perf_event.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2014 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 *
 * Perf_events support for Tile processor.
 *
 * This code is based upon the x86 perf event
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
24
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
 */

#include <linux/kprobes.h>
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>
#include <linux/bitmap.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/perf_event.h>
#include <linux/atomic.h>
#include <asm/traps.h>
#include <asm/stack.h>
#include <asm/pmc.h>
#include <hv/hypervisor.h>

#define TILE_MAX_COUNTERS	4

#define PERF_COUNT_0_IDX	0
#define PERF_COUNT_1_IDX	1
#define AUX_PERF_COUNT_0_IDX	2
#define AUX_PERF_COUNT_1_IDX	3

struct cpu_hw_events {
	int			n_events;
	struct perf_event	*events[TILE_MAX_COUNTERS]; /* counter order */
	struct perf_event	*event_list[TILE_MAX_COUNTERS]; /* enabled
								order */
	int			assign[TILE_MAX_COUNTERS];
	unsigned long		active_mask[BITS_TO_LONGS(TILE_MAX_COUNTERS)];
	unsigned long		used_mask;
};

/* TILE arch specific performance monitor unit */
struct tile_pmu {
	const char	*name;
	int		version;
	const int	*hw_events;	/* generic hw events table */
	/* generic hw cache events table */
	const int	(*cache_events)[PERF_COUNT_HW_CACHE_MAX]
				       [PERF_COUNT_HW_CACHE_OP_MAX]
				       [PERF_COUNT_HW_CACHE_RESULT_MAX];
	int		(*map_hw_event)(u64);	 /*method used to map
						  hw events */
	int		(*map_cache_event)(u64); /*method used to map
						  cache events */

	u64		max_period;		/* max sampling period */
	u64		cntval_mask;		/* counter width mask */
	int		cntval_bits;		/* counter width */
	int		max_events;		/* max generic hw events
						in map */
	int		num_counters;		/* number base + aux counters */
	int		num_base_counters;	/* number base counters */
};

DEFINE_PER_CPU(u64, perf_irqs);
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);

#define TILE_OP_UNSUPP		(-1)

#ifndef __tilegx__
/* TILEPro hardware events map */
static const int tile_hw_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x01, /* ONE */
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x06, /* MP_BUNDLE_RETIRED */
	[PERF_COUNT_HW_CACHE_REFERENCES]	= TILE_OP_UNSUPP,
	[PERF_COUNT_HW_CACHE_MISSES]		= TILE_OP_UNSUPP,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x16, /*
					  MP_CONDITIONAL_BRANCH_ISSUED */
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x14, /*
					  MP_CONDITIONAL_BRANCH_MISSPREDICT */
	[PERF_COUNT_HW_BUS_CYCLES]		= TILE_OP_UNSUPP,
};
#else
/* TILEGx hardware events map */
static const int tile_hw_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x181, /* ONE */
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0xdb, /* INSTRUCTION_BUNDLE */
	[PERF_COUNT_HW_CACHE_REFERENCES]	= TILE_OP_UNSUPP,
	[PERF_COUNT_HW_CACHE_MISSES]		= TILE_OP_UNSUPP,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0xd9, /*
						COND_BRANCH_PRED_CORRECT */
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0xda, /*
						COND_BRANCH_PRED_INCORRECT */
	[PERF_COUNT_HW_BUS_CYCLES]		= TILE_OP_UNSUPP,
};
#endif

#define C(x) PERF_COUNT_HW_CACHE_##x

/*
 * Generalized hw caching related hw_event table, filled
 * in on a per model basis. A value of -1 means
 * 'not supported', any other value means the
 * raw hw_event ID.
 */
#ifndef __tilegx__
/* TILEPro hardware cache event map */
static const int tile_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
				     [PERF_COUNT_HW_CACHE_OP_MAX]
				     [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = 0x21, /* RD_MISS */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = 0x22, /* WR_MISS */
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x12, /* MP_ICACHE_HIT_ISSUED */
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x1d, /* TLB_CNT */
		[C(RESULT_MISS)] = 0x20, /* TLB_EXCEPTION */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x13, /* MP_ITLB_HIT_ISSUED */
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
};
#else
/* TILEGx hardware events map */
static const int tile_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
				     [PERF_COUNT_HW_CACHE_OP_MAX]
				     [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	/*
	 * Like some other architectures (e.g. ARM), the performance
	 * counters don't differentiate between read and write
	 * accesses/misses, so this isn't strictly correct, but it's the
	 * best we can do. Writes and reads get combined.
	 */
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = 0x44, /* RD_MISS */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = 0x45, /* WR_MISS */
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x40, /* TLB_CNT */
		[C(RESULT_MISS)] = 0x43, /* TLB_EXCEPTION */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0x40, /* TLB_CNT */
		[C(RESULT_MISS)] = 0x43, /* TLB_EXCEPTION */
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = 0xd4, /* ITLB_MISS_INT */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = 0xd4, /* ITLB_MISS_INT */
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = TILE_OP_UNSUPP,
		[C(RESULT_MISS)] = TILE_OP_UNSUPP,
	},
},
};
#endif

