memcontrol.c 193.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384
/* internal only representation about the status of kmem accounting. */
enum {
385
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 388 389 390 391 392 393
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399 400 401

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
402 403 404 405 406
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
407 408 409 410 411 412 413 414 415
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
416 417
#endif

418 419
/* Stuffs for move charges at task migration. */
/*
420 421
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 423
 */
enum move_type {
424
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 427 428
	NR_MOVE_TYPE,
};

429 430
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
431
	spinlock_t	  lock; /* for from, to */
432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
434
	unsigned long immigrate_flags;
435
	unsigned long precharge;
436
	unsigned long moved_charge;
437
	unsigned long moved_swap;
438 439 440
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
441
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 443
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
444

D
Daisuke Nishimura 已提交
445 446
static bool move_anon(void)
{
447
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
448 449
}

450 451
static bool move_file(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 454
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493 494 495 496 497 498
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

499 500
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
501
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

517 518 519 520 521
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

522 523 524 525 526 527
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

541
	css = css_from_id(id - 1, &memory_cgrp_subsys);
L
Li Zefan 已提交
542 543 544
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
545
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
546
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
547 548 549

void sock_update_memcg(struct sock *sk)
{
550
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
551
		struct mem_cgroup *memcg;
552
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
553 554 555

		BUG_ON(!sk->sk_prot->proto_cgroup);

556 557 558 559 560 561 562 563 564 565
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566
			css_get(&sk->sk_cgrp->memcg->css);
567 568 569
			return;
		}

G
Glauber Costa 已提交
570 571
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
572
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 574
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
576 577 578 579 580 581 582 583
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
584
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
585 586 587
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
588
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
589 590
	}
}
G
Glauber Costa 已提交
591 592 593 594 595 596

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

597
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
598 599
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
600

601 602
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
603
	if (!memcg_proto_activated(&memcg->tcp_mem))
604 605 606 607 608 609 610 611 612
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

613
#ifdef CONFIG_MEMCG_KMEM
614 615
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
616 617 618 619 620
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
621 622 623 624 625 626
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
627 628
int memcg_limited_groups_array_size;

629 630 631 632 633 634
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
635
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 637
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
638
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 640 641
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
642
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643

644 645 646 647 648 649
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
650
struct static_key memcg_kmem_enabled_key;
651
EXPORT_SYMBOL(memcg_kmem_enabled_key);
652 653 654

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
655
	if (memcg_kmem_is_active(memcg)) {
656
		static_key_slow_dec(&memcg_kmem_enabled_key);
657 658
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
659 660 661 662 663
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 665 666 667 668 669 670 671 672 673 674 675 676
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

677
static void drain_all_stock_async(struct mem_cgroup *memcg);
678

679
static struct mem_cgroup_per_zone *
680
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681
{
682
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
683
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 685
}

686
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687
{
688
	return &memcg->css;
689 690
}

691
static struct mem_cgroup_per_zone *
692
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693
{
694 695
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
696

697
	return mem_cgroup_zoneinfo(memcg, nid, zid);
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
877
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878
				 enum mem_cgroup_stat_index idx)
879
{
880
	long val = 0;
881 882
	int cpu;

883 884
	get_online_cpus();
	for_each_online_cpu(cpu)
885
		val += per_cpu(memcg->stat->count[idx], cpu);
886
#ifdef CONFIG_HOTPLUG_CPU
887 888 889
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
890 891
#endif
	put_online_cpus();
892 893 894
	return val;
}

895
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 897 898
					 bool charge)
{
	int val = (charge) ? 1 : -1;
899
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 901
}

902
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 904 905 906 907
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

908
	get_online_cpus();
909
	for_each_online_cpu(cpu)
910
		val += per_cpu(memcg->stat->events[idx], cpu);
911
#ifdef CONFIG_HOTPLUG_CPU
912 913 914
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
915
#endif
916
	put_online_cpus();
917 918 919
	return val;
}

920
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921
					 struct page *page,
922
					 bool anon, int nr_pages)
923
{
924 925
	preempt_disable();

926 927 928 929 930 931
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
932
				nr_pages);
933
	else
934
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
935
				nr_pages);
936

937 938 939 940
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

941 942
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
943
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
944
	else {
945
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
946 947
		nr_pages = -nr_pages; /* for event */
	}
948

949
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
950

951
	preempt_enable();
952 953
}

954
unsigned long
955
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
956 957 958 959 960 961 962 963
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
964
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
965
			unsigned int lru_mask)
966 967
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
968
	enum lru_list lru;
969 970
	unsigned long ret = 0;

971
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
972

H
Hugh Dickins 已提交
973 974 975
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
976 977 978 979 980
	}
	return ret;
}

static unsigned long
981
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
982 983
			int nid, unsigned int lru_mask)
{
984 985 986
	u64 total = 0;
	int zid;

987
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
988 989
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
990

991 992
	return total;
}
993

994
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
995
			unsigned int lru_mask)
996
{
997
	int nid;
998 999
	u64 total = 0;

1000
	for_each_node_state(nid, N_MEMORY)
1001
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1002
	return total;
1003 1004
}

1005 1006
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1007 1008 1009
{
	unsigned long val, next;

1010
	val = __this_cpu_read(memcg->stat->nr_page_events);
1011
	next = __this_cpu_read(memcg->stat->targets[target]);
1012
	/* from time_after() in jiffies.h */
1013 1014 1015 1016 1017
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1018 1019 1020
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1021 1022 1023 1024 1025 1026 1027 1028
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1029
	}
1030
	return false;
1031 1032 1033 1034 1035 1036
}

/*
 * Check events in order.
 *
 */
1037
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1038
{
1039
	preempt_disable();
1040
	/* threshold event is triggered in finer grain than soft limit */
1041 1042
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1043
		bool do_softlimit;
1044
		bool do_numainfo __maybe_unused;
1045

1046 1047
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1048 1049 1050 1051 1052 1053
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1054
		mem_cgroup_threshold(memcg);
1055 1056
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1057
#if MAX_NUMNODES > 1
1058
		if (unlikely(do_numainfo))
1059
			atomic_inc(&memcg->numainfo_events);
1060
#endif
1061 1062
	} else
		preempt_enable();
1063 1064
}

