time.c 18.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40 41 42 43

#include <asm/uaccess.h>
#include <asm/unistd.h>

44 45
#include "timeconst.h"

D
Daniel Walker 已提交
46
/*
L
Linus Torvalds 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
62
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
63
{
I
Ingo Molnar 已提交
64
	time_t i = get_seconds();
L
Linus Torvalds 已提交
65 66

	if (tloc) {
L
Linus Torvalds 已提交
67
		if (put_user(i,tloc))
68
			return -EFAULT;
L
Linus Torvalds 已提交
69
	}
70
	force_successful_syscall_return();
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
80

81
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

101 102
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

117 118 119 120 121 122
/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

L
Linus Torvalds 已提交
123 124 125
/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
126
 *
L
Linus Torvalds 已提交
127 128
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
129
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
130 131 132
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
133
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
134 135 136 137 138
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
139
static inline void warp_clock(void)
L
Linus Torvalds 已提交
140
{
141 142
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;
143

144
		persistent_clock_is_local = 1;
145 146 147
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
148
	}
L
Linus Torvalds 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

162
int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
163 164 165 166
{
	static int firsttime = 1;
	int error = 0;

167
	if (tv && !timespec_valid(tv))
168 169
		return -EINVAL;

L
Linus Torvalds 已提交
170 171 172 173 174 175
	error = security_settime(tv, tz);
	if (error)
		return error;

	if (tz) {
		sys_tz = *tz;
176
		update_vsyscall_tz();
L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
		return do_settimeofday(tv);
	return 0;
}

188 189
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
{
	struct timeval user_tv;
	struct timespec	new_ts;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}

209
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

/**
 * current_fs_time - Return FS time
 * @sb: Superblock.
 *
228
 * Return the current time truncated to the time granularity supported by
L
Linus Torvalds 已提交
229 230 231 232 233 234 235 236 237
 * the fs.
 */
struct timespec current_fs_time(struct super_block *sb)
{
	struct timespec now = current_kernel_time();
	return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);

E
Eric Dumazet 已提交
238 239 240 241 242 243
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
244
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
245 246 247 248 249 250
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
251
# if BITS_PER_LONG == 32
252
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
253 254 255
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
256 257 258 259
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

260
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
261 262 263 264 265 266
{
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (USEC_PER_SEC / HZ) * j;
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
#else
267
# if BITS_PER_LONG == 32
268
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
269 270 271
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
272 273 274 275
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
276
/**
277
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
278
 * @t: Timespec
279
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
280
 *
281
 * Truncate a timespec to a granularity. gran must be smaller than a second.
L
Linus Torvalds 已提交
282 283 284 285
 * Always rounds down.
 *
 * This function should be only used for timestamps returned by
 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
L
Li Zefan 已提交
286
 * it doesn't handle the better resolution of the latter.
L
Linus Torvalds 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
	/*
	 * Division is pretty slow so avoid it for common cases.
	 * Currently current_kernel_time() never returns better than
	 * jiffies resolution. Exploit that.
	 */
	if (gran <= jiffies_to_usecs(1) * 1000) {
		/* nothing */
	} else if (gran == 1000000000) {
		t.tv_nsec = 0;
	} else {
		t.tv_nsec -= t.tv_nsec % gran;
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

306 307 308 309 310 311 312 313 314 315 316 317
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
L
Li Zefan 已提交
318
 * machines where long is 32-bit! (However, as time_t is signed, we
319 320 321
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
unsigned long
322 323 324
mktime(const unsigned int year0, const unsigned int mon0,
       const unsigned int day, const unsigned int hour,
       const unsigned int min, const unsigned int sec)
325
{
326 327 328 329 330
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
331 332 333 334 335 336 337 338 339 340 341
		year -= 1;
	}

	return ((((unsigned long)
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
	    )*24 + hour /* now have hours */
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}

342 343
EXPORT_SYMBOL(mktime);

344 345 346 347 348 349 350 351 352 353 354
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
355
 *	0 <= tv_nsec < NSEC_PER_SEC
356 357
 * For negative values only the tv_sec field is negative !
 */
358
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
359 360
{
	while (nsec >= NSEC_PER_SEC) {
361 362 363 364 365 366
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
367 368 369 370
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
371
		asm("" : "+rm"(nsec));
372 373 374 375 376 377
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
378
EXPORT_SYMBOL(set_normalized_timespec);
379

