util.c 22.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Andrew Morton 已提交
2
#include <linux/mm.h>
3 4
#include <linux/slab.h>
#include <linux/string.h>
5
#include <linux/compiler.h>
6
#include <linux/export.h>
D
Davi Arnaut 已提交
7
#include <linux/err.h>
8
#include <linux/sched.h>
9
#include <linux/sched/mm.h>
10
#include <linux/sched/signal.h>
11
#include <linux/sched/task_stack.h>
A
Al Viro 已提交
12
#include <linux/security.h>
S
Shaohua Li 已提交
13
#include <linux/swap.h>
14
#include <linux/swapops.h>
15 16
#include <linux/mman.h>
#include <linux/hugetlb.h>
A
Al Viro 已提交
17
#include <linux/vmalloc.h>
18
#include <linux/userfaultfd_k.h>
19
#include <linux/elf.h>
20 21
#include <linux/elf-randomize.h>
#include <linux/personality.h>
22
#include <linux/random.h>
23 24 25
#include <linux/processor.h>
#include <linux/sizes.h>
#include <linux/compat.h>
26

27
#include <linux/uaccess.h>
28

29 30
#include "internal.h"

A
Andrzej Hajda 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
/**
 * kfree_const - conditionally free memory
 * @x: pointer to the memory
 *
 * Function calls kfree only if @x is not in .rodata section.
 */
void kfree_const(const void *x)
{
	if (!is_kernel_rodata((unsigned long)x))
		kfree(x);
}
EXPORT_SYMBOL(kfree_const);

44 45 46 47
/**
 * kstrdup - allocate space for and copy an existing string
 * @s: the string to duplicate
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 49
 *
 * Return: newly allocated copy of @s or %NULL in case of error
50 51 52 53 54 55 56 57 58 59
 */
char *kstrdup(const char *s, gfp_t gfp)
{
	size_t len;
	char *buf;

	if (!s)
		return NULL;

	len = strlen(s) + 1;
60
	buf = kmalloc_track_caller(len, gfp);
61 62 63 64 65
	if (buf)
		memcpy(buf, s, len);
	return buf;
}
EXPORT_SYMBOL(kstrdup);
D
Davi Arnaut 已提交
66

A
Andrzej Hajda 已提交
67 68 69 70 71
/**
 * kstrdup_const - conditionally duplicate an existing const string
 * @s: the string to duplicate
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 *
72 73 74 75
 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
 *
 * Return: source string if it is in .rodata section otherwise
 * fallback to kstrdup.
A
Andrzej Hajda 已提交
76 77 78 79 80 81 82 83 84 85
 */
const char *kstrdup_const(const char *s, gfp_t gfp)
{
	if (is_kernel_rodata((unsigned long)s))
		return s;

	return kstrdup(s, gfp);
}
EXPORT_SYMBOL(kstrdup_const);

J
Jeremy Fitzhardinge 已提交
86 87 88 89 90
/**
 * kstrndup - allocate space for and copy an existing string
 * @s: the string to duplicate
 * @max: read at most @max chars from @s
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
91 92
 *
 * Note: Use kmemdup_nul() instead if the size is known exactly.
93 94
 *
 * Return: newly allocated copy of @s or %NULL in case of error
J
Jeremy Fitzhardinge 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
 */
char *kstrndup(const char *s, size_t max, gfp_t gfp)
{
	size_t len;
	char *buf;

	if (!s)
		return NULL;

	len = strnlen(s, max);
	buf = kmalloc_track_caller(len+1, gfp);
	if (buf) {
		memcpy(buf, s, len);
		buf[len] = '\0';
	}
	return buf;
}
EXPORT_SYMBOL(kstrndup);

A
Alexey Dobriyan 已提交
114 115 116 117 118 119
/**
 * kmemdup - duplicate region of memory
 *
 * @src: memory region to duplicate
 * @len: memory region length
 * @gfp: GFP mask to use
120 121
 *
 * Return: newly allocated copy of @src or %NULL in case of error
A
Alexey Dobriyan 已提交
122 123 124 125 126
 */
void *kmemdup(const void *src, size_t len, gfp_t gfp)
{
	void *p;

127
	p = kmalloc_track_caller(len, gfp);
A
Alexey Dobriyan 已提交
128 129 130 131 132 133
	if (p)
		memcpy(p, src, len);
	return p;
}
EXPORT_SYMBOL(kmemdup);

