coresight-etm-perf.c 14.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Copyright(C) 2015 Linaro Limited. All rights reserved.
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/coresight.h>
#include <linux/coresight-pmu.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/mm.h>
13
#include <linux/init.h>
14
#include <linux/perf_event.h>
15
#include <linux/percpu-defs.h>
16
#include <linux/slab.h>
17
#include <linux/stringhash.h>
18 19 20
#include <linux/types.h>
#include <linux/workqueue.h>

21
#include "coresight-etm-perf.h"
22 23 24 25 26 27 28 29 30 31
#include "coresight-priv.h"

static struct pmu etm_pmu;
static bool etm_perf_up;

static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);

/* ETMv3.5/PTM's ETMCR is 'config' */
PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
32
PMU_FORMAT_ATTR(contextid,	"config:" __stringify(ETM_OPT_CTXTID));
33
PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
34
PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
35 36
/* Sink ID - same for all ETMs */
PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
37 38 39

static struct attribute *etm_config_formats_attr[] = {
	&format_attr_cycacc.attr,
40
	&format_attr_contextid.attr,
41
	&format_attr_timestamp.attr,
42
	&format_attr_retstack.attr,
43
	&format_attr_sinkid.attr,
44 45 46
	NULL,
};

47
static const struct attribute_group etm_pmu_format_group = {
48 49 50 51
	.name   = "format",
	.attrs  = etm_config_formats_attr,
};

52 53 54 55 56 57 58 59 60
static struct attribute *etm_config_sinks_attr[] = {
	NULL,
};

static const struct attribute_group etm_pmu_sinks_group = {
	.name   = "sinks",
	.attrs  = etm_config_sinks_attr,
};

61 62
static const struct attribute_group *etm_pmu_attr_groups[] = {
	&etm_pmu_format_group,
63
	&etm_pmu_sinks_group,
64 65 66
	NULL,
};

67 68 69 70 71 72 73 74 75 76 77 78
static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
{
	return per_cpu_ptr(data->path, cpu);
}

static inline struct list_head *
etm_event_cpu_path(struct etm_event_data *data, int cpu)
{
	return *etm_event_cpu_path_ptr(data, cpu);
}

79 80
static void etm_event_read(struct perf_event *event) {}

81
static int etm_addr_filters_alloc(struct perf_event *event)
82
{
83 84 85 86 87 88 89 90 91 92 93 94
	struct etm_filters *filters;
	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);

	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
	if (!filters)
		return -ENOMEM;

	if (event->parent)
		memcpy(filters, event->parent->hw.addr_filters,
		       sizeof(*filters));

	event->hw.addr_filters = filters;
95 96 97 98

	return 0;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static void etm_event_destroy(struct perf_event *event)
{
	kfree(event->hw.addr_filters);
	event->hw.addr_filters = NULL;
}

static int etm_event_init(struct perf_event *event)
{
	int ret = 0;

	if (event->attr.type != etm_pmu.type) {
		ret = -ENOENT;
		goto out;
	}

	ret = etm_addr_filters_alloc(event);
	if (ret)
		goto out;

	event->destroy = etm_event_destroy;
out:
	return ret;
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
static void free_sink_buffer(struct etm_event_data *event_data)
{
	int cpu;
	cpumask_t *mask = &event_data->mask;
	struct coresight_device *sink;

	if (WARN_ON(cpumask_empty(mask)))
		return;

	if (!event_data->snk_config)
		return;

	cpu = cpumask_first(mask);
	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
	sink_ops(sink)->free_buffer(event_data->snk_config);
}

140 141 142 143 144 145 146 147
static void free_event_data(struct work_struct *work)
{
	int cpu;
	cpumask_t *mask;
	struct etm_event_data *event_data;

	event_data = container_of(work, struct etm_event_data, work);
	mask = &event_data->mask;
148 149

	/* Free the sink buffers, if there are any */
150
	free_sink_buffer(event_data);
151 152

	for_each_cpu(cpu, mask) {
153 154 155 156 157 158
		struct list_head **ppath;

		ppath = etm_event_cpu_path_ptr(event_data, cpu);
		if (!(IS_ERR_OR_NULL(*ppath)))
			coresight_release_path(*ppath);
		*ppath = NULL;
159 160
	}