1065
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066
{
1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1075
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1076 1077
}

1078
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079
{
1080
	struct mem_cgroup *memcg = NULL;
1081 1082 1083

	if (!mm)
		return NULL;
1084 1085 1086 1087 1088 1089 1090
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1091 1092
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1093
			break;
1094
	} while (!css_tryget(&memcg->css));
1095
	rcu_read_unlock();
1096
	return memcg;
1097 1098
}

1099 1100 1101 1102 1103 1104 1105
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106
		struct mem_cgroup *last_visited)
1107
{
1108
	struct cgroup_subsys_state *prev_css, *next_css;
1109

1110
	prev_css = last_visited ? &last_visited->css : NULL;
1111
skip_node:
1112
	next_css = css_next_descendant_pre(prev_css, &root->css);
1113 1114 1115 1116 1117 1118 1119

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1120 1121 1122 1123 1124 1125 1126 1127
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1128
	 */
1129
	if (next_css) {
1130 1131
		if ((next_css->flags & CSS_ONLINE) &&
				(next_css == &root->css || css_tryget(next_css)))
1132
			return mem_cgroup_from_css(next_css);
1133 1134 1135

		prev_css = next_css;
		goto skip_node;
1136 1137 1138 1139 1140
	}

	return NULL;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1169 1170 1171 1172 1173 1174 1175 1176 1177

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1178 1179 1180 1181 1182 1183 1184 1185
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1186
				   struct mem_cgroup *root,
1187 1188
				   int sequence)
{
1189 1190
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1220
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221
				   struct mem_cgroup *prev,
1222
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1223
{
1224
	struct mem_cgroup *memcg = NULL;
1225
	struct mem_cgroup *last_visited = NULL;
1226

1227 1228
	if (mem_cgroup_disabled())
		return NULL;
1229

1230 1231
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1232

1233
	if (prev && !reclaim)
1234
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1235

1236 1237
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1238
			goto out_css_put;
1239
		return root;
1240
	}
K
KAMEZAWA Hiroyuki 已提交
1241

1242
	rcu_read_lock();
1243
	while (!memcg) {
1244
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245
		int uninitialized_var(seq);
1246

1247 1248 1249 1250 1251 1252 1253
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1254
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1255
				iter->last_visited = NULL;
1256 1257
				goto out_unlock;
			}
M
Michal Hocko 已提交
1258

1259
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260
		}
K
KAMEZAWA Hiroyuki 已提交
1261

1262
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1263

1264
		if (reclaim) {
1265 1266
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1267

M
Michal Hocko 已提交
1268
			if (!memcg)
1269 1270 1271 1272
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1273

1274
		if (prev && !memcg)
1275
			goto out_unlock;
1276
	}
1277 1278
out_unlock:
	rcu_read_unlock();
1279 1280 1281 1282
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1283
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1284
}
K
KAMEZAWA Hiroyuki 已提交
1285

1286 1287 1288 1289 1290 1291 1292
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1293 1294 1295 1296 1297 1298
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1299

1300 1301 1302 1303 1304 1305
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1306
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1307
	     iter != NULL;				\
1308
	     iter = mem_cgroup_iter(root, iter, NULL))
1309

1310
#define for_each_mem_cgroup(iter)			\
1311
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1312
	     iter != NULL;				\
1313
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1314

1315
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1316
{
1317
	struct mem_cgroup *memcg;
1318 1319

	rcu_read_lock();
1320 1321
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1322 1323 1324 1325
		goto out;

	switch (idx) {
	case PGFAULT:
1326 1327 1328 1329
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1330 1331 1332 1333 1334 1335 1336
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1337
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1338

1339 1340 1341
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1342
 * @memcg: memcg of the wanted lruvec
1343 1344 1345 1346 1347 1348 1349 1350 1351
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1352
	struct lruvec *lruvec;
1353

1354 1355 1356 1357
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1358 1359

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1370 1371
}

K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1385

1386
/**
1387
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1388
 * @page: the page
1389
 * @zone: zone of the page
1390
 */
1391
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1392 1393
{
	struct mem_cgroup_per_zone *mz;
1394 1395
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1396
	struct lruvec *lruvec;
1397

1398 1399 1400 1401
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1402

K
KAMEZAWA Hiroyuki 已提交
1403
	pc = lookup_page_cgroup(page);
1404
	memcg = pc->mem_cgroup;
1405 1406

	/*
1407
	 * Surreptitiously switch any uncharged offlist page to root:
1408 1409 1410 1411 1412 1413 1414
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1415
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1416 1417
		pc->mem_cgroup = memcg = root_mem_cgroup;

1418
	mz = page_cgroup_zoneinfo(memcg, page);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1429
}
1430

1431
/**
1432 1433 1434 1435
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1436
 *
1437 1438
 * This function must be called when a page is added to or removed from an
 * lru list.
1439
 */
1440 1441
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1442 1443
{
	struct mem_cgroup_per_zone *mz;
1444
	unsigned long *lru_size;
1445 1446 1447 1448

	if (mem_cgroup_disabled())
		return;

1449 1450 1451 1452
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1453
}
1454

1455
/*
1456
 * Checks whether given mem is same or in the root_mem_cgroup's
1457 1458
 * hierarchy subtree
 */
1459 1460
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1461
{
1462 1463
	if (root_memcg == memcg)
		return true;
1464
	if (!root_memcg->use_hierarchy || !memcg)
1465
		return false;
1466
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1467 1468 1469 1470 1471 1472 1473
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1474
	rcu_read_lock();
1475
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1476 1477
	rcu_read_unlock();
	return ret;
1478 1479
}

1480 1481
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1482
{
1483
	struct mem_cgroup *curr = NULL;
1484
	struct task_struct *p;
1485
	bool ret;
1486

1487
	p = find_lock_task_mm(task);
1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1497
		rcu_read_lock();
1498 1499 1500
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1501
		rcu_read_unlock();
1502
	}
1503
	if (!curr)
1504
		return false;
1505
	/*
1506
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1507
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1508 1509
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1510
	 */
1511
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1512
	css_put(&curr->css);
1513 1514 1515
	return ret;
}

1516
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1517
{
1518
	unsigned long inactive_ratio;
1519
	unsigned long inactive;
1520
	unsigned long active;
1521
	unsigned long gb;
1522