134 135 136 137 138
/**
 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 * @s: The data to stringify
 * @len: The size of the data
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139 140 141
 *
 * Return: newly allocated copy of @s with NUL-termination or %NULL in
 * case of error
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
 */
char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
{
	char *buf;

	if (!s)
		return NULL;

	buf = kmalloc_track_caller(len + 1, gfp);
	if (buf) {
		memcpy(buf, s, len);
		buf[len] = '\0';
	}
	return buf;
}
EXPORT_SYMBOL(kmemdup_nul);

L
Li Zefan 已提交
159 160 161 162 163 164
/**
 * memdup_user - duplicate memory region from user space
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
165
 * Return: an ERR_PTR() on failure.  Result is physically
A
Al Viro 已提交
166
 * contiguous, to be freed by kfree().
L
Li Zefan 已提交
167 168 169 170 171
 */
void *memdup_user(const void __user *src, size_t len)
{
	void *p;

172
	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
L
Li Zefan 已提交
173 174 175 176 177 178 179 180 181 182 183 184
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kfree(p);
		return ERR_PTR(-EFAULT);
	}

	return p;
}
EXPORT_SYMBOL(memdup_user);

A
Al Viro 已提交
185 186 187 188 189 190
/**
 * vmemdup_user - duplicate memory region from user space
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
191
 * Return: an ERR_PTR() on failure.  Result may be not
A
Al Viro 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 * physically contiguous.  Use kvfree() to free.
 */
void *vmemdup_user(const void __user *src, size_t len)
{
	void *p;

	p = kvmalloc(len, GFP_USER);
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kvfree(p);
		return ERR_PTR(-EFAULT);
	}

	return p;
}
EXPORT_SYMBOL(vmemdup_user);

211
/**
D
Davi Arnaut 已提交
212 213 214
 * strndup_user - duplicate an existing string from user space
 * @s: The string to duplicate
 * @n: Maximum number of bytes to copy, including the trailing NUL.
215
 *
216
 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
D
Davi Arnaut 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230
 */
char *strndup_user(const char __user *s, long n)
{
	char *p;
	long length;

	length = strnlen_user(s, n);

	if (!length)
		return ERR_PTR(-EFAULT);

	if (length > n)
		return ERR_PTR(-EINVAL);

J
Julia Lawall 已提交
231
	p = memdup_user(s, length);
D
Davi Arnaut 已提交
232

J
Julia Lawall 已提交
233 234
	if (IS_ERR(p))
		return p;
D
Davi Arnaut 已提交
235 236 237 238 239 240

	p[length - 1] = '\0';

	return p;
}
EXPORT_SYMBOL(strndup_user);
A
Andrew Morton 已提交
241

A
Al Viro 已提交
242 243 244 245 246 247
/**
 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
248
 * Return: an ERR_PTR() on failure.
A
Al Viro 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
 */
void *memdup_user_nul(const void __user *src, size_t len)
{
	char *p;

	/*
	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
	 * cause pagefault, which makes it pointless to use GFP_NOFS
	 * or GFP_ATOMIC.
	 */
	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kfree(p);
		return ERR_PTR(-EFAULT);
	}
	p[len] = '\0';

	return p;
}
EXPORT_SYMBOL(memdup_user_nul);

273
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274
		struct vm_area_struct *prev)
275 276 277 278 279 280 281 282
{
	struct vm_area_struct *next;

	vma->vm_prev = prev;
	if (prev) {
		next = prev->vm_next;
		prev->vm_next = vma;
	} else {
283
		next = mm->mmap;
284 285 286 287 288 289 290
		mm->mmap = vma;
	}
	vma->vm_next = next;
	if (next)
		next->vm_prev = vma;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304
void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
{
	struct vm_area_struct *prev, *next;

	next = vma->vm_next;
	prev = vma->vm_prev;
	if (prev)
		prev->vm_next = next;
	else
		mm->mmap = next;
	if (next)
		next->vm_prev = prev;
}

305
/* Check if the vma is being used as a stack by this task */
306
int vma_is_stack_for_current(struct vm_area_struct *vma)
307
{
308 309
	struct task_struct * __maybe_unused t = current;