161
	free_percpu(event_data->path);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	kfree(event_data);
}

static void *alloc_event_data(int cpu)
{
	cpumask_t *mask;
	struct etm_event_data *event_data;

	/* First get memory for the session's data */
	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
	if (!event_data)
		return NULL;


	mask = &event_data->mask;
	if (cpu != -1)
		cpumask_set_cpu(cpu, mask);
	else
180
		cpumask_copy(mask, cpu_present_mask);
181 182 183 184 185 186 187 188 189

	/*
	 * Each CPU has a single path between source and destination.  As such
	 * allocate an array using CPU numbers as indexes.  That way a path
	 * for any CPU can easily be accessed at any given time.  We proceed
	 * the same way for sessions involving a single CPU.  The cost of
	 * unused memory when dealing with single CPU trace scenarios is small
	 * compared to the cost of searching through an optimized array.
	 */
190 191
	event_data->path = alloc_percpu(struct list_head *);

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	if (!event_data->path) {
		kfree(event_data);
		return NULL;
	}

	return event_data;
}

static void etm_free_aux(void *data)
{
	struct etm_event_data *event_data = data;

	schedule_work(&event_data->work);
}

207
static void *etm_setup_aux(struct perf_event *event, void **pages,
208 209
			   int nr_pages, bool overwrite)
{
210
	u32 id;
211
	int cpu = event->cpu;
212 213 214 215
	cpumask_t *mask;
	struct coresight_device *sink;
	struct etm_event_data *event_data = NULL;

216
	event_data = alloc_event_data(cpu);
217 218
	if (!event_data)
		return NULL;
219
	INIT_WORK(&event_data->work, free_event_data);
220

221 222 223 224 225 226 227 228
	/* First get the selected sink from user space. */
	if (event->attr.config2) {
		id = (u32)event->attr.config2;
		sink = coresight_get_sink_by_id(id);
	} else {
		sink = coresight_get_enabled_sink(true);
	}

229
	if (!sink)
230
		goto err;
231

232 233
	mask = &event_data->mask;

234 235 236 237 238 239 240
	/*
	 * Setup the path for each CPU in a trace session. We try to build
	 * trace path for each CPU in the mask. If we don't find an ETM
	 * for the CPU or fail to build a path, we clear the CPU from the
	 * mask and continue with the rest. If ever we try to trace on those
	 * CPUs, we can handle it and fail the session.
	 */
241
	for_each_cpu(cpu, mask) {
242
		struct list_head *path;
243 244 245
		struct coresight_device *csdev;

		csdev = per_cpu(csdev_src, cpu);
246 247 248 249 250 251 252 253 254
		/*
		 * If there is no ETM associated with this CPU clear it from
		 * the mask and continue with the rest. If ever we try to trace
		 * on this CPU, we handle it accordingly.
		 */
		if (!csdev) {
			cpumask_clear_cpu(cpu, mask);
			continue;
		}
255 256 257 258 259 260

		/*
		 * Building a path doesn't enable it, it simply builds a
		 * list of devices from source to sink that can be
		 * referenced later when the path is actually needed.
		 */
261
		path = coresight_build_path(csdev, sink);
262 263 264 265
		if (IS_ERR(path)) {
			cpumask_clear_cpu(cpu, mask);
			continue;
		}
266 267

		*etm_event_cpu_path_ptr(event_data, cpu) = path;
268 269
	}

270 271 272
	/* If we don't have any CPUs ready for tracing, abort */
	cpu = cpumask_first(mask);
	if (cpu >= nr_cpu_ids)
273 274
		goto err;

275 276 277
	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
		goto err;

278
	/* Allocate the sink buffer for this session */
279
	event_data->snk_config =
280
			sink_ops(sink)->alloc_buffer(sink, event, pages,
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
						     nr_pages, overwrite);
	if (!event_data->snk_config)
		goto err;

out:
	return event_data;

err:
	etm_free_aux(event_data);
	event_data = NULL;
	goto out;
}

static void etm_event_start(struct perf_event *event, int flags)
{
	int cpu = smp_processor_id();
	struct etm_event_data *event_data;
	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
300
	struct list_head *path;
301 302 303 304 305 306 307 308 309 310 311 312

	if (!csdev)
		goto fail;