1523 1524
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1525

1526 1527 1528 1529 1530 1531
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1532
	return inactive * inactive_ratio < active;
1533 1534
}

1535 1536 1537
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1538
/**
1539
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1540
 * @memcg: the memory cgroup
1541
 *
1542
 * Returns the maximum amount of memory @mem can be charged with, in
1543
 * pages.
1544
 */
1545
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1546
{
1547 1548
	unsigned long long margin;

1549
	margin = res_counter_margin(&memcg->res);
1550
	if (do_swap_account)
1551
		margin = min(margin, res_counter_margin(&memcg->memsw));
1552
	return margin >> PAGE_SHIFT;
1553 1554
}

1555
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1556 1557
{
	/* root ? */
T
Tejun Heo 已提交
1558
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1559 1560
		return vm_swappiness;

1561
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1578 1579 1580 1581

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1582
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1583
{
1584
	atomic_inc(&memcg_moving);
1585
	atomic_inc(&memcg->moving_account);
1586 1587 1588
	synchronize_rcu();
}

1589
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1590
{
1591 1592 1593 1594
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1595 1596
	if (memcg) {
		atomic_dec(&memcg_moving);
1597
		atomic_dec(&memcg->moving_account);
1598
	}
1599
}
1600

1601 1602 1603
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1604 1605
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1606 1607 1608 1609 1610 1611 1612
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1613
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1614 1615
{
	VM_BUG_ON(!rcu_read_lock_held());
1616
	return atomic_read(&memcg->moving_account) > 0;
1617
}
1618

1619
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1620
{
1621 1622
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1623
	bool ret = false;
1624 1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1633

1634 1635
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1636 1637
unlock:
	spin_unlock(&mc.lock);
1638 1639 1640
	return ret;
}

1641
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1642 1643
{
	if (mc.moving_task && current != mc.moving_task) {
1644
		if (mem_cgroup_under_move(memcg)) {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1657 1658 1659 1660
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1661
 * see mem_cgroup_stolen(), too.
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1675
#define K(x) ((x) << (PAGE_SHIFT-10))
1676
/**
1677
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1678 1679 1680 1681 1682 1683 1684 1685
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1686
	/* oom_info_lock ensures that parallel ooms do not interleave */
1687
	static DEFINE_SPINLOCK(oom_info_lock);
1688 1689
	struct mem_cgroup *iter;
	unsigned int i;
1690

1691
	if (!p)
1692 1693
		return;

1694
	spin_lock(&oom_info_lock);
1695 1696
	rcu_read_lock();

T
Tejun Heo 已提交
1697 1698 1699 1700 1701
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1702 1703 1704

	rcu_read_unlock();

1705
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1706 1707 1708
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1709
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1710 1711 1712
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1713
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1714 1715 1716
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1717 1718

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1719 1720
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1736
	spin_unlock(&oom_info_lock);
1737 1738
}

1739 1740 1741 1742
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1743
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1744 1745
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1746 1747
	struct mem_cgroup *iter;

1748
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1749
		num++;
1750 1751 1752
	return num;
}

D
David Rientjes 已提交
1753 1754 1755
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1756
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1757 1758 1759
{
	u64 limit;

1760 1761
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1762
	/*
1763
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1764
	 */
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1779 1780
}

1781 1782
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1783 1784 1785 1786 1787 1788 1789
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1790
	/*
1791 1792 1793
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1794
	 */
1795
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1796 1797 1798 1799 1800
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1801 1802
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1803
		struct css_task_iter it;
1804 1805
		struct task_struct *task;

1806 1807
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1820
				css_task_iter_end(&it);
1821 1822 1823 1824 1825 1826 1827 1828
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1841
		}
1842
		css_task_iter_end(&it);
1843 1844 1845 1846 1847 1848 1849 1850 1851
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1888 1889
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1890
 * @memcg: the target memcg
1891 1892 1893 1894 1895 1896 1897
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1898
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1899 1900
		int nid, bool noswap)
{
1901
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1902 1903 1904
		return true;
	if (noswap || !total_swap_pages)
		return false;
1905
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1906 1907 1908 1909
		return true;
	return false;

}
1910
#if MAX_NUMNODES > 1
1911 1912 1913 1914 1915 1916 1917

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1918
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1919 1920
{
	int nid;
1921 1922 1923 1924
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1925
	if (!atomic_read(&memcg->numainfo_events))
1926
		return;
1927
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1928 1929 1930
		return;

	/* make a nodemask where this memcg uses memory from */
1931
	memcg->scan_nodes = node_states[N_MEMORY];
1932

1933
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1934

1935 1936
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1937
	}
1938

1939 1940
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1955
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1956 1957 1958
{
	int node;

1959 1960
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1961

1962
	node = next_node(node, memcg->scan_nodes);
1963
	if (node == MAX_NUMNODES)
1964
		node = first_node(memcg->scan_nodes);
1965 1966 1967 1968 1969 1970 1971 1972 1973
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1974
	memcg->last_scanned_node = node;
1975 1976 1977
	return node;
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2013
#else
2014
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2015 2016 2017
{
	return 0;
}
2018

2019 2020 2021 2022
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2023 2024
#endif

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2073
	}
2074 2075
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2076 2077
}

2078 2079 2080 2081 2082 2083
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2084 2085
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2086 2087 2088 2089
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2090
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2091
{
2092
	struct mem_cgroup *iter, *failed = NULL;
2093

2094 2095
	spin_lock(&memcg_oom_lock);

2096
	for_each_mem_cgroup_tree(iter, memcg) {
2097
		if (iter->oom_lock) {
2098 2099 2100 2101 2102
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2103 2104
			mem_cgroup_iter_break(memcg, iter);
			break;
2105 2106
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2107
	}
K
KAMEZAWA Hiroyuki 已提交
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2120
		}
2121 2122
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2123 2124 2125 2126

	spin_unlock(&memcg_oom_lock);

	return !failed;
2127
}
2128

2129
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2130
{
K
KAMEZAWA Hiroyuki 已提交
2131 2132
	struct mem_cgroup *iter;