310 311 312
	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
#ifndef STACK_RND_MASK
#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
#endif

unsigned long randomize_stack_top(unsigned long stack_top)
{
	unsigned long random_variable = 0;

	if (current->flags & PF_RANDOMIZE) {
		random_variable = get_random_long();
		random_variable &= STACK_RND_MASK;
		random_variable <<= PAGE_SHIFT;
	}
#ifdef CONFIG_STACK_GROWSUP
	return PAGE_ALIGN(stack_top) + random_variable;
#else
	return PAGE_ALIGN(stack_top) - random_variable;
#endif
}

333
#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
334 335 336 337 338 339 340 341 342
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	/* Is the current task 32bit ? */
	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
		return randomize_page(mm->brk, SZ_32M);

	return randomize_page(mm->brk, SZ_1G);
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
unsigned long arch_mmap_rnd(void)
{
	unsigned long rnd;

#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
	if (is_compat_task())
		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
	else
#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);

	return rnd << PAGE_SHIFT;
}

static int mmap_is_legacy(struct rlimit *rlim_stack)
{
	if (current->personality & ADDR_COMPAT_LAYOUT)
		return 1;

	if (rlim_stack->rlim_cur == RLIM_INFINITY)
		return 1;

	return sysctl_legacy_va_layout;
}

/*
 * Leave enough space between the mmap area and the stack to honour ulimit in
 * the face of randomisation.
 */
#define MIN_GAP		(SZ_128M)
#define MAX_GAP		(STACK_TOP / 6 * 5)

static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
{
	unsigned long gap = rlim_stack->rlim_cur;
	unsigned long pad = stack_guard_gap;

	/* Account for stack randomization if necessary */
	if (current->flags & PF_RANDOMIZE)
		pad += (STACK_RND_MASK << PAGE_SHIFT);

	/* Values close to RLIM_INFINITY can overflow. */
	if (gap + pad > gap)
		gap += pad;

	if (gap < MIN_GAP)
		gap = MIN_GAP;
	else if (gap > MAX_GAP)
		gap = MAX_GAP;

	return PAGE_ALIGN(STACK_TOP - gap - rnd);
}

void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
{
	unsigned long random_factor = 0UL;

	if (current->flags & PF_RANDOMIZE)
		random_factor = arch_mmap_rnd();

	if (mmap_is_legacy(rlim_stack)) {
		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
		mm->get_unmapped_area = arch_get_unmapped_area;
	} else {
		mm->mmap_base = mmap_base(random_factor, rlim_stack);
		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
	}
}
#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
412
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
A
Andrew Morton 已提交
413 414 415 416 417
{
	mm->mmap_base = TASK_UNMAPPED_BASE;
	mm->get_unmapped_area = arch_get_unmapped_area;
}
#endif
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * __account_locked_vm - account locked pages to an mm's locked_vm
 * @mm:          mm to account against
 * @pages:       number of pages to account
 * @inc:         %true if @pages should be considered positive, %false if not
 * @task:        task used to check RLIMIT_MEMLOCK
 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
 *
 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
 * that mmap_sem is held as writer.
 *
 * Return:
 * * 0       on success
 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 */
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
			struct task_struct *task, bool bypass_rlim)
{
	unsigned long locked_vm, limit;
	int ret = 0;

440
	mmap_assert_write_locked(mm);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	locked_vm = mm->locked_vm;
	if (inc) {
		if (!bypass_rlim) {
			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
			if (locked_vm + pages > limit)
				ret = -ENOMEM;
		}
		if (!ret)
			mm->locked_vm = locked_vm + pages;
	} else {
		WARN_ON_ONCE(pages > locked_vm);
		mm->locked_vm = locked_vm - pages;
	}

	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
		 ret ? " - exceeded" : "");

	return ret;
}
EXPORT_SYMBOL_GPL(__account_locked_vm);

/**
 * account_locked_vm - account locked pages to an mm's locked_vm
 * @mm:          mm to account against, may be NULL
 * @pages:       number of pages to account
 * @inc:         %true if @pages should be considered positive, %false if not
 *
 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
 *
 * Return:
 * * 0       on success, or if mm is NULL
 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 */
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
{
	int ret;

	if (pages == 0 || !mm)
		return 0;

484
	mmap_write_lock(mm);
485 486
	ret = __account_locked_vm(mm, pages, inc, current,
				  capable(CAP_IPC_LOCK));
487
	mmap_write_unlock(mm);
488 489 490 491 492

	return ret;
}
EXPORT_SYMBOL_GPL(account_locked_vm);

