slab_common.c 37.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20 21 22
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
23
#include <linux/memcontrol.h>
24 25

#define CREATE_TRACE_POINTS
26
#include <trace/events/kmem.h>
27

28 29 30
#include "slab.h"

enum slab_state slab_state;
31 32
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
33
struct kmem_cache *kmem_cache;
34

35 36 37 38 39 40 41 42
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

43 44 45 46 47
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

48 49 50 51
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
53
		SLAB_FAILSLAB | SLAB_KASAN)
54

V
Vladimir Davydov 已提交
55
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56
			 SLAB_ACCOUNT)
57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
61
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 63 64

static int __init setup_slab_nomerge(char *str)
{
65
	slab_nomerge = true;
66 67 68 69 70 71 72 73 74
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

75 76 77 78 79 80 81 82 83
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

84
#ifdef CONFIG_DEBUG_VM
85
static int kmem_cache_sanity_check(const char *name, unsigned int size)
86 87 88
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
89 90
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
91
	}
92

93
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
94 95 96
	return 0;
}
#else
97
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
98 99 100
{
	return 0;
}
101 102
#endif

103 104 105 106
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

107 108 109 110 111 112
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
113 114
}

115
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 117 118 119 120 121 122 123
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
124
			return 0;
125 126
		}
	}
127
	return i;
128 129
}

130
#ifdef CONFIG_MEMCG_KMEM
131 132 133

LIST_HEAD(slab_root_caches);

134
void slab_init_memcg_params(struct kmem_cache *s)
135
{
T
Tejun Heo 已提交
136
	s->memcg_params.root_cache = NULL;
137
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
138
	INIT_LIST_HEAD(&s->memcg_params.children);
139
	s->memcg_params.dying = false;
140 141 142 143 144 145
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
146

T
Tejun Heo 已提交
147
	if (root_cache) {
148
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
149 150
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
151
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
152
		return 0;
153
	}
154

155
	slab_init_memcg_params(s);
156

157 158
	if (!memcg_nr_cache_ids)
		return 0;
159

160 161 162
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
163 164
	if (!arr)
		return -ENOMEM;
165

166
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 168 169
	return 0;
}

170
static void destroy_memcg_params(struct kmem_cache *s)
171
{
172
	if (is_root_cache(s))
173 174 175 176 177 178 179 180 181
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
182 183
}

184
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
185
{
186
	struct memcg_cache_array *old, *new;
187

188 189
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
190
	if (!new)
191 192
		return -ENOMEM;

193 194 195 196 197
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
198

199 200
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
201
		call_rcu(&old->rcu, free_memcg_params);
202 203 204
	return 0;
}

205 206 207 208 209
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

210
	mutex_lock(&slab_mutex);
211
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
212
		ret = update_memcg_params(s, num_memcgs);
213 214 215 216 217
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
218
			break;
219 220 221 222
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
223

224
void memcg_link_cache(struct kmem_cache *s)
225
{
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
244
}
245
#else
246 247
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
248 249 250 251
{
	return 0;
}

252
static inline void destroy_memcg_params(struct kmem_cache *s)
253 254
{
}
255

256
static inline void memcg_unlink_cache(struct kmem_cache *s)
257 258
{
}
259
#endif /* CONFIG_MEMCG_KMEM */
260

261 262 263 264
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
265 266
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
267 268 269 270 271 272 273 274 275
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
276
		unsigned int ralign;
277 278 279 280 281 282 283 284 285 286 287 288 289

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

304 305 306
	if (s->usersize)
		return 1;

307 308 309 310 311 312 313 314 315
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

316
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
317
		slab_flags_t flags, const char *name, void (*ctor)(void *))
318 319 320
{
	struct kmem_cache *s;

321
	if (slab_nomerge)
322 323 324 325 326 327 328 329 330 331
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

332 333 334
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

335
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

354 355 356 357
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

358 359 360 361 362
		return s;
	}
	return NULL;
}

363
static struct kmem_cache *create_cache(const char *name,
364
		unsigned int object_size, unsigned int align,
365 366
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
367
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
368 369 370 371
{
	struct kmem_cache *s;
	int err;

372 373 374
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

375 376 377 378 379 380
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
381
	s->size = s->object_size = object_size;
382 383
	s->align = align;
	s->ctor = ctor;
384 385
	s->useroffset = useroffset;
	s->usersize = usersize;
386

387
	err = init_memcg_params(s, memcg, root_cache);
388 389 390 391 392 393 394 395 396
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
397
	memcg_link_cache(s);
398 399 400 401 402 403
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
404
	destroy_memcg_params(s);
405
	kmem_cache_free(kmem_cache, s);
406 407
	goto out;
}
408