2133
	spin_lock(&memcg_oom_lock);
2134
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2135
	for_each_mem_cgroup_tree(iter, memcg)
2136
		iter->oom_lock = false;
2137
	spin_unlock(&memcg_oom_lock);
2138 2139
}

2140
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2141 2142 2143
{
	struct mem_cgroup *iter;

2144
	for_each_mem_cgroup_tree(iter, memcg)
2145 2146 2147
		atomic_inc(&iter->under_oom);
}

2148
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2149 2150 2151
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2152 2153 2154 2155 2156
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2157
	for_each_mem_cgroup_tree(iter, memcg)
2158
		atomic_add_unless(&iter->under_oom, -1, 0);
2159 2160
}

K
KAMEZAWA Hiroyuki 已提交
2161 2162
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2163
struct oom_wait_info {
2164
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2165 2166 2167 2168 2169 2170
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2171 2172
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2173 2174 2175
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2176
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2177 2178

	/*
2179
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2180 2181
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2182 2183
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2184 2185 2186 2187
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2188
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2189
{
2190
	atomic_inc(&memcg->oom_wakeups);
2191 2192
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2193 2194
}

2195
static void memcg_oom_recover(struct mem_cgroup *memcg)
2196
{
2197 2198
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2199 2200
}

2201
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2202
{
2203 2204
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2205
	/*
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2218
	 */
2219 2220 2221 2222
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2223 2224 2225 2226
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2227
 * @handle: actually kill/wait or just clean up the OOM state
2228
 *
2229 2230
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2231
 *
2232
 * Memcg supports userspace OOM handling where failed allocations must
2233 2234 2235 2236
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2237
 * the end of the page fault to complete the OOM handling.
2238 2239
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2240
 * completed, %false otherwise.
2241
 */
2242
bool mem_cgroup_oom_synchronize(bool handle)
2243
{
2244
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2245
	struct oom_wait_info owait;
2246
	bool locked;
2247 2248 2249

	/* OOM is global, do not handle */
	if (!memcg)
2250
		return false;
2251

2252 2253
	if (!handle)
		goto cleanup;
2254 2255 2256 2257 2258 2259

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2260

2261
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2275
		schedule();
2276 2277 2278 2279 2280
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2281 2282 2283 2284 2285 2286 2287 2288
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2289 2290
cleanup:
	current->memcg_oom.memcg = NULL;
2291
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2292
	return true;
2293 2294
}

2295 2296 2297
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2315 2316
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2317
 */
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2332
	 * need to take move_lock_mem_cgroup(). Because we already hold
2333
	 * rcu_read_lock(), any calls to move_account will be delayed until
2334
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2335
	 */
2336
	if (!mem_cgroup_stolen(memcg))
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2354
	 * should take move_lock_mem_cgroup().
2355 2356 2357 2358
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2359
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2360
				 enum mem_cgroup_stat_index idx, int val)
2361
{
2362
	struct mem_cgroup *memcg;
2363
	struct page_cgroup *pc = lookup_page_cgroup(page);
2364
	unsigned long uninitialized_var(flags);
2365

2366
	if (mem_cgroup_disabled())
2367
		return;
2368

2369
	VM_BUG_ON(!rcu_read_lock_held());
2370 2371
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2372
		return;
2373

2374
	this_cpu_add(memcg->stat->count[idx], val);
2375
}
2376

2377 2378 2379 2380
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2381
#define CHARGE_BATCH	32U
2382 2383
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2384
	unsigned int nr_pages;
2385
	struct work_struct work;
2386
	unsigned long flags;
2387
#define FLUSHING_CACHED_CHARGE	0
2388 2389
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2390
static DEFINE_MUTEX(percpu_charge_mutex);
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2402
 */
2403
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2404 2405 2406 2407
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2408 2409 2410
	if (nr_pages > CHARGE_BATCH)
		return false;

2411
	stock = &get_cpu_var(memcg_stock);
2412 2413
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2427 2428 2429 2430
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2431
		if (do_swap_account)
2432 2433
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2446
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2460 2461
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2462
 * This will be consumed by consume_stock() function, later.
2463
 */
2464
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2465 2466 2467
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2468
	if (stock->cached != memcg) { /* reset if necessary */
2469
		drain_stock(stock);
2470
		stock->cached = memcg;
2471
	}
2472
	stock->nr_pages += nr_pages;
2473 2474 2475 2476
	put_cpu_var(memcg_stock);
}

/*
2477
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2478 2479
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2480
 */
2481
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2482
{
2483
	int cpu, curcpu;
2484

2485 2486
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2487
	curcpu = get_cpu();
2488 2489
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2490
		struct mem_cgroup *memcg;
2491

2492 2493
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2494
			continue;
2495
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2496
			continue;
2497 2498 2499 2500 2501 2502
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2503
	}
2504
	put_cpu();
2505 2506 2507 2508 2509 2510

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2511
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2512 2513 2514
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2515
	put_online_cpus();
2516 2517 2518 2519 2520 2521 2522 2523
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2524
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2525
{
2526 2527 2528 2529 2530
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2531
	drain_all_stock(root_memcg, false);
2532
	mutex_unlock(&percpu_charge_mutex);
2533 2534 2535
}

/* This is a synchronous drain interface. */
2536
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2537 2538
{
	/* called when force_empty is called */
2539
	mutex_lock(&percpu_charge_mutex);
2540
	drain_all_stock(root_memcg, true);
2541
	mutex_unlock(&percpu_charge_mutex);
2542 2543
}

2544 2545 2546 2547
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2548
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2549 2550 2551
{
	int i;

2552
	spin_lock(&memcg->pcp_counter_lock);
2553
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2554
		long x = per_cpu(memcg->stat->count[i], cpu);
2555

2556 2557
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2558
	}
2559
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2560
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2561

2562 2563
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2564
	}
2565
	spin_unlock(&memcg->pcp_counter_lock);
2566 2567
}

2568
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2569 2570 2571 2572 2573
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2574
	struct mem_cgroup *iter;
2575

2576
	if (action == CPU_ONLINE)
2577 2578
		return NOTIFY_OK;

2579
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2580
		return NOTIFY_OK;
2581

2582
	for_each_mem_cgroup(iter)
2583 2584
		mem_cgroup_drain_pcp_counter(iter, cpu);