	/*
	 * Deal with the ring buffer API and get a handle on the
	 * session's information.
	 */
	event_data = perf_aux_output_begin(handle, event);
	if (!event_data)
		goto fail;

313
	path = etm_event_cpu_path(event_data, cpu);
314
	/* We need a sink, no need to continue without one */
315
	sink = coresight_get_sink(path);
316
	if (WARN_ON_ONCE(!sink))
317 318 319
		goto fail_end_stop;

	/* Nothing will happen without a path */
320
	if (coresight_enable_path(path, CS_MODE_PERF, handle))
321 322 323 324 325 326
		goto fail_end_stop;

	/* Tell the perf core the event is alive */
	event->hw.state = 0;

	/* Finally enable the tracer */
327
	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
328
		goto fail_disable_path;
329 330 331 332

out:
	return;

333 334
fail_disable_path:
	coresight_disable_path(path);
335
fail_end_stop:
336 337
	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
	perf_aux_output_end(handle, 0);
338 339 340 341 342 343 344 345 346 347 348 349
fail:
	event->hw.state = PERF_HES_STOPPED;
	goto out;
}

static void etm_event_stop(struct perf_event *event, int mode)
{
	int cpu = smp_processor_id();
	unsigned long size;
	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
	struct etm_event_data *event_data = perf_get_aux(handle);
350
	struct list_head *path;
351 352 353 354 355 356 357

	if (event->hw.state == PERF_HES_STOPPED)
		return;

	if (!csdev)
		return;

358 359 360 361 362
	path = etm_event_cpu_path(event_data, cpu);
	if (!path)
		return;

	sink = coresight_get_sink(path);
363 364 365 366
	if (!sink)
		return;

	/* stop tracer */
367
	source_ops(csdev)->disable(csdev, event);
368 369 370 371 372 373 374 375 376 377 378 379

	/* tell the core */
	event->hw.state = PERF_HES_STOPPED;

	if (mode & PERF_EF_UPDATE) {
		if (WARN_ON_ONCE(handle->event != event))
			return;

		/* update trace information */
		if (!sink_ops(sink)->update_buffer)
			return;

380
		size = sink_ops(sink)->update_buffer(sink, handle,
381
					      event_data->snk_config);
382
		perf_aux_output_end(handle, size);
383 384 385
	}

	/* Disabling the path make its elements available to other sessions */
386
	coresight_disable_path(path);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

static int etm_event_add(struct perf_event *event, int mode)
{
	int ret = 0;
	struct hw_perf_event *hwc = &event->hw;

	if (mode & PERF_EF_START) {
		etm_event_start(event, 0);
		if (hwc->state & PERF_HES_STOPPED)
			ret = -EINVAL;
	} else {
		hwc->state = PERF_HES_STOPPED;
	}

	return ret;
}

static void etm_event_del(struct perf_event *event, int mode)
{
	etm_event_stop(event, PERF_EF_UPDATE);
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423
static int etm_addr_filters_validate(struct list_head *filters)
{
	bool range = false, address = false;
	int index = 0;
	struct perf_addr_filter *filter;

	list_for_each_entry(filter, filters, entry) {
		/*
		 * No need to go further if there's no more
		 * room for filters.
		 */
		if (++index > ETM_ADDR_CMP_MAX)
			return -EOPNOTSUPP;

424 425 426 427 428 429 430 431 432 433 434 435 436 437
		/* filter::size==0 means single address trigger */
		if (filter->size) {
			/*
			 * The existing code relies on START/STOP filters
			 * being address filters.
			 */
			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
				return -EOPNOTSUPP;

			range = true;
		} else
			address = true;

438 439 440 441
		/*
		 * At this time we don't allow range and start/stop filtering
		 * to cohabitate, they have to be mutually exclusive.
		 */
442
		if (range && address)
443 444 445 446 447 448 449 450 451
			return -EOPNOTSUPP;
	}

	return 0;
}

static void etm_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
452 453
	unsigned long start, stop;
	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
454 455 456 457 458 459
	struct etm_filters *filters = event->hw.addr_filters;
	struct etm_filter *etm_filter;
	struct perf_addr_filter *filter;
	int i = 0;

	list_for_each_entry(filter, &head->list, entry) {
460 461
		start = fr[i].start;
		stop = start + fr[i].size;
462 463
		etm_filter = &filters->etm_filter[i];