409
/*
410
 * kmem_cache_create_usercopy - Create a cache.
411 412 413 414
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
415 416
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
435
struct kmem_cache *
436 437
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
438 439
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
440
		  void (*ctor)(void *))
441
{
442
	struct kmem_cache *s = NULL;
443
	const char *cache_name;
444
	int err;
445

446
	get_online_cpus();
447
	get_online_mems();
448
	memcg_get_cache_ids();
449

450
	mutex_lock(&slab_mutex);
451

452
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
453
	if (err) {
454
		goto out_unlock;
A
Andrew Morton 已提交
455
	}
456

457 458 459 460 461 462
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

463 464 465 466 467 468 469
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
470

471 472 473 474 475 476 477
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
478
	if (s)
479
		goto out_unlock;
480

481
	cache_name = kstrdup_const(name, GFP_KERNEL);
482 483 484 485
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
486

487
	s = create_cache(cache_name, size,
488
			 calculate_alignment(flags, align, size),
489
			 flags, useroffset, usersize, ctor, NULL, NULL);
490 491
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
492
		kfree_const(cache_name);
493
	}
494 495

out_unlock:
496
	mutex_unlock(&slab_mutex);
497

498
	memcg_put_cache_ids();
499
	put_online_mems();
500 501
	put_online_cpus();

502
	if (err) {
503 504 505 506
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
507
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
508 509 510 511 512
				name, err);
			dump_stack();
		}
		return NULL;
	}
513 514
	return s;
}
515 516 517
EXPORT_SYMBOL(kmem_cache_create_usercopy);

struct kmem_cache *
518
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
519 520
		slab_flags_t flags, void (*ctor)(void *))
{
521
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
522 523
					  ctor);
}
524
EXPORT_SYMBOL(kmem_cache_create);
525

526
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
527
{
528 529
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
530

531
	/*
532
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
533 534 535 536 537 538 539 540 541 542
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
543

544 545 546 547 548 549 550 551 552 553 554 555
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
556 557
}

558
static int shutdown_cache(struct kmem_cache *s)
559
{
560 561 562
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

563 564
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
565

566
	memcg_unlink_cache(s);
567
	list_del(&s->list);
568

569
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
570 571 572
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
573 574 575
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
576
#ifdef SLAB_SUPPORTS_SYSFS
577
		sysfs_slab_unlink(s);
578
		sysfs_slab_release(s);
579 580 581 582
#else
		slab_kmem_cache_release(s);
#endif
	}
583 584

	return 0;
585 586
}

587
#ifdef CONFIG_MEMCG_KMEM
588
/*
589
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
590 591 592 593 594 595 596
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
597 598
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
599
{
600
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
601
	struct cgroup_subsys_state *css = &memcg->css;
602
	struct memcg_cache_array *arr;
603
	struct kmem_cache *s = NULL;
604
	char *cache_name;
605
	int idx;
606 607

	get_online_cpus();
608 609
	get_online_mems();

610 611
	mutex_lock(&slab_mutex);

612
	/*
613
	 * The memory cgroup could have been offlined while the cache
614 615
	 * creation work was pending.
	 */
616
	if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying)
617 618
		goto out_unlock;

619 620 621 622
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

623 624 625 626 627
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
628
	if (arr->entries[idx])
629 630
		goto out_unlock;

631
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
632 633
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
634 635 636
	if (!cache_name)
		goto out_unlock;

637
	s = create_cache(cache_name, root_cache->object_size,
638
			 root_cache->align,
639
			 root_cache->flags & CACHE_CREATE_MASK,
640
			 root_cache->useroffset, root_cache->usersize,
641
			 root_cache->ctor, memcg, root_cache);
642 643 644 645 646
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
647
	if (IS_ERR(s)) {
648
		kfree(cache_name);
649
		goto out_unlock;
650
	}
651

652 653 654 655 656 657
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
658
	arr->entries[idx] = s;
659

660 661
out_unlock:
	mutex_unlock(&slab_mutex);
662 663

	put_online_mems();
664
	put_online_cpus();
665
}
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
699
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

720 721 722
	if (s->memcg_params.root_cache->memcg_params.dying)
		return;

723 724 725 726
	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
727
	call_rcu(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
728 729
}

730 731 732 733
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
734
	struct kmem_cache *s, *c;
735 736 737

	idx = memcg_cache_id(memcg);

738 739 740
	get_online_cpus();
	get_online_mems();

741
	mutex_lock(&slab_mutex);
742
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
743 744
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
745 746 747 748
		c = arr->entries[idx];
		if (!c)
			continue;