A
Al Viro 已提交
493 494
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot,
M
Michal Hocko 已提交
495
	unsigned long flag, unsigned long pgoff)
A
Al Viro 已提交
496 497 498
{
	unsigned long ret;
	struct mm_struct *mm = current->mm;
499
	unsigned long populate;
500
	LIST_HEAD(uf);
A
Al Viro 已提交
501 502 503

	ret = security_mmap_file(file, prot, flag);
	if (!ret) {
504
		if (mmap_write_lock_killable(mm))
M
Michal Hocko 已提交
505
			return -EINTR;
506
		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
507
				    &populate, &uf);
508
		mmap_write_unlock(mm);
509
		userfaultfd_unmap_complete(mm, &uf);
510 511
		if (populate)
			mm_populate(ret, populate);
A
Al Viro 已提交
512 513 514 515 516 517 518 519 520 521
	}
	return ret;
}

unsigned long vm_mmap(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot,
	unsigned long flag, unsigned long offset)
{
	if (unlikely(offset + PAGE_ALIGN(len) < offset))
		return -EINVAL;
522
	if (unlikely(offset_in_page(offset)))
A
Al Viro 已提交
523 524
		return -EINVAL;

M
Michal Hocko 已提交
525
	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
A
Al Viro 已提交
526 527 528
}
EXPORT_SYMBOL(vm_mmap);

M
Michal Hocko 已提交
529 530 531 532 533 534 535 536 537 538
/**
 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 * failure, fall back to non-contiguous (vmalloc) allocation.
 * @size: size of the request.
 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 * @node: numa node to allocate from
 *
 * Uses kmalloc to get the memory but if the allocation fails then falls back
 * to the vmalloc allocator. Use kvfree for freeing the memory.
 *
539 540 541
 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 * preferable to the vmalloc fallback, due to visible performance drawbacks.
M
Michal Hocko 已提交
542
 *
543 544
 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 * fall back to vmalloc.
545 546
 *
 * Return: pointer to the allocated memory of %NULL in case of failure
M
Michal Hocko 已提交
547 548 549 550 551 552 553 554 555 556
 */
void *kvmalloc_node(size_t size, gfp_t flags, int node)
{
	gfp_t kmalloc_flags = flags;
	void *ret;

	/*
	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
	 * so the given set of flags has to be compatible.
	 */
557 558
	if ((flags & GFP_KERNEL) != GFP_KERNEL)
		return kmalloc_node(size, flags, node);
M
Michal Hocko 已提交
559 560

	/*
561 562 563 564 565
	 * We want to attempt a large physically contiguous block first because
	 * it is less likely to fragment multiple larger blocks and therefore
	 * contribute to a long term fragmentation less than vmalloc fallback.
	 * However make sure that larger requests are not too disruptive - no
	 * OOM killer and no allocation failure warnings as we have a fallback.
M
Michal Hocko 已提交
566
	 */
567 568 569
	if (size > PAGE_SIZE) {
		kmalloc_flags |= __GFP_NOWARN;

570
		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
571 572
			kmalloc_flags |= __GFP_NORETRY;
	}
M
Michal Hocko 已提交
573 574 575 576 577 578 579 580 581 582

	ret = kmalloc_node(size, kmalloc_flags, node);

	/*
	 * It doesn't really make sense to fallback to vmalloc for sub page
	 * requests
	 */
	if (ret || size <= PAGE_SIZE)
		return ret;

583
	return __vmalloc_node(size, 1, flags, node,
584
			__builtin_return_address(0));
M
Michal Hocko 已提交
585 586 587
}
EXPORT_SYMBOL(kvmalloc_node);

588
/**
589 590
 * kvfree() - Free memory.
 * @addr: Pointer to allocated memory.
591
 *
592 593 594 595
 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 * It is slightly more efficient to use kfree() or vfree() if you are certain
 * that you know which one to use.
 *
A
Andrey Ryabinin 已提交
596
 * Context: Either preemptible task context or not-NMI interrupt.
597
 */
A
Al Viro 已提交
598 599 600 601 602 603 604 605 606
void kvfree(const void *addr)
{
	if (is_vmalloc_addr(addr))
		vfree(addr);
	else
		kfree(addr);
}
EXPORT_SYMBOL(kvfree);