464 465
		switch (filter->action) {
		case PERF_ADDR_FILTER_ACTION_FILTER:
466 467 468
			etm_filter->start_addr = start;
			etm_filter->stop_addr = stop;
			etm_filter->type = ETM_ADDR_TYPE_RANGE;
469 470 471 472 473 474 475 476 477
			break;
		case PERF_ADDR_FILTER_ACTION_START:
			etm_filter->start_addr = start;
			etm_filter->type = ETM_ADDR_TYPE_START;
			break;
		case PERF_ADDR_FILTER_ACTION_STOP:
			etm_filter->stop_addr = stop;
			etm_filter->type = ETM_ADDR_TYPE_STOP;
			break;
478 479 480 481 482 483 484
		}
		i++;
	}

	filters->nr_filters = i;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
int etm_perf_symlink(struct coresight_device *csdev, bool link)
{
	char entry[sizeof("cpu9999999")];
	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
	struct device *pmu_dev = etm_pmu.dev;
	struct device *cs_dev = &csdev->dev;

	sprintf(entry, "cpu%d", cpu);

	if (!etm_perf_up)
		return -EPROBE_DEFER;

	if (link) {
		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
		if (ret)
			return ret;
		per_cpu(csdev_src, cpu) = csdev;
	} else {
		sysfs_remove_link(&pmu_dev->kobj, entry);
		per_cpu(csdev_src, cpu) = NULL;
	}

	return 0;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static ssize_t etm_perf_sink_name_show(struct device *dev,
				       struct device_attribute *dattr,
				       char *buf)
{
	struct dev_ext_attribute *ea;

	ea = container_of(dattr, struct dev_ext_attribute, attr);
	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
}

int etm_perf_add_symlink_sink(struct coresight_device *csdev)
{
	int ret;
	unsigned long hash;
	const char *name;
	struct device *pmu_dev = etm_pmu.dev;
526
	struct device *dev = &csdev->dev;
527 528 529 530 531 532 533 534 535 536 537 538
	struct dev_ext_attribute *ea;

	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
		return -EINVAL;

	if (csdev->ea != NULL)
		return -EINVAL;

	if (!etm_perf_up)
		return -EPROBE_DEFER;

539
	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
540 541 542
	if (!ea)
		return -ENOMEM;

543
	name = dev_name(dev);
544 545 546
	/* See function coresight_get_sink_by_id() to know where this is used */
	hash = hashlen_hash(hashlen_string(NULL, name));

547
	sysfs_attr_init(&ea->attr.attr);
548
	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	if (!ea->attr.attr.name)
		return -ENOMEM;

	ea->attr.attr.mode = 0444;
	ea->attr.show = etm_perf_sink_name_show;
	ea->var = (unsigned long *)hash;

	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
				      &ea->attr.attr, "sinks");

	if (!ret)
		csdev->ea = ea;

	return ret;
}

void etm_perf_del_symlink_sink(struct coresight_device *csdev)
{
	struct device *pmu_dev = etm_pmu.dev;
	struct dev_ext_attribute *ea = csdev->ea;

	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
		return;

	if (!ea)
		return;

	sysfs_remove_file_from_group(&pmu_dev->kobj,
				     &ea->attr.attr, "sinks");
	csdev->ea = NULL;
}

582 583 584 585
static int __init etm_perf_init(void)
{
	int ret;

586 587
	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
					   PERF_PMU_CAP_ITRACE);
588 589 590 591 592 593 594 595 596 597 598 599 600 601

	etm_pmu.attr_groups		= etm_pmu_attr_groups;
	etm_pmu.task_ctx_nr		= perf_sw_context;
	etm_pmu.read			= etm_event_read;
	etm_pmu.event_init		= etm_event_init;
	etm_pmu.setup_aux		= etm_setup_aux;
	etm_pmu.free_aux		= etm_free_aux;
	etm_pmu.start			= etm_event_start;
	etm_pmu.stop			= etm_event_stop;
	etm_pmu.add			= etm_event_add;
	etm_pmu.del			= etm_event_del;
	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
602 603 604 605 606 607 608

	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
	if (ret == 0)
		etm_perf_up = true;

	return ret;
}
609
device_initcall(etm_perf_init);