380 381 382 383 384 385
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
386
struct timespec ns_to_timespec(const s64 nsec)
387 388
{
	struct timespec ts;
R
Roman Zippel 已提交
389
	s32 rem;
390

391 392 393
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
394 395 396 397 398 399
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
400 401 402

	return ts;
}
403
EXPORT_SYMBOL(ns_to_timespec);
404 405 406 407 408 409 410

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
411
struct timeval ns_to_timeval(const s64 nsec)
412 413 414 415 416 417 418 419 420
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
421
EXPORT_SYMBOL(ns_to_timeval);
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436
/*
 * When we convert to jiffies then we interpret incoming values
 * the following way:
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
 *   the input value by a factor or dividing it with a factor
 *
 * We must also be careful about 32-bit overflows.
 */
437 438
unsigned long msecs_to_jiffies(const unsigned int m)
{
439 440 441 442
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
443
		return MAX_JIFFY_OFFSET;
444

445
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446 447 448 449 450
	/*
	 * HZ is equal to or smaller than 1000, and 1000 is a nice
	 * round multiple of HZ, divide with the factor between them,
	 * but round upwards:
	 */
451 452
	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453 454 455 456 457 458 459 460 461 462
	/*
	 * HZ is larger than 1000, and HZ is a nice round multiple of
	 * 1000 - simply multiply with the factor between them.
	 *
	 * But first make sure the multiplication result cannot
	 * overflow:
	 */
	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

463 464
	return m * (HZ / MSEC_PER_SEC);
#else
465 466 467
	/*
	 * Generic case - multiply, round and divide. But first
	 * check that if we are doing a net multiplication, that
468
	 * we wouldn't overflow:
469 470 471 472
	 */
	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

473
	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474
		>> MSEC_TO_HZ_SHR32;
475 476 477 478 479 480 481 482 483 484 485 486 487
#endif
}
EXPORT_SYMBOL(msecs_to_jiffies);

unsigned long usecs_to_jiffies(const unsigned int u)
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return u * (HZ / USEC_PER_SEC);
#else
488
	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489
		>> USEC_TO_HZ_SHR32;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
#endif
}
EXPORT_SYMBOL(usecs_to_jiffies);

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
unsigned long
timespec_to_jiffies(const struct timespec *value)
{
	unsigned long sec = value->tv_sec;
	long nsec = value->tv_nsec + TICK_NSEC - 1;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
EXPORT_SYMBOL(timespec_to_jiffies);

void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
529 530 531 532
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
}
EXPORT_SYMBOL(jiffies_to_timespec);

/* Same for "timeval"
 *
 * Well, almost.  The problem here is that the real system resolution is
 * in nanoseconds and the value being converted is in micro seconds.
 * Also for some machines (those that use HZ = 1024, in-particular),
 * there is a LARGE error in the tick size in microseconds.

 * The solution we use is to do the rounding AFTER we convert the
 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 * Instruction wise, this should cost only an additional add with carry
 * instruction above the way it was done above.
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
	unsigned long sec = value->tv_sec;
	long usec = value->tv_usec;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		usec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
562
EXPORT_SYMBOL(timeval_to_jiffies);
563 564 565 566 567 568 569

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
570
	u32 rem;
571

R
Roman Zippel 已提交
572 573 574
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
575
}
576
EXPORT_SYMBOL(jiffies_to_timeval);
577 578 579 580

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
581
clock_t jiffies_to_clock_t(unsigned long x)
582 583
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
584 585 586
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
587
	return x / (HZ / USER_HZ);
588
# endif
589
#else
R
Roman Zippel 已提交
590
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
607
	return div_u64((u64)x * HZ, USER_HZ);
608 609 610 611 612 613 614
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
615
# if HZ < USER_HZ
R
Roman Zippel 已提交
616
	x = div_u64(x * USER_HZ, HZ);
617
# elif HZ > USER_HZ
R
Roman Zippel 已提交
618
	x = div_u64(x, HZ / USER_HZ);
619 620
# else
	/* Nothing to do */
621
# endif
622 623 624 625 626 627
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
628
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
629 630 631 632 633 634 635 636
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
637
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
638
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
639
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
640 641 642 643 644 645
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
646
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
647 648 649
#endif
}

650
/**
651
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
652 653 654 655 656 657 658 659 660 661 662
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
663
u64 nsecs_to_jiffies64(u64 n)
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}