static atomic_t tile_active_events;
static DEFINE_MUTEX(perf_intr_reserve_mutex);

static int tile_map_hw_event(u64 config);
static int tile_map_cache_event(u64 config);

static int tile_pmu_handle_irq(struct pt_regs *regs, int fault);

/*
 * To avoid new_raw_count getting larger then pre_raw_count
 * in tile_perf_event_update(), we limit the value of max_period to 2^31 - 1.
 */
static const struct tile_pmu tilepmu = {
#ifndef __tilegx__
	.name = "tilepro",
#else
	.name = "tilegx",
#endif
	.max_events = ARRAY_SIZE(tile_hw_event_map),
	.map_hw_event = tile_map_hw_event,
	.hw_events = tile_hw_event_map,
	.map_cache_event = tile_map_cache_event,
	.cache_events = &tile_cache_event_map,
	.cntval_bits = 32,
	.cntval_mask = (1ULL << 32) - 1,
	.max_period = (1ULL << 31) - 1,
	.num_counters = TILE_MAX_COUNTERS,
	.num_base_counters = TILE_BASE_COUNTERS,
};

static const struct tile_pmu *tile_pmu __read_mostly;

/*
 * Check whether perf event is enabled.
 */
int tile_perf_enabled(void)
{
	return atomic_read(&tile_active_events) != 0;
}

/*
 * Read Performance Counters.
 */
static inline u64 read_counter(int idx)
{
	u64 val = 0;

	/* __insn_mfspr() only takes an immediate argument */
	switch (idx) {
	case PERF_COUNT_0_IDX:
		val = __insn_mfspr(SPR_PERF_COUNT_0);
		break;
	case PERF_COUNT_1_IDX:
		val = __insn_mfspr(SPR_PERF_COUNT_1);
		break;
	case AUX_PERF_COUNT_0_IDX:
		val = __insn_mfspr(SPR_AUX_PERF_COUNT_0);
		break;
	case AUX_PERF_COUNT_1_IDX:
		val = __insn_mfspr(SPR_AUX_PERF_COUNT_1);
		break;
	default:
		WARN_ON_ONCE(idx > AUX_PERF_COUNT_1_IDX ||
				idx < PERF_COUNT_0_IDX);
	}

	return val;
}

/*
 * Write Performance Counters.
 */
static inline void write_counter(int idx, u64 value)
{
	/* __insn_mtspr() only takes an immediate argument */
	switch (idx) {
	case PERF_COUNT_0_IDX:
		__insn_mtspr(SPR_PERF_COUNT_0, value);
		break;
	case PERF_COUNT_1_IDX:
		__insn_mtspr(SPR_PERF_COUNT_1, value);
		break;
	case AUX_PERF_COUNT_0_IDX:
		__insn_mtspr(SPR_AUX_PERF_COUNT_0, value);
		break;
	case AUX_PERF_COUNT_1_IDX:
		__insn_mtspr(SPR_AUX_PERF_COUNT_1, value);
		break;
	default:
		WARN_ON_ONCE(idx > AUX_PERF_COUNT_1_IDX ||
				idx < PERF_COUNT_0_IDX);
	}
}

/*
 * Enable performance event by setting
 * Performance Counter Control registers.
 */
static inline void tile_pmu_enable_event(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	unsigned long cfg, mask;
	int shift, idx = hwc->idx;

	/*
	 * prevent early activation from tile_pmu_start() in hw_perf_enable
	 */

	if (WARN_ON_ONCE(idx == -1))
		return;

	if (idx < tile_pmu->num_base_counters)
		cfg = __insn_mfspr(SPR_PERF_COUNT_CTL);
	else
		cfg = __insn_mfspr(SPR_AUX_PERF_COUNT_CTL);

	switch (idx) {
	case PERF_COUNT_0_IDX:
	case AUX_PERF_COUNT_0_IDX:
		mask = TILE_EVENT_MASK;
		shift = 0;
		break;
	case PERF_COUNT_1_IDX:
	case AUX_PERF_COUNT_1_IDX:
		mask = TILE_EVENT_MASK << 16;
		shift = 16;
		break;
	default:
		WARN_ON_ONCE(idx < PERF_COUNT_0_IDX ||
			idx > AUX_PERF_COUNT_1_IDX);
		return;
	}