749
		__kmemcg_cache_deactivate(c);
750 751 752
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
753 754 755

	put_online_mems();
	put_online_cpus();
756 757
}

758
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
759
{
760
	struct kmem_cache *s, *s2;
761

762 763
	get_online_cpus();
	get_online_mems();
764 765

	mutex_lock(&slab_mutex);
766 767
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
768 769 770 771
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
772
		BUG_ON(shutdown_cache(s));
773 774
	}
	mutex_unlock(&slab_mutex);
775

776 777
	put_online_mems();
	put_online_cpus();
778
}
779

780
static int shutdown_memcg_caches(struct kmem_cache *s)
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
799
		if (shutdown_cache(c))
800 801 802 803 804
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
805
			list_move(&c->memcg_params.children_node, &busy);
806 807 808 809 810 811 812 813 814 815 816 817 818 819
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
820 821
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
822
		shutdown_cache(c);
823

T
Tejun Heo 已提交
824
	list_splice(&busy, &s->memcg_params.children);
825 826 827 828 829

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
830
	if (!list_empty(&s->memcg_params.children))
831 832 833
		return -EBUSY;
	return 0;
}
834 835 836 837 838 839 840 841

static void flush_memcg_workqueue(struct kmem_cache *s)
{
	mutex_lock(&slab_mutex);
	s->memcg_params.dying = true;
	mutex_unlock(&slab_mutex);

	/*
842
	 * SLUB deactivates the kmem_caches through call_rcu. Make
843 844 845
	 * sure all registered rcu callbacks have been invoked.
	 */
	if (IS_ENABLED(CONFIG_SLUB))
846
		rcu_barrier();
847 848 849 850 851 852 853 854

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
	flush_workqueue(memcg_kmem_cache_wq);
}
855
#else
856
static inline int shutdown_memcg_caches(struct kmem_cache *s)
857 858 859
{
	return 0;
}
860 861 862 863

static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
864
#endif /* CONFIG_MEMCG_KMEM */
865

866 867
void slab_kmem_cache_release(struct kmem_cache *s)
{
868
	__kmem_cache_release(s);
869
	destroy_memcg_params(s);
870
	kfree_const(s->name);
871 872 873
	kmem_cache_free(kmem_cache, s);
}

874 875
void kmem_cache_destroy(struct kmem_cache *s)
{
876
	int err;
877

878 879 880
	if (unlikely(!s))
		return;

881 882
	flush_memcg_workqueue(s);

883
	get_online_cpus();
884 885
	get_online_mems();

886
	mutex_lock(&slab_mutex);
887

888
	s->refcount--;
889 890 891
	if (s->refcount)
		goto out_unlock;

892
	err = shutdown_memcg_caches(s);
893
	if (!err)
894
		err = shutdown_cache(s);
895

896
	if (err) {
J
Joe Perches 已提交
897 898
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
899 900
		dump_stack();
	}
901 902
out_unlock:
	mutex_unlock(&slab_mutex);
903

904
	put_online_mems();
905 906 907 908
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

909 910 911 912 913 914 915 916 917 918 919 920 921
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
922
	kasan_cache_shrink(cachep);
923
	ret = __kmem_cache_shrink(cachep);
924 925 926 927 928 929
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

930
bool slab_is_available(void)
931 932 933
{
	return slab_state >= UP;
}
934

935 936
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
937 938 939
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
940 941 942 943 944
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
945
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
946 947
	s->useroffset = useroffset;
	s->usersize = usersize;
948 949 950

	slab_init_memcg_params(s);

951 952 953
	err = __kmem_cache_create(s, flags);

	if (err)
954
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
955 956 957 958 959
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

960 961 962
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
963 964 965 966 967 968
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

969
	create_boot_cache(s, name, size, flags, useroffset, usersize);
970
	list_add(&s->list, &slab_caches);
971
	memcg_link_cache(s);
972 973 974 975
	s->refcount = 1;
	return s;
}

976 977
struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
978 979
EXPORT_SYMBOL(kmalloc_caches);

980 981 982 983 984 985
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
986
static u8 size_index[24] __ro_after_init = {
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

1013
static inline unsigned int size_index_elem(unsigned int bytes)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
1024
	unsigned int index;
1025 1026 1027 1028 1029 1030

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
1031 1032 1033 1034 1035
	} else {
		if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
			WARN_ON(1);
			return NULL;
		}
1036
		index = fls(size - 1);
1037
	}
1038

