848 849 850 851 852 853 854 855 856 857
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
858
#ifdef CONFIG_ALTIVEC
859 860 861 862
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
863
#endif
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

903
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
904
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
905 906 907

	restore_math(regs);

908 909 910
	regs->msr |= msr_diff;
}

911 912 913 914
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		u64 fscr = old_thread->fscr & ~FSCR_DSCR;

		if (new_thread->dscr_inherit) {
			dscr = new_thread->dscr;
			fscr |= FSCR_DSCR;
		}

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);

		if (old_thread->fscr != fscr)
			mtspr(SPRN_FSCR, fscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

983 984 985 986 987
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
988 989 990
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
991

992 993 994
	new_thread = &new->thread;
	old_thread = &current->thread;

995 996
	WARN_ON(!irqs_disabled());

997 998 999 1000 1001
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1002
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1003 1004 1005 1006 1007 1008
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1009 1010 1011
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
1012
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
1020

A
Anton Blanchard 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1045 1046 1047 1048 1049 1050
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1051 1052 1053

	tm_recheckpoint_new_task(new);

1054 1055 1056 1057 1058 1059 1060
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1061 1062
	restore_sprs(old_thread, new_thread);

1063 1064
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
1065 1066 1067
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1068
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1069 1070
		batch->active = 1;
	}
1071 1072 1073 1074

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);

P
Peter Zijlstra 已提交
1075 1076
#endif /* CONFIG_PPC_BOOK3S_64 */

1077 1078 1079
	return last;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1096 1097 1098 1099 1100 1101 1102 1103
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1104
		if (!__kernel_text_address(pc) ||
1105
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1106
			printk(KERN_CONT "XXXXXXXX ");
1107 1108
		} else {
			if (regs->nip == pc)
1109
				printk(KERN_CONT "<%08x> ", instr);
1110
			else
1111
				printk(KERN_CONT "%08x ", instr);
1112 1113 1114 1115 1116 1117 1118 1119
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1120
struct regbit {
1121 1122
	unsigned long bit;
	const char *name;
1123 1124 1125
};

static struct regbit msr_bits[] = {
1126 1127 1128 1129 1130 1131 1132 1133 1134
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1135 1136 1137 1138
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1139
#ifdef CONFIG_BOOKE
1140
	{MSR_DE,	"DE"},
1141 1142 1143 1144
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1145 1146
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1147 1148 1149 1150 1151
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1152 1153 1154
	{0,		NULL}
};

1155
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1156
{
1157
	const char *s = "";
1158 1159 1160

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1161 1162
			printk("%s%s", s, bits->name);
			s = sep;
1163
		}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1198 1199 1200 1201
	printk(">");
}

#ifdef CONFIG_PPC64
1202
#define REG		"%016lx"
1203 1204 1205
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1206
#define REG		"%08lx"
1207 1208 1209 1210
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1211 1212 1213 1214
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1215 1216
	show_regs_print_info(KERN_DEFAULT);

1217 1218 1219
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1220
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1221
	printk("MSR: "REG" ", regs->msr);
1222
	print_msr_bits(regs->msr);
1223
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1224
	trap = TRAP(regs);
1225
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1226
		printk("CFAR: "REG" ", regs->orig_gpr3);
1227
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1228
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1229
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1230
#else
1231 1232 1233 1234 1235 1236
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1237 1238
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1239
#endif
1240 1241

	for (i = 0;  i < 32;  i++) {
1242
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1243
			printk("\nGPR%02d: ", i);
1244 1245
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1246 1247 1248 1249 1250 1251 1252 1253
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1254 1255
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1256
#endif
1257
	show_stack(current, (unsigned long *) regs->gpr[1]);
1258 1259
	if (!user_mode(regs))
		show_instructions(regs);
1260 1261 1262 1263 1264 1265 1266 1267
}

void exit_thread(void)
{
}

void flush_thread(void)
{
1268
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1269
	flush_ptrace_hw_breakpoint(current);
1270
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1271
	set_debug_reg_defaults(&current->thread);
1272
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1273 1274 1275 1276 1277 1278 1279 1280
}

void
release_thread(struct task_struct *t)
{
}

/*
1281 1282
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1283
 */
1284
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1285
{
1286
	flush_all_to_thread(src);
1287 1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1296

1297
	*dst = *src;
1298 1299 1300

	clear_task_ebb(dst);

1301
	return 0;
1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1321 1322 1323
/*
 * Copy a thread..
 */
1324

1325 1326 1327
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1328
int copy_thread(unsigned long clone_flags, unsigned long usp,
1329
		unsigned long kthread_arg, struct task_struct *p)
1330 1331 1332
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1333 1334
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1335
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1336 1337 1338 1339