	/* Clear mask bits to enable the event. */
	cfg &= ~mask;
	cfg |= hwc->config << shift;

	if (idx < tile_pmu->num_base_counters)
		__insn_mtspr(SPR_PERF_COUNT_CTL, cfg);
	else
		__insn_mtspr(SPR_AUX_PERF_COUNT_CTL, cfg);
}

/*
 * Disable performance event by clearing
 * Performance Counter Control registers.
 */
static inline void tile_pmu_disable_event(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	unsigned long cfg, mask;
	int idx = hwc->idx;

	if (idx == -1)
		return;

	if (idx < tile_pmu->num_base_counters)
		cfg = __insn_mfspr(SPR_PERF_COUNT_CTL);
	else
		cfg = __insn_mfspr(SPR_AUX_PERF_COUNT_CTL);

	switch (idx) {
	case PERF_COUNT_0_IDX:
	case AUX_PERF_COUNT_0_IDX:
		mask = TILE_PLM_MASK;
		break;
	case PERF_COUNT_1_IDX:
	case AUX_PERF_COUNT_1_IDX:
		mask = TILE_PLM_MASK << 16;
		break;
	default:
		WARN_ON_ONCE(idx < PERF_COUNT_0_IDX ||
			idx > AUX_PERF_COUNT_1_IDX);
		return;
	}

	/* Set mask bits to disable the event. */
	cfg |= mask;

	if (idx < tile_pmu->num_base_counters)
		__insn_mtspr(SPR_PERF_COUNT_CTL, cfg);
	else
		__insn_mtspr(SPR_AUX_PERF_COUNT_CTL, cfg);
}

/*
 * Propagate event elapsed time into the generic event.
 * Can only be executed on the CPU where the event is active.
 * Returns the delta events processed.
 */
static u64 tile_perf_event_update(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int shift = 64 - tile_pmu->cntval_bits;
	u64 prev_raw_count, new_raw_count;
	u64 oldval;
	int idx = hwc->idx;
	u64 delta;

	/*
	 * Careful: an NMI might modify the previous event value.
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
	 * count to the generic event atomically:
	 */
again:
	prev_raw_count = local64_read(&hwc->prev_count);
	new_raw_count = read_counter(idx);

	oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
				 new_raw_count);
	if (oldval != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
	 * (event-)time and add that to the generic event.
	 *
	 * Careful, not all hw sign-extends above the physical width
	 * of the count.
	 */
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);

	return new_raw_count;
}

/*
 * Set the next IRQ period, based on the hwc->period_left value.
 * To be called with the event disabled in hw:
 */
static int tile_event_set_period(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;
	s64 left = local64_read(&hwc->period_left);
	s64 period = hwc->sample_period;
	int ret = 0;

	/*
	 * If we are way outside a reasonable range then just skip forward:
	 */
	if (unlikely(left <= -period)) {
		left = period;
		local64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
		local64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}
	if (left > tile_pmu->max_period)
		left = tile_pmu->max_period;

	/*
	 * The hw event starts counting from this event offset,
	 * mark it to be able to extra future deltas:
	 */
	local64_set(&hwc->prev_count, (u64)-left);

	write_counter(idx, (u64)(-left) & tile_pmu->cntval_mask);

	perf_event_update_userpage(event);

	return ret;
}

/*
 * Stop the event but do not release the PMU counter
 */
static void tile_pmu_stop(struct perf_event *event, int flags)
{
593
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	if (__test_and_clear_bit(idx, cpuc->active_mask)) {
		tile_pmu_disable_event(event);
		cpuc->events[hwc->idx] = NULL;
		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
		hwc->state |= PERF_HES_STOPPED;
	}

	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
		/*
		 * Drain the remaining delta count out of a event
		 * that we are disabling:
		 */
		tile_perf_event_update(event);
		hwc->state |= PERF_HES_UPTODATE;
	}
}

/*
 * Start an event (without re-assigning counter)
 */
static void tile_pmu_start(struct perf_event *event, int flags)
{
619
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	int idx = event->hw.idx;