1039
	return kmalloc_caches[kmalloc_type(flags)][index];
1040 1041
}

1042 1043 1044 1045 1046
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1047
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1048 1049 1050 1051 1052
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1053 1054 1055 1056 1057 1058 1059 1060 1061
	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
	{"kmalloc-64M",      67108864}
1062 1063
};

1064
/*
1065 1066 1067 1068 1069 1070 1071 1072 1073
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1074
 */
1075
void __init setup_kmalloc_cache_index_table(void)
1076
{
1077
	unsigned int i;
1078

1079 1080 1081 1082
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1083
		unsigned int elem = size_index_elem(i);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static const char *
kmalloc_cache_name(const char *prefix, unsigned int size)
{

	static const char units[3] = "\0kM";
	int idx = 0;

	while (size >= 1024 && (size % 1024 == 0)) {
		size /= 1024;
		idx++;
	}

	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
}

1126 1127
static void __init
new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1128
{
1129 1130 1131 1132
	const char *name;

	if (type == KMALLOC_RECLAIM) {
		flags |= SLAB_RECLAIM_ACCOUNT;
1133
		name = kmalloc_cache_name("kmalloc-rcl",
1134 1135 1136 1137 1138 1139 1140
						kmalloc_info[idx].size);
		BUG_ON(!name);
	} else {
		name = kmalloc_info[idx].name;
	}

	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1141 1142
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1143 1144
}

1145 1146 1147 1148 1149
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1150
void __init create_kmalloc_caches(slab_flags_t flags)
1151
{
1152
	int i, type;
1153

1154 1155 1156 1157
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
1171 1172
	}

1173 1174 1175 1176 1177
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1178
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1179 1180

		if (s) {
1181
			unsigned int size = kmalloc_size(i);
1182
			const char *n = kmalloc_cache_name("dma-kmalloc", size);
1183 1184

			BUG_ON(!n);
1185 1186
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
				n, size, SLAB_CACHE_DMA | flags, 0, 0);
1187 1188 1189 1190
		}
	}
#endif
}
1191 1192
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1193 1194 1195 1196 1197
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1198 1199 1200 1201 1202 1203
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1204
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1205 1206
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1207
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1208 1209 1210 1211
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1212 1213 1214 1215 1216 1217 1218 1219 1220
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1221

1222 1223 1224
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1225
			       unsigned int count)
1226 1227
{
	unsigned int rand;
1228
	unsigned int i;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1269
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1270
#ifdef CONFIG_SLAB
1271
#define SLABINFO_RIGHTS (0600)
1272
#else
1273
#define SLABINFO_RIGHTS (0400)
1274 1275
#endif

1276
static void print_slabinfo_header(struct seq_file *m)
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1287
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1288 1289 1290
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1291
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1292 1293 1294 1295 1296
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1297
void *slab_start(struct seq_file *m, loff_t *pos)
1298 1299
{
	mutex_lock(&slab_mutex);
1300
	return seq_list_start(&slab_root_caches, *pos);
1301 1302
}

1303
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1304
{
1305
	return seq_list_next(p, &slab_root_caches, pos);
1306 1307
}

1308
void slab_stop(struct seq_file *m, void *p)
1309 1310 1311 1312
{
	mutex_unlock(&slab_mutex);
}

1313 1314 1315 1316 1317 1318 1319 1320 1321
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1322
	for_each_memcg_cache(c, s) {
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1334
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1335
{
1336 1337 1338 1339 1340
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1341 1342
	memcg_accumulate_slabinfo(s, &sinfo);

1343
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1344
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1345 1346 1347 1348 1349 1350 1351 1352
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1353 1354
}

1355
static int slab_show(struct seq_file *m, void *p)
1356
{
1357
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1358

1359
	if (p == slab_root_caches.next)
1360
		print_slabinfo_header(m);
1361
	cache_show(s, m);
1362 1363 1364
	return 0;
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1399
#if defined(CONFIG_MEMCG)
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1420 1421
int memcg_slab_show(struct seq_file *m, void *p)
{
1422 1423
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1424 1425
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1426
	if (p == memcg->kmem_caches.next)
1427
		print_slabinfo_header(m);
1428
	cache_show(s, m);
1429
	return 0;
1430
}
1431
#endif
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1447
	.start = slab_start,
1448 1449
	.next = slab_next,
	.stop = slab_stop,
1450
	.show = slab_show,
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1468 1469
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1470 1471 1472
	return 0;
}
module_init(slab_proc_init);
Y
Yang Shi 已提交
1473
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1484
	if (ks >= new_size) {
1485
		kasan_krealloc((void *)p, new_size, flags);
1486
		return (void *)p;
1487
	}
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1575 1576 1577 1578 1579 1580 1581 1582

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);