2585 2586 2587 2588 2589
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2590 2591 2592 2593 2594 2595 2596 2597 2598

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2599
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2600
				unsigned int nr_pages, unsigned int min_pages,
2601
				bool invoke_oom)
2602
{
2603
	unsigned long csize = nr_pages * PAGE_SIZE;
2604 2605 2606 2607 2608
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2609
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2610 2611 2612 2613

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2614
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2615 2616 2617
		if (likely(!ret))
			return CHARGE_OK;

2618
		res_counter_uncharge(&memcg->res, csize);
2619 2620 2621 2622
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2623 2624 2625 2626
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2627
	if (nr_pages > min_pages)
2628 2629 2630 2631 2632
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2633 2634 2635
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2636
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2637
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2638
		return CHARGE_RETRY;
2639
	/*
2640 2641 2642 2643 2644 2645 2646
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2647
	 */
2648
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2649 2650 2651 2652 2653 2654 2655 2656 2657
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2658 2659
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2660

2661
	return CHARGE_NOMEM;
2662 2663
}

2664
/*
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2684
 */
2685
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2686
				   gfp_t gfp_mask,
2687
				   unsigned int nr_pages,
2688
				   struct mem_cgroup **ptr,
2689
				   bool oom)
2690
{
2691
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2692
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2693
	struct mem_cgroup *memcg = NULL;
2694
	int ret;
2695

K
KAMEZAWA Hiroyuki 已提交
2696 2697 2698 2699 2700 2701 2702 2703
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2704

2705
	if (unlikely(task_in_memcg_oom(current)))
2706
		goto nomem;
2707

2708 2709 2710
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;

2711
	/*
2712 2713
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2714
	 * thread group leader migrates. It's possible that mm is not
2715
	 * set, if so charge the root memcg (happens for pagecache usage).
2716
	 */
2717
	if (!*ptr && !mm)
2718
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2719
again:
2720 2721 2722
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2723
			goto done;
2724
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2725
			goto done;
2726
		css_get(&memcg->css);
2727
	} else {
K
KAMEZAWA Hiroyuki 已提交
2728
		struct task_struct *p;
2729

K
KAMEZAWA Hiroyuki 已提交
2730 2731 2732
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2733
		 * Because we don't have task_lock(), "p" can exit.
2734
		 * In that case, "memcg" can point to root or p can be NULL with
2735 2736 2737 2738 2739 2740
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2741
		 */
2742
		memcg = mem_cgroup_from_task(p);
2743 2744 2745
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2746 2747 2748
			rcu_read_unlock();
			goto done;
		}
2749
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2762
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2763 2764 2765 2766 2767
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2768

2769
	do {
2770
		bool invoke_oom = oom && !nr_oom_retries;
2771

2772
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2773
		if (fatal_signal_pending(current)) {
2774
			css_put(&memcg->css);
2775
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2776
		}
2777

2778 2779
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2780 2781 2782 2783
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2784
			batch = nr_pages;
2785 2786
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2787
			goto again;
2788
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2789
			css_put(&memcg->css);
2790 2791
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2792
			if (!oom || invoke_oom) {
2793
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2794
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2795
			}
2796 2797
			nr_oom_retries--;
			break;
2798
		}
2799 2800
	} while (ret != CHARGE_OK);

2801
	if (batch > nr_pages)
2802 2803
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2804
done:
2805
	*ptr = memcg;
2806 2807
	return 0;
nomem:
2808 2809 2810 2811
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2812
bypass:
2813 2814
	*ptr = root_mem_cgroup;
	return -EINTR;
2815
}
2816

2817 2818 2819 2820 2821
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2822
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2823
				       unsigned int nr_pages)
2824
{
2825
	if (!mem_cgroup_is_root(memcg)) {
2826 2827
		unsigned long bytes = nr_pages * PAGE_SIZE;

2828
		res_counter_uncharge(&memcg->res, bytes);
2829
		if (do_swap_account)
2830
			res_counter_uncharge(&memcg->memsw, bytes);
2831
	}
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2852 2853
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2854 2855 2856
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2857 2858 2859 2860 2861 2862
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2863
	return mem_cgroup_from_id(id);
2864 2865
}

2866
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2867
{
2868
	struct mem_cgroup *memcg = NULL;
2869
	struct page_cgroup *pc;
2870
	unsigned short id;
2871 2872
	swp_entry_t ent;

2873
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2874 2875

	pc = lookup_page_cgroup(page);
2876
	lock_page_cgroup(pc);
2877
	if (PageCgroupUsed(pc)) {
2878 2879 2880
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2881
	} else if (PageSwapCache(page)) {
2882
		ent.val = page_private(page);
2883
		id = lookup_swap_cgroup_id(ent);
2884
		rcu_read_lock();
2885 2886 2887
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2888
		rcu_read_unlock();
2889
	}
2890
	unlock_page_cgroup(pc);
2891
	return memcg;
2892 2893
}

2894
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2895
				       struct page *page,
2896
				       unsigned int nr_pages,
2897 2898
				       enum charge_type ctype,
				       bool lrucare)
2899
{
2900
	struct page_cgroup *pc = lookup_page_cgroup(page);
2901
	struct zone *uninitialized_var(zone);
2902
	struct lruvec *lruvec;
2903
	bool was_on_lru = false;
2904
	bool anon;
2905

2906
	lock_page_cgroup(pc);
2907
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2908 2909 2910 2911
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2912 2913 2914 2915 2916 2917 2918 2919 2920

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2921
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2922
			ClearPageLRU(page);
2923
			del_page_from_lru_list(page, lruvec, page_lru(page));
2924 2925 2926 2927
			was_on_lru = true;
		}
	}

2928
	pc->mem_cgroup = memcg;
2929 2930 2931 2932 2933 2934
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2935
	 */
K
KAMEZAWA Hiroyuki 已提交
2936
	smp_wmb();
2937
	SetPageCgroupUsed(pc);
2938

2939 2940
	if (lrucare) {
		if (was_on_lru) {
2941
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2942
			VM_BUG_ON_PAGE(PageLRU(page), page);
2943
			SetPageLRU(page);
2944
			add_page_to_lru_list(page, lruvec, page_lru(page));
2945 2946 2947 2948
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2949
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2950 2951 2952 2953
		anon = true;
	else
		anon = false;