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/**
 * kvfree_sensitive - Free a data object containing sensitive information.
 * @addr: address of the data object to be freed.
 * @len: length of the data object.
 *
 * Use the special memzero_explicit() function to clear the content of a
 * kvmalloc'ed object containing sensitive data to make sure that the
 * compiler won't optimize out the data clearing.
 */
void kvfree_sensitive(const void *addr, size_t len)
{
	if (likely(!ZERO_OR_NULL_PTR(addr))) {
		memzero_explicit((void *)addr, len);
		kvfree(addr);
	}
}
EXPORT_SYMBOL(kvfree_sensitive);

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static inline void *__page_rmapping(struct page *page)
{
	unsigned long mapping;

	mapping = (unsigned long)page->mapping;
	mapping &= ~PAGE_MAPPING_FLAGS;

	return (void *)mapping;
}

/* Neutral page->mapping pointer to address_space or anon_vma or other */
void *page_rmapping(struct page *page)
{
	page = compound_head(page);
	return __page_rmapping(page);
}

A
Andrew Morton 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/*
 * Return true if this page is mapped into pagetables.
 * For compound page it returns true if any subpage of compound page is mapped.
 */
bool page_mapped(struct page *page)
{
	int i;

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) >= 0;
	page = compound_head(page);
	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
		return true;
	if (PageHuge(page))
		return false;
657
	for (i = 0; i < compound_nr(page); i++) {
A
Andrew Morton 已提交
658 659 660 661 662 663 664
		if (atomic_read(&page[i]._mapcount) >= 0)
			return true;
	}
	return false;
}
EXPORT_SYMBOL(page_mapped);

665 666 667 668 669 670 671 672 673 674 675
struct anon_vma *page_anon_vma(struct page *page)
{
	unsigned long mapping;

	page = compound_head(page);
	mapping = (unsigned long)page->mapping;
	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
		return NULL;
	return __page_rmapping(page);
}

S
Shaohua Li 已提交
676 677
struct address_space *page_mapping(struct page *page)
{
678 679 680
	struct address_space *mapping;

	page = compound_head(page);
S
Shaohua Li 已提交
681

682 683 684 685
	/* This happens if someone calls flush_dcache_page on slab page */
	if (unlikely(PageSlab(page)))
		return NULL;

686 687 688 689
	if (unlikely(PageSwapCache(page))) {
		swp_entry_t entry;

		entry.val = page_private(page);
690 691 692
		return swap_address_space(entry);
	}

693
	mapping = page->mapping;
694
	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
695
		return NULL;
696 697

	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
S
Shaohua Li 已提交
698
}
699
EXPORT_SYMBOL(page_mapping);
S
Shaohua Li 已提交
700

701 702 703 704 705 706 707 708 709 710
/*
 * For file cache pages, return the address_space, otherwise return NULL
 */
struct address_space *page_mapping_file(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return NULL;
	return page_mapping(page);
}

711 712 713 714 715 716
/* Slow path of page_mapcount() for compound pages */
int __page_mapcount(struct page *page)
{
	int ret;

	ret = atomic_read(&page->_mapcount) + 1;
K
Kirill A. Shutemov 已提交
717 718 719 720 721 722
	/*
	 * For file THP page->_mapcount contains total number of mapping
	 * of the page: no need to look into compound_mapcount.
	 */
	if (!PageAnon(page) && !PageHuge(page))
		return ret;
723 724 725 726 727 728 729 730
	page = compound_head(page);
	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
	if (PageDoubleMap(page))
		ret--;
	return ret;
}
EXPORT_SYMBOL_GPL(__page_mapcount);

731 732 733 734 735 736 737
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
int sysctl_overcommit_ratio __read_mostly = 50;
unsigned long sysctl_overcommit_kbytes __read_mostly;
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */

738 739
int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
		size_t *lenp, loff_t *ppos)
740 741 742 743 744 745 746 747 748
{
	int ret;

	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		sysctl_overcommit_kbytes = 0;
	return ret;
}

749 750
int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
		size_t *lenp, loff_t *ppos)
751 752 753 754 755 756 757 758 759
{
	int ret;

	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		sysctl_overcommit_ratio = 0;
	return ret;
}