	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (WARN_ON_ONCE(idx == -1))
		return;

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		tile_event_set_period(event);
	}

	event->hw.state = 0;

	cpuc->events[idx] = event;
	__set_bit(idx, cpuc->active_mask);

	unmask_pmc_interrupts();

	tile_pmu_enable_event(event);

	perf_event_update_userpage(event);
}

/*
 * Add a single event to the PMU.
 *
 * The event is added to the group of enabled events
 * but only if it can be scehduled with existing events.
 */
static int tile_pmu_add(struct perf_event *event, int flags)
{
653
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	struct hw_perf_event *hwc;
	unsigned long mask;
	int b, max_cnt;

	hwc = &event->hw;

	/*
	 * We are full.
	 */
	if (cpuc->n_events == tile_pmu->num_counters)
		return -ENOSPC;

	cpuc->event_list[cpuc->n_events] = event;
	cpuc->n_events++;

	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

	/*
	 * Find first empty counter.
	 */
	max_cnt = tile_pmu->num_counters;
	mask = ~cpuc->used_mask;

	/* Find next free counter. */
	b = find_next_bit(&mask, max_cnt, 0);

	/* Should not happen. */
	if (WARN_ON_ONCE(b == max_cnt))
		return -ENOSPC;

	/*
	 * Assign counter to event.
	 */
	event->hw.idx = b;
	__set_bit(b, &cpuc->used_mask);

	/*
	 * Start if requested.
	 */
	if (flags & PERF_EF_START)
		tile_pmu_start(event, PERF_EF_RELOAD);

	return 0;
}

/*
 * Delete a single event from the PMU.
 *
 * The event is deleted from the group of enabled events.
 * If it is the last event, disable PMU interrupt.
 */
static void tile_pmu_del(struct perf_event *event, int flags)
{
709
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	int i;

	/*
	 * Remove event from list, compact list if necessary.
	 */
	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event_list[i] == event) {
			while (++i < cpuc->n_events)
				cpuc->event_list[i-1] = cpuc->event_list[i];
			--cpuc->n_events;
			cpuc->events[event->hw.idx] = NULL;
			__clear_bit(event->hw.idx, &cpuc->used_mask);
			tile_pmu_stop(event, PERF_EF_UPDATE);
			break;
		}
	}
	/*
	 * If there are no events left, then mask PMU interrupt.
	 */
	if (cpuc->n_events == 0)
		mask_pmc_interrupts();
	perf_event_update_userpage(event);
}

/*
 * Propagate event elapsed time into the event.
 */
static inline void tile_pmu_read(struct perf_event *event)
{
	tile_perf_event_update(event);
}

/*
 * Map generic events to Tile PMU.
 */
static int tile_map_hw_event(u64 config)
{
	if (config >= tile_pmu->max_events)
		return -EINVAL;
	return tile_pmu->hw_events[config];
}

/*
 * Map generic hardware cache events to Tile PMU.
 */
static int tile_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	int code;

	if (!tile_pmu->cache_events)
		return -ENOENT;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	code = (*tile_pmu->cache_events)[cache_type][cache_op][cache_result];
	if (code == TILE_OP_UNSUPP)
		return -EINVAL;

	return code;
}

static void tile_event_destroy(struct perf_event *event)
{
	if (atomic_dec_return(&tile_active_events) == 0)
		release_pmc_hardware();
}

static int __tile_event_init(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
	int code;

	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
		code = tile_pmu->map_hw_event(attr->config);
		break;
	case PERF_TYPE_HW_CACHE:
		code = tile_pmu->map_cache_event(attr->config);
		break;
	case PERF_TYPE_RAW:
		code = attr->config & TILE_EVENT_MASK;
		break;
	default:
		/* Should not happen. */
		return -EOPNOTSUPP;
	}

	if (code < 0)
		return code;

	hwc->config = code;
	hwc->idx = -1;

	if (attr->exclude_user)
		hwc->config |= TILE_CTL_EXCL_USER;

	if (attr->exclude_kernel)
		hwc->config |= TILE_CTL_EXCL_KERNEL;

	if (attr->exclude_hv)
		hwc->config |= TILE_CTL_EXCL_HV;

	if (!hwc->sample_period) {
		hwc->sample_period = tile_pmu->max_period;
		hwc->last_period = hwc->sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
	}
	event->destroy = tile_event_destroy;
	return 0;
}

static int tile_event_init(struct perf_event *event)
{
	int err = 0;
	perf_irq_t old_irq_handler = NULL;

