crypto_engine.c 12.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8 9 10 11
/*
 * Handle async block request by crypto hardware engine.
 *
 * Copyright (C) 2016 Linaro, Inc.
 *
 * Author: Baolin Wang <baolin.wang@linaro.org>
 */

#include <linux/err.h>
#include <linux/delay.h>
12
#include <crypto/engine.h>
13
#include <uapi/linux/sched/types.h>
14 15 16 17
#include "internal.h"

#define CRYPTO_ENGINE_MAX_QLEN 10

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * crypto_finalize_request - finalize one request if the request is done
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
static void crypto_finalize_request(struct crypto_engine *engine,
			     struct crypto_async_request *req, int err)
{
	unsigned long flags;
	bool finalize_cur_req = false;
	int ret;
	struct crypto_engine_ctx *enginectx;

	spin_lock_irqsave(&engine->queue_lock, flags);
	if (engine->cur_req == req)
		finalize_cur_req = true;
	spin_unlock_irqrestore(&engine->queue_lock, flags);

	if (finalize_cur_req) {
		enginectx = crypto_tfm_ctx(req->tfm);
		if (engine->cur_req_prepared &&
		    enginectx->op.unprepare_request) {
			ret = enginectx->op.unprepare_request(engine, req);
			if (ret)
				dev_err(engine->dev, "failed to unprepare request\n");
		}
		spin_lock_irqsave(&engine->queue_lock, flags);
		engine->cur_req = NULL;
		engine->cur_req_prepared = false;
		spin_unlock_irqrestore(&engine->queue_lock, flags);
	}

	req->complete(req, err);

	kthread_queue_work(engine->kworker, &engine->pump_requests);
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/**
 * crypto_pump_requests - dequeue one request from engine queue to process
 * @engine: the hardware engine
 * @in_kthread: true if we are in the context of the request pump thread
 *
 * This function checks if there is any request in the engine queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and handle each request.
 */
static void crypto_pump_requests(struct crypto_engine *engine,
				 bool in_kthread)
{
	struct crypto_async_request *async_req, *backlog;
	unsigned long flags;
	bool was_busy = false;
71 72
	int ret;
	struct crypto_engine_ctx *enginectx;
73 74 75 76 77 78 79 80 81

	spin_lock_irqsave(&engine->queue_lock, flags);

	/* Make sure we are not already running a request */
	if (engine->cur_req)
		goto out;

	/* If another context is idling then defer */
	if (engine->idling) {
82
		kthread_queue_work(engine->kworker, &engine->pump_requests);
83 84 85 86 87 88 89 90 91 92
		goto out;
	}

	/* Check if the engine queue is idle */
	if (!crypto_queue_len(&engine->queue) || !engine->running) {
		if (!engine->busy)
			goto out;

		/* Only do teardown in the thread */
		if (!in_kthread) {
93
			kthread_queue_work(engine->kworker,
94 95 96 97 98 99 100 101 102 103
					   &engine->pump_requests);
			goto out;
		}

		engine->busy = false;
		engine->idling = true;
		spin_unlock_irqrestore(&engine->queue_lock, flags);

		if (engine->unprepare_crypt_hardware &&
		    engine->unprepare_crypt_hardware(engine))
104
			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
105 106 107 108 109 110 111 112 113 114 115 116

		spin_lock_irqsave(&engine->queue_lock, flags);
		engine->idling = false;
		goto out;
	}

	/* Get the fist request from the engine queue to handle */
	backlog = crypto_get_backlog(&engine->queue);
	async_req = crypto_dequeue_request(&engine->queue);
	if (!async_req)
		goto out;

117
	engine->cur_req = async_req;
118 119 120 121 122 123 124 125 126 127 128 129 130 131
	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	if (engine->busy)
		was_busy = true;
	else
		engine->busy = true;

	spin_unlock_irqrestore(&engine->queue_lock, flags);