2954
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2955
	unlock_page_cgroup(pc);
2956

2957
	/*
2958 2959 2960
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2961
	 */
2962
	memcg_check_events(memcg, page);
2963
}
2964

2965 2966
static DEFINE_MUTEX(set_limit_mutex);

2967
#ifdef CONFIG_MEMCG_KMEM
2968 2969
static DEFINE_MUTEX(activate_kmem_mutex);

2970 2971 2972
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2973
		memcg_kmem_is_active(memcg);
2974 2975
}

G
Glauber Costa 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2986
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2987 2988
}

2989
#ifdef CONFIG_SLABINFO
2990
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2991
{
2992
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3021
				      &_memcg, oom_gfp_allowed(gfp));
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3055 3056 3057 3058 3059

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3060 3061 3062 3063 3064 3065 3066 3067
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3068
	if (memcg_kmem_test_and_clear_dead(memcg))
3069
		css_put(&memcg->css);
3070 3071
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3108 3109
static void kmem_cache_destroy_work_func(struct work_struct *w);

3110 3111 3112 3113
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3114
	VM_BUG_ON(!is_root_cache(s));
3115 3116 3117

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3118
		struct memcg_cache_params *new_params;
3119 3120 3121
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3122
		size += offsetof(struct memcg_cache_params, memcg_caches);
3123

3124 3125
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3126 3127
			return -ENOMEM;

3128
		new_params->is_root_cache = true;
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3142
			new_params->memcg_caches[i] =
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3155 3156 3157
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3158 3159 3160 3161
	}
	return 0;
}

3162 3163
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3164
{
3165
	size_t size;
3166 3167 3168 3169

	if (!memcg_kmem_enabled())
		return 0;

3170 3171
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3172
		size += memcg_limited_groups_array_size * sizeof(void *);
3173 3174
	} else
		size = sizeof(struct memcg_cache_params);
3175

3176 3177 3178 3179
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3180
	if (memcg) {
3181
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3182
		s->memcg_params->root_cache = root_cache;
3183 3184
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3185 3186 3187
	} else
		s->memcg_params->is_root_cache = true;

3188 3189 3190
	return 0;
}

3191 3192 3193 3194 3195
void memcg_free_cache_params(struct kmem_cache *s)
{
	kfree(s->memcg_params);
}

3196
void memcg_register_cache(struct kmem_cache *s)
3197
{
3198 3199 3200 3201
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

3202 3203 3204
	if (is_root_cache(s))
		return;

3205 3206 3207 3208 3209 3210
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3211 3212 3213 3214 3215 3216 3217
	root = s->memcg_params->root_cache;
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);

	css_get(&memcg->css);


3218
	/*
3219 3220 3221
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3222
	 */
3223 3224
	smp_wmb();

3225 3226 3227 3228 3229
	/*
	 * Initialize the pointer to this cache in its parent's memcg_params
	 * before adding it to the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3230
	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3231
	root->memcg_params->memcg_caches[id] = s;
3232 3233 3234 3235

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
3236
}
3237

3238 3239 3240 3241 3242 3243 3244 3245
void memcg_unregister_cache(struct kmem_cache *s)
{
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	if (is_root_cache(s))
		return;
3246

3247 3248 3249 3250 3251 3252
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3253
	root = s->memcg_params->root_cache;
3254 3255
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);
3256 3257 3258 3259 3260

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3261 3262 3263 3264 3265
	/*
	 * Clear the pointer to this cache in its parent's memcg_params only
	 * after removing it from the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3266
	VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3267 3268
	root->memcg_params->memcg_caches[id] = NULL;

3269
	css_put(&memcg->css);
3270 3271
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
3328
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
G
Glauber Costa 已提交
3329
		kmem_cache_shrink(cachep);
3330
	else
G
Glauber Costa 已提交
3331 3332 3333 3334 3335 3336 3337 3338
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3359 3360 3361 3362 3363 3364 3365
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3366 3367
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *s)
3368
{
3369
	struct kmem_cache *new = NULL;
T
Tejun Heo 已提交
3370
	static char *tmp_path = NULL, *tmp_name = NULL;
3371
	static DEFINE_MUTEX(mutex);	/* protects tmp_name */
3372

3373
	BUG_ON(!memcg_can_account_kmem(memcg));
3374

3375
	mutex_lock(&mutex);
3376 3377 3378 3379 3380 3381
	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
T
Tejun Heo 已提交
3382 3383 3384
	if (!tmp_path || !tmp_name) {
		if (!tmp_path)
			tmp_path = kmalloc(PATH_MAX, GFP_KERNEL);
3385
		if (!tmp_name)
T
Tejun Heo 已提交
3386 3387
			tmp_name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
		if (!tmp_path || !tmp_name)
3388
			goto out;
3389 3390
	}

T
Tejun Heo 已提交
3391 3392 3393
	cgroup_name(memcg->css.cgroup, tmp_name, NAME_MAX + 1);
	snprintf(tmp_path, PATH_MAX, "%s(%d:%s)", s->name,
		 memcg_cache_id(memcg), tmp_name);
3394

T
Tejun Heo 已提交
3395
	new = kmem_cache_create_memcg(memcg, tmp_path, s->object_size, s->align,
G
Glauber Costa 已提交
3396
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3397 3398
	if (new)
		new->allocflags |= __GFP_KMEMCG;
3399 3400
	else
		new = s;
3401
out:
3402
	mutex_unlock(&mutex);
3403 3404 3405
	return new;
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
3423 3424
	 * we'll take the activate_kmem_mutex to protect ourselves against
	 * this.
3425
	 */
3426
	mutex_lock(&activate_kmem_mutex);
3427 3428
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3446
		cancel_work_sync(&c->memcg_params->destroy);
3447 3448
		kmem_cache_destroy(c);
	}
3449
	mutex_unlock(&activate_kmem_mutex);
3450 3451
}

3452 3453 3454 3455 3456 3457
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3475 3476 3477 3478 3479 3480
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3481
	css_put(&cw->memcg->css);
3482 3483 3484 3485 3486 3487
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3488 3489
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3490 3491 3492 3493
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3494 3495
	if (cw == NULL) {
		css_put(&memcg->css);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3541
	struct kmem_cache *memcg_cachep;
3542 3543 3544 3545