	if (atomic_inc_return(&tile_active_events) == 1)
		old_irq_handler = reserve_pmc_hardware(tile_pmu_handle_irq);

	if (old_irq_handler) {
		pr_warn("PMC hardware busy (reserved by oprofile)\n");

		atomic_dec(&tile_active_events);
		return -EBUSY;
	}

	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
		break;

	default:
		return -ENOENT;
	}

	err = __tile_event_init(event);
	if (err) {
		if (event->destroy)
			event->destroy(event);
	}
	return err;
}

static struct pmu tilera_pmu = {
	.event_init	= tile_event_init,
	.add		= tile_pmu_add,
	.del		= tile_pmu_del,

	.start		= tile_pmu_start,
	.stop		= tile_pmu_stop,

	.read		= tile_pmu_read,
};

/*
 * PMU's IRQ handler, PMU has 2 interrupts, they share the same handler.
 */
int tile_pmu_handle_irq(struct pt_regs *regs, int fault)
{
	struct perf_sample_data data;
883
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
884 885 886 887 888 889
	struct perf_event *event;
	struct hw_perf_event *hwc;
	u64 val;
	unsigned long status;
	int bit;

890
	__this_cpu_inc(perf_irqs);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	if (!atomic_read(&tile_active_events))
		return 0;

	status = pmc_get_overflow();
	pmc_ack_overflow(status);

	for_each_set_bit(bit, &status, tile_pmu->num_counters) {

		event = cpuc->events[bit];

		if (!event)
			continue;

		if (!test_bit(bit, cpuc->active_mask))
			continue;

		hwc = &event->hw;

		val = tile_perf_event_update(event);
		if (val & (1ULL << (tile_pmu->cntval_bits - 1)))
			continue;

		perf_sample_data_init(&data, 0, event->hw.last_period);
		if (!tile_event_set_period(event))
			continue;

		if (perf_event_overflow(event, &data, regs))
			tile_pmu_stop(event, 0);
	}

	return 0;
}

static bool __init supported_pmu(void)
{
	tile_pmu = &tilepmu;
	return true;
}

int __init init_hw_perf_events(void)
{
	supported_pmu();
	perf_pmu_register(&tilera_pmu, "cpu", PERF_TYPE_RAW);
	return 0;
}
arch_initcall(init_hw_perf_events);

/* Callchain handling code. */

/*
 * Tile specific backtracing code for perf_events.
 */
944
static inline void perf_callchain(struct perf_callchain_entry_ctx *entry,
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		    struct pt_regs *regs)
{
	struct KBacktraceIterator kbt;
	unsigned int i;

	/*
	 * Get the address just after the "jalr" instruction that
	 * jumps to the handler for a syscall.  When we find this
	 * address in a backtrace, we silently ignore it, which gives
	 * us a one-step backtrace connection from the sys_xxx()
	 * function in the kernel to the xxx() function in libc.
	 * Otherwise, we lose the ability to properly attribute time
	 * from the libc calls to the kernel implementations, since
	 * oprofile only considers PCs from backtraces a pair at a time.
	 */
	unsigned long handle_syscall_pc = handle_syscall_link_address();

	KBacktraceIterator_init(&kbt, NULL, regs);
	kbt.profile = 1;

	/*
	 * The sample for the pc is already recorded.  Now we are adding the
	 * address of the callsites on the stack.  Our iterator starts
	 * with the frame of the (already sampled) call site.  If our
	 * iterator contained a "return address" field, we could have just
	 * used it and wouldn't have needed to skip the first
	 * frame.  That's in effect what the arm and x86 versions do.
	 * Instead we peel off the first iteration to get the equivalent
	 * behavior.
	 */

	if (KBacktraceIterator_end(&kbt))
		return;
	KBacktraceIterator_next(&kbt);

	/*
	 * Set stack depth to 16 for user and kernel space respectively, that
	 * is, total 32 stack frames.
	 */
	for (i = 0; i < 16; ++i) {
		unsigned long pc;
		if (KBacktraceIterator_end(&kbt))
			break;
		pc = kbt.it.pc;
		if (pc != handle_syscall_pc)
			perf_callchain_store(entry, pc);
		KBacktraceIterator_next(&kbt);
	}
}

995
void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
996 997 998 999 1000
		    struct pt_regs *regs)
{
	perf_callchain(entry, regs);
}

1001
void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1002 1003 1004 1005
		      struct pt_regs *regs)
{
	perf_callchain(entry, regs);
}