	/* Until here we get the request need to be encrypted successfully */
	if (!was_busy && engine->prepare_crypt_hardware) {
		ret = engine->prepare_crypt_hardware(engine);
		if (ret) {
132
			dev_err(engine->dev, "failed to prepare crypt hardware\n");
133 134 135 136
			goto req_err;
		}
	}

137 138 139 140
	enginectx = crypto_tfm_ctx(async_req->tfm);

	if (enginectx->op.prepare_request) {
		ret = enginectx->op.prepare_request(engine, async_req);
141
		if (ret) {
142 143
			dev_err(engine->dev, "failed to prepare request: %d\n",
				ret);
144 145
			goto req_err;
		}
146 147 148 149 150 151
		engine->cur_req_prepared = true;
	}
	if (!enginectx->op.do_one_request) {
		dev_err(engine->dev, "failed to do request\n");
		ret = -EINVAL;
		goto req_err;
152
	}
153 154 155 156 157 158
	ret = enginectx->op.do_one_request(engine, async_req);
	if (ret) {
		dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret);
		goto req_err;
	}
	return;
159 160

req_err:
161
	crypto_finalize_request(engine, async_req, ret);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	return;

out:
	spin_unlock_irqrestore(&engine->queue_lock, flags);
}

static void crypto_pump_work(struct kthread_work *work)
{
	struct crypto_engine *engine =
		container_of(work, struct crypto_engine, pump_requests);

	crypto_pump_requests(engine, true);
}

/**
177
 * crypto_transfer_request - transfer the new request into the engine queue
178 179 180
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
181 182
static int crypto_transfer_request(struct crypto_engine *engine,
				   struct crypto_async_request *req,
183
				   bool need_pump)
184 185 186 187 188 189 190 191 192 193 194
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&engine->queue_lock, flags);

	if (!engine->running) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		return -ESHUTDOWN;
	}

195
	ret = crypto_enqueue_request(&engine->queue, req);
196 197

	if (!engine->busy && need_pump)
198
		kthread_queue_work(engine->kworker, &engine->pump_requests);
199 200 201 202

	spin_unlock_irqrestore(&engine->queue_lock, flags);
	return ret;
}
203 204

/**
205
 * crypto_transfer_request_to_engine - transfer one request to list
206 207 208 209
 * into the engine queue
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
210 211
static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
					     struct crypto_async_request *req)
212
{
213
	return crypto_transfer_request(engine, req, true);
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227
/**
 * crypto_transfer_aead_request_to_engine - transfer one aead_request
 * to list into the engine queue
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
					   struct aead_request *req)
{
	return crypto_transfer_request_to_engine(engine, &req->base);
}
EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
228

229 230 231 232 233 234 235 236 237 238
/**
 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
 * to list into the engine queue
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
					       struct akcipher_request *req)
{
	return crypto_transfer_request_to_engine(engine, &req->base);
239
}
240
EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
241 242

/**
243 244
 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
 * to list into the engine queue
245 246 247
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
248 249
int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
					   struct ahash_request *req)
250
{
251
	return crypto_transfer_request_to_engine(engine, &req->base);
252
}
253
EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
254 255

/**
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
 * to list into the engine queue
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
					       struct skcipher_request *req)
{
	return crypto_transfer_request_to_engine(engine, &req->base);
}
EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);

/**
 * crypto_finalize_aead_request - finalize one aead_request if
 * the request is done
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
void crypto_finalize_aead_request(struct crypto_engine *engine,
				  struct aead_request *req, int err)
{
	return crypto_finalize_request(engine, &req->base, err);
}
EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
281

282 283 284 285 286 287 288 289 290 291 292
/**
 * crypto_finalize_akcipher_request - finalize one akcipher_request if
 * the request is done
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
void crypto_finalize_akcipher_request(struct crypto_engine *engine,
				      struct akcipher_request *req, int err)
{
	return crypto_finalize_request(engine, &req->base, err);
293
}
294
EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
295 296