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3546 3547 3548
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3549 3550 3551 3552
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3553
		goto out;
3554

3555 3556 3557
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3558
		goto out;
3559 3560
	}

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3588 3589 3590
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3627 3628 3629
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3711
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3712 3713
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3714 3715 3716 3717
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3718 3719
#endif /* CONFIG_MEMCG_KMEM */

3720 3721
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3722
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3723 3724
/*
 * Because tail pages are not marked as "used", set it. We're under
3725 3726 3727
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3728
 */
3729
void mem_cgroup_split_huge_fixup(struct page *head)
3730 3731
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3732
	struct page_cgroup *pc;
3733
	struct mem_cgroup *memcg;
3734
	int i;
3735

3736 3737
	if (mem_cgroup_disabled())
		return;
3738 3739

	memcg = head_pc->mem_cgroup;
3740 3741
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3742
		pc->mem_cgroup = memcg;
3743 3744 3745
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3746 3747
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3748
}
3749
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3750

3751 3752 3753 3754 3755 3756 3757 3758
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3759
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3760 3761 3762 3763
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3764
/**
3765
 * mem_cgroup_move_account - move account of the page
3766
 * @page: the page
3767
 * @nr_pages: number of regular pages (>1 for huge pages)
3768 3769 3770 3771 3772
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3773
 * - page is not on LRU (isolate_page() is useful.)
3774
 * - compound_lock is held when nr_pages > 1
3775
 *
3776 3777
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3778
 */
3779 3780 3781 3782
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3783
				   struct mem_cgroup *to)
3784
{
3785 3786
	unsigned long flags;
	int ret;
3787
	bool anon = PageAnon(page);
3788

3789
	VM_BUG_ON(from == to);
3790
	VM_BUG_ON_PAGE(PageLRU(page), page);
3791 3792 3793 3794 3795 3796 3797
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3798
	if (nr_pages > 1 && !PageTransHuge(page))
3799 3800 3801 3802 3803 3804 3805 3806
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3807
	move_lock_mem_cgroup(from, &flags);
3808

3809 3810 3811 3812 3813 3814 3815 3816
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3817
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3818

3819
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3820
	pc->mem_cgroup = to;
3821
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3822
	move_unlock_mem_cgroup(from, &flags);
3823 3824
	ret = 0;
unlock:
3825
	unlock_page_cgroup(pc);
3826 3827 3828
	/*
	 * check events
	 */
3829 3830
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3831
out:
3832 3833 3834
	return ret;
}

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3855
 */
3856 3857
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3858
				  struct mem_cgroup *child)
3859 3860
{
	struct mem_cgroup *parent;
3861
	unsigned int nr_pages;
3862
	unsigned long uninitialized_var(flags);
3863 3864
	int ret;

3865
	VM_BUG_ON(mem_cgroup_is_root(child));
3866

3867 3868 3869 3870 3871
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3872

3873
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3874

3875 3876 3877 3878 3879 3880
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3881

3882
	if (nr_pages > 1) {
3883
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3884
		flags = compound_lock_irqsave(page);
3885
	}
3886

3887
	ret = mem_cgroup_move_account(page, nr_pages,
3888
				pc, child, parent);
3889 3890
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3891

3892
	if (nr_pages > 1)
3893
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3894
	putback_lru_page(page);
3895
put:
3896
	put_page(page);
3897
out:
3898 3899 3900
	return ret;
}

3901 3902 3903 3904 3905 3906 3907
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3908
				gfp_t gfp_mask, enum charge_type ctype)
3909
{
3910
	struct mem_cgroup *memcg = NULL;
3911
	unsigned int nr_pages = 1;
3912
	bool oom = true;
3913
	int ret;
A
Andrea Arcangeli 已提交
3914

A
Andrea Arcangeli 已提交
3915
	if (PageTransHuge(page)) {
3916
		nr_pages <<= compound_order(page);
3917
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3918 3919 3920 3921 3922
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3923
	}
3924

3925
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3926
	if (ret == -ENOMEM)
3927
		return ret;
3928
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3929 3930 3931
	return 0;
}

3932 3933
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3934
{
3935
	if (mem_cgroup_disabled())
3936
		return 0;
3937 3938
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3939
	VM_BUG_ON(!mm);
3940
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3941
					MEM_CGROUP_CHARGE_TYPE_ANON);
3942 3943
}

3944 3945 3946
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3947
 * struct page_cgroup is acquired. This refcnt will be consumed by
3948 3949
 * "commit()" or removed by "cancel()"
 */
3950 3951 3952 3953
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3954
{
3955
	struct mem_cgroup *memcg;
3956
	struct page_cgroup *pc;
3957
	int ret;
3958

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3969 3970
	if (!do_swap_account)
		goto charge_cur_mm;
3971 3972
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3973
		goto charge_cur_mm;
3974 3975
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3976
	css_put(&memcg->css);
3977 3978
	if (ret == -EINTR)
		ret = 0;
3979
	return ret;
3980
charge_cur_mm:
3981 3982 3983 3984
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3985 3986
}

3987 3988 3989 3990 3991 3992
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4007 4008 4009
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4010 4011 4012 4013 4014 4015 4016 4017 4018
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4019
static void
4020
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4021
					enum charge_type ctype)
4022
{
4023
	if (mem_cgroup_disabled())
4024
		return;
4025
	if (!memcg)
4026
		return;
4027

4028
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4029 4030 4031
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4032 4033 4034
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4035
	 */
4036
	if (do_swap_account && PageSwapCache(page)) {
4037
		swp_entry_t ent = {.val = page_private(page)};
4038
		mem_cgroup_uncharge_swap(ent);
4039
	}
4040 4041
}

4042 4043
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4044
{
4045
	__mem_cgroup_commit_charge_swapin(page, memcg,
4046
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4047 4048
}

4049 4050
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4051
{
4052 4053 4054 4055
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4056
	if (mem_cgroup_disabled())
4057 4058 4059 4060 4061 4062 4063
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4064 4065
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4066 4067 4068 4069
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4070 4071
}