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1340
	if (unlikely(p->flags & PF_KTHREAD)) {
1341
		/* kernel thread */
1342
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1343
		memset(childregs, 0, sizeof(struct pt_regs));
1344
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1345 1346 1347
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1348
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1349
		clear_tsk_thread_flag(p, TIF_32BIT);
1350
		childregs->softe = 1;
1351
#endif
1352
		childregs->gpr[15] = kthread_arg;
1353
		p->thread.regs = NULL;	/* no user register state */
1354
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1355
		f = ret_from_kernel_thread;
1356
	} else {
1357
		/* user thread */
1358
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1359 1360
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1361 1362
		if (usp)
			childregs->gpr[1] = usp;
1363
		p->thread.regs = childregs;
A
Al Viro 已提交
1364
		childregs->gpr[3] = 0;  /* Result from fork() */
1365 1366
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1367
			if (!is_32bit_task())
1368 1369 1370 1371 1372
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1373 1374

		f = ret_from_fork;
1375
	}
1376
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1387
	((unsigned long *)sp)[0] = 0;
1388 1389 1390 1391
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1392
#ifdef CONFIG_PPC32
1393 1394
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1395
#endif
1396 1397 1398 1399
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1400 1401 1402 1403 1404
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1405 1406
	setup_ksp_vsid(p, sp);

1407 1408
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1409
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1410
		p->thread.dscr = mfspr(SPRN_DSCR);
1411
	}
1412 1413
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1414
#endif
1415
	kregs->nip = ppc_function_entry(f);
1416 1417 1418 1419 1420 1421
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1422
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1423
{
1424 1425 1426 1427
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1428 1429 1430 1431 1432
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1433 1434
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1435 1436
	}

1437 1438 1439 1440 1441 1442
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1443

1444 1445 1446 1447 1448 1449 1450
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1451 1452 1453
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1454
	regs->msr = MSR_USER;
1455
#else
1456
	if (!is_32bit_task()) {
1457
		unsigned long entry;
1458

1459 1460 1461
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1494 1495 1496
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1497 1498 1499 1500
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1501 1502
	}
#endif
1503 1504 1505
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1506
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1507
	current->thread.fp_save_area = NULL;
1508
#ifdef CONFIG_ALTIVEC
1509 1510
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1511
	current->thread.vr_save_area = NULL;
1512 1513 1514 1515 1516 1517 1518 1519 1520
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1521 1522 1523 1524 1525 1526 1527
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1528
}
1529
EXPORT_SYMBOL(start_thread);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1544
		if (cpu_has_feature(CPU_FTR_SPE)) {
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1558 1559 1560 1561 1562 1563
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1564 1565 1566 1567
#else
		return -EINVAL;
#endif
	}
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1580 1581 1582 1583 1584 1585 1586 1587 1588
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1603
			val = tsk->thread.fpexc_mode;
1604
		} else
1605
			return -EINVAL;
1606 1607 1608 1609 1610 1611 1612 1613
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1693
int validate_sp(unsigned long sp, struct task_struct *p,
1694 1695
		       unsigned long nbytes)
{
A
Al Viro 已提交
1696
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1697 1698 1699 1700 1701

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1702
	return valid_irq_stack(sp, p, nbytes);
1703 1704
}

1705 1706
EXPORT_SYMBOL(validate_sp);

1707 1708 1709 1710 1711 1712 1713 1714 1715
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1716
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1717 1718 1719 1720
		return 0;

	do {
		sp = *(unsigned long *)sp;
1721
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1722 1723
			return 0;
		if (count > 0) {
1724
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1725 1726 1727 1728 1729 1730
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1731

1732
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1733 1734 1735 1736 1737 1738

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1739 1740 1741
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1742
	unsigned long rth = (unsigned long)return_to_handler;
1743
#endif
1744 1745 1746 1747 1748 1749

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1750
			sp = current_stack_pointer();
1751 1752 1753 1754 1755 1756 1757
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1758
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1759 1760 1761 1762
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1763
		ip = stack[STACK_FRAME_LR_SAVE];
1764
		if (!firstframe || ip != lr) {
1765
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1766
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1767
			if ((ip == rth) && curr_frame >= 0) {
1768 1769 1770 1771 1772
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1783 1784
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1785 1786 1787
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1788
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1789
			       regs->trap, (void *)regs->nip, (void *)lr);
1790 1791 1792 1793 1794 1795 1796
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1797
#ifdef CONFIG_PPC64
1798
/* Called with hard IRQs off */
1799
void notrace __ppc64_runlatch_on(void)
1800
{
1801
	struct thread_info *ti = current_thread_info();
1802 1803
	unsigned long ctrl;

1804 1805 1806
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1807

1808
	ti->local_flags |= _TLF_RUNLATCH;
1809 1810
}

1811
/* Called with hard IRQs off */
1812
void notrace __ppc64_runlatch_off(void)
1813
{
1814
	struct thread_info *ti = current_thread_info();
1815 1816
	unsigned long ctrl;

1817
	ti->local_flags &= ~_TLF_RUNLATCH;
1818

1819 1820 1821
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1822
}
1823
#endif /* CONFIG_PPC64 */
1824

1825 1826 1827 1828 1829 1830
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1847 1848 1849
	unsigned long base = mm->brk;
	unsigned long ret;

1850
#ifdef CONFIG_PPC_STD_MMU_64
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1863 1864 1865 1866 1867 1868

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1869