/**
297 298
 * crypto_finalize_hash_request - finalize one ahash_request if
 * the request is done
299 300 301 302 303 304 305
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
void crypto_finalize_hash_request(struct crypto_engine *engine,
				  struct ahash_request *req, int err)
{
306
	return crypto_finalize_request(engine, &req->base, err);
307
}
308
EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * crypto_finalize_skcipher_request - finalize one skcipher_request if
 * the request is done
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
void crypto_finalize_skcipher_request(struct crypto_engine *engine,
				      struct skcipher_request *req, int err)
{
	return crypto_finalize_request(engine, &req->base, err);
}
EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/**
 * crypto_engine_start - start the hardware engine
 * @engine: the hardware engine need to be started
 *
 * Return 0 on success, else on fail.
 */
int crypto_engine_start(struct crypto_engine *engine)
{
	unsigned long flags;

	spin_lock_irqsave(&engine->queue_lock, flags);

	if (engine->running || engine->busy) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		return -EBUSY;
	}

	engine->running = true;
	spin_unlock_irqrestore(&engine->queue_lock, flags);

344
	kthread_queue_work(engine->kworker, &engine->pump_requests);
345 346 347 348 349 350 351 352 353 354 355 356 357 358

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_engine_start);

/**
 * crypto_engine_stop - stop the hardware engine
 * @engine: the hardware engine need to be stopped
 *
 * Return 0 on success, else on fail.
 */
int crypto_engine_stop(struct crypto_engine *engine)
{
	unsigned long flags;
359
	unsigned int limit = 500;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	int ret = 0;

	spin_lock_irqsave(&engine->queue_lock, flags);

	/*
	 * If the engine queue is not empty or the engine is on busy state,
	 * we need to wait for a while to pump the requests of engine queue.
	 */
	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		msleep(20);
		spin_lock_irqsave(&engine->queue_lock, flags);
	}

	if (crypto_queue_len(&engine->queue) || engine->busy)
		ret = -EBUSY;
	else
		engine->running = false;

	spin_unlock_irqrestore(&engine->queue_lock, flags);

	if (ret)
382
		dev_warn(engine->dev, "could not stop engine\n");
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	return ret;
}
EXPORT_SYMBOL_GPL(crypto_engine_stop);

/**
 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
 * initialize it.
 * @dev: the device attached with one hardware engine
 * @rt: whether this queue is set to run as a realtime task
 *
 * This must be called from context that can sleep.
 * Return: the crypto engine structure on success, else NULL.
 */
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
{
399
	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
400 401 402 403 404 405 406 407 408
	struct crypto_engine *engine;

	if (!dev)
		return NULL;

	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return NULL;

409
	engine->dev = dev;
410 411 412 413 414 415 416 417 418 419 420 421
	engine->rt = rt;
	engine->running = false;
	engine->busy = false;
	engine->idling = false;
	engine->cur_req_prepared = false;
	engine->priv_data = dev;
	snprintf(engine->name, sizeof(engine->name),
		 "%s-engine", dev_name(dev));

	crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
	spin_lock_init(&engine->queue_lock);

422 423
	engine->kworker = kthread_create_worker(0, "%s", engine->name);
	if (IS_ERR(engine->kworker)) {
424 425 426
		dev_err(dev, "failed to create crypto request pump task\n");
		return NULL;
	}
P
Petr Mladek 已提交
427
	kthread_init_work(&engine->pump_requests, crypto_pump_work);
428 429 430

	if (engine->rt) {
		dev_info(dev, "will run requests pump with realtime priority\n");
431
		sched_setscheduler(engine->kworker->task, SCHED_FIFO, &param);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	}

	return engine;
}
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);

/**
 * crypto_engine_exit - free the resources of hardware engine when exit
 * @engine: the hardware engine need to be freed
 *
 * Return 0 for success.
 */
int crypto_engine_exit(struct crypto_engine *engine)
{
	int ret;

	ret = crypto_engine_stop(engine);
	if (ret)
		return ret;

452
	kthread_destroy_worker(engine->kworker);
453 454 455 456 457 458 459

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_engine_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Crypto hardware engine framework");