760 761 762 763 764
/*
 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 */
unsigned long vm_commit_limit(void)
{
765 766 767 768 769
	unsigned long allowed;

	if (sysctl_overcommit_kbytes)
		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
	else
770
		allowed = ((totalram_pages() - hugetlb_total_pages())
771 772 773 774
			   * sysctl_overcommit_ratio / 100);
	allowed += total_swap_pages;

	return allowed;
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/*
 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 * other variables. It can be updated by several CPUs frequently.
 */
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;

/*
 * The global memory commitment made in the system can be a metric
 * that can be used to drive ballooning decisions when Linux is hosted
 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 * balancing memory across competing virtual machines that are hosted.
 * Several metrics drive this policy engine including the guest reported
 * memory commitment.
 */
unsigned long vm_memory_committed(void)
{
	return percpu_counter_read_positive(&vm_committed_as);
}
EXPORT_SYMBOL_GPL(vm_memory_committed);

/*
 * Check that a process has enough memory to allocate a new virtual
 * mapping. 0 means there is enough memory for the allocation to
 * succeed and -ENOMEM implies there is not.
 *
 * We currently support three overcommit policies, which are set via the
803
 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
804 805 806 807 808 809 810 811 812 813 814
 *
 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 * Additional code 2002 Jul 20 by Robert Love.
 *
 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 *
 * Note this is a helper function intended to be used by LSMs which
 * wish to use this logic.
 */
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
815
	long allowed;
816 817 818 819 820 821 822 823 824 825

	vm_acct_memory(pages);

	/*
	 * Sometimes we want to use more memory than we have
	 */
	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
		return 0;

	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
826
		if (pages > totalram_pages() + total_swap_pages)
827
			goto error;
828
		return 0;
829 830 831 832 833 834 835 836 837 838 839 840 841
	}

	allowed = vm_commit_limit();
	/*
	 * Reserve some for root
	 */
	if (!cap_sys_admin)
		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);

	/*
	 * Don't let a single process grow so big a user can't recover
	 */
	if (mm) {
842 843
		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);

844 845 846 847 848 849 850 851 852 853 854
		allowed -= min_t(long, mm->total_vm / 32, reserve);
	}

	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
		return 0;
error:
	vm_unacct_memory(pages);

	return -ENOMEM;
}

855 856 857 858 859 860
/**
 * get_cmdline() - copy the cmdline value to a buffer.
 * @task:     the task whose cmdline value to copy.
 * @buffer:   the buffer to copy to.
 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 *            to this length.
861 862
 *
 * Return: the size of the cmdline field copied. Note that the copy does
863 864 865 866 867 868 869
 * not guarantee an ending NULL byte.
 */
int get_cmdline(struct task_struct *task, char *buffer, int buflen)
{
	int res = 0;
	unsigned int len;
	struct mm_struct *mm = get_task_mm(task);
870
	unsigned long arg_start, arg_end, env_start, env_end;
871 872 873 874 875
	if (!mm)
		goto out;
	if (!mm->arg_end)
		goto out_mm;	/* Shh! No looking before we're done */

876
	spin_lock(&mm->arg_lock);
877 878 879 880
	arg_start = mm->arg_start;
	arg_end = mm->arg_end;
	env_start = mm->env_start;
	env_end = mm->env_end;
881
	spin_unlock(&mm->arg_lock);
882 883

	len = arg_end - arg_start;
884 885 886 887

	if (len > buflen)
		len = buflen;

888
	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
889 890 891 892 893 894 895 896 897 898

	/*
	 * If the nul at the end of args has been overwritten, then
	 * assume application is using setproctitle(3).
	 */
	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
		len = strnlen(buffer, res);
		if (len < res) {
			res = len;
		} else {
899
			len = env_end - env_start;
900 901
			if (len > buflen - res)
				len = buflen - res;
902
			res += access_process_vm(task, env_start,
903 904
						 buffer+res, len,
						 FOLL_FORCE);
905 906 907 908 909 910 911 912
			res = strnlen(buffer, res);
		}
	}
out_mm:
	mmput(mm);
out:
	return res;
}
913 914 915 916 917 918 919 920 921 922 923 924 925

int memcmp_pages(struct page *page1, struct page *page2)
{
	char *addr1, *addr2;
	int ret;

	addr1 = kmap_atomic(page1);
	addr2 = kmap_atomic(page2);
	ret = memcmp(addr1, addr2, PAGE_SIZE);
	kunmap_atomic(addr2);
	kunmap_atomic(addr1);
	return ret;
}