4072
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4073 4074
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4075 4076 4077
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4090
		batch->memcg = memcg;
4091 4092
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4093
	 * In those cases, all pages freed continuously can be expected to be in
4094 4095 4096 4097 4098 4099 4100 4101
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4102
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4103 4104
		goto direct_uncharge;

4105 4106 4107 4108 4109
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4110
	if (batch->memcg != memcg)
4111 4112
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4113
	batch->nr_pages++;
4114
	if (uncharge_memsw)
4115
		batch->memsw_nr_pages++;
4116 4117
	return;
direct_uncharge:
4118
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4119
	if (uncharge_memsw)
4120 4121 4122
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4123
}
4124

4125
/*
4126
 * uncharge if !page_mapped(page)
4127
 */
4128
static struct mem_cgroup *
4129 4130
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4131
{
4132
	struct mem_cgroup *memcg = NULL;
4133 4134
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4135
	bool anon;
4136

4137
	if (mem_cgroup_disabled())
4138
		return NULL;
4139

A
Andrea Arcangeli 已提交
4140
	if (PageTransHuge(page)) {
4141
		nr_pages <<= compound_order(page);
4142
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
4143
	}
4144
	/*
4145
	 * Check if our page_cgroup is valid
4146
	 */
4147
	pc = lookup_page_cgroup(page);
4148
	if (unlikely(!PageCgroupUsed(pc)))
4149
		return NULL;
4150

4151
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4152

4153
	memcg = pc->mem_cgroup;
4154

K
KAMEZAWA Hiroyuki 已提交
4155 4156 4157
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4158 4159
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4160
	switch (ctype) {
4161
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4162 4163 4164 4165 4166
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4167 4168
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4169
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4170
		/* See mem_cgroup_prepare_migration() */
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4192
	}
K
KAMEZAWA Hiroyuki 已提交
4193

4194
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4195

4196
	ClearPageCgroupUsed(pc);
4197 4198 4199 4200 4201 4202
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4203

4204
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4205
	/*
4206
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4207
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4208
	 */
4209
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4210
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4211
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4212
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4213
	}
4214 4215 4216 4217 4218 4219
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4220
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4221

4222
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4223 4224 4225

unlock_out:
	unlock_page_cgroup(pc);
4226
	return NULL;
4227 4228
}

4229 4230
void mem_cgroup_uncharge_page(struct page *page)
{
4231 4232 4233
	/* early check. */
	if (page_mapped(page))
		return;
4234
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4247 4248
	if (PageSwapCache(page))
		return;
4249
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4250 4251 4252 4253
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4254 4255
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4256
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4257 4258
}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4273 4274
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4295 4296 4297 4298 4299 4300
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4301
	memcg_oom_recover(batch->memcg);
4302 4303 4304 4305
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4306
#ifdef CONFIG_SWAP
4307
/*
4308
 * called after __delete_from_swap_cache() and drop "page" account.
4309 4310
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4311 4312
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4313 4314
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4315 4316 4317 4318 4319
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4320
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4321

K
KAMEZAWA Hiroyuki 已提交
4322 4323
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4324
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4325 4326
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4327
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4328
}
4329
#endif
4330

A
Andrew Morton 已提交
4331
#ifdef CONFIG_MEMCG_SWAP
4332 4333 4334 4335 4336
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4337
{
4338
	struct mem_cgroup *memcg;
4339
	unsigned short id;
4340 4341 4342 4343

	if (!do_swap_account)
		return;

4344 4345 4346
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4347
	if (memcg) {
4348 4349 4350 4351
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4352
		if (!mem_cgroup_is_root(memcg))
4353
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4354
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4355
		css_put(&memcg->css);
4356
	}
4357
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4358
}
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4375
				struct mem_cgroup *from, struct mem_cgroup *to)
4376 4377 4378
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4379 4380
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4381 4382 4383

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4384
		mem_cgroup_swap_statistics(to, true);
4385
		/*
4386 4387 4388
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4389 4390 4391 4392 4393 4394
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4395
		 */
L
Li Zefan 已提交
4396
		css_get(&to->css);
4397 4398 4399 4400 4401 4402
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4403
				struct mem_cgroup *from, struct mem_cgroup *to)
4404 4405 4406
{
	return -EINVAL;
}
4407
#endif
K
KAMEZAWA Hiroyuki 已提交
4408

4409
/*
4410 4411
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4412
 */
4413 4414
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4415
{
4416
	struct mem_cgroup *memcg = NULL;
4417
	unsigned int nr_pages = 1;
4418
	struct page_cgroup *pc;
4419
	enum charge_type ctype;
4420

4421
	*memcgp = NULL;
4422

4423
	if (mem_cgroup_disabled())
4424
		return;
4425

4426 4427 4428
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4429 4430 4431
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4432 4433
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4465
	}
4466
	unlock_page_cgroup(pc);
4467 4468 4469 4470
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4471
	if (!memcg)
4472
		return;
4473

4474
	*memcgp = memcg;
4475 4476 4477 4478 4479 4480 4481
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4482
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4483
	else
4484
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4485 4486 4487 4488 4489
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4490
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4491
}
4492

4493
/* remove redundant charge if migration failed*/
4494
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4495
	struct page *oldpage, struct page *newpage, bool migration_ok)
4496
{
4497
	struct page *used, *unused;
4498
	struct page_cgroup *pc;
4499
	bool anon;
4500

4501
	if (!memcg)
4502
		return;
4503

4504
	if (!migration_ok) {
4505 4506
		used = oldpage;
		unused = newpage;
4507
	} else {
4508
		used = newpage;
4509 4510
		unused = oldpage;
	}
4511
	anon = PageAnon(used);
4512 4513 4514 4515
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4516
	css_put(&memcg->css);
4517
	/*
4518 4519 4520
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4521
	 */
4522 4523 4524 4525 4526
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4527
	/*
4528 4529 4530 4531 4532 4533
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4534
	 */
4535
	if (anon)
4536
		mem_cgroup_uncharge_page(used);
4537
}
4538

4539 4540 4541 4542 4543 4544 4545 4546
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4547
	struct mem_cgroup *memcg = NULL;
4548 4549 4550 4551 4552 4553 4554 4555 4556
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4557 4558
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4559
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4560 4561
		ClearPageCgroupUsed(pc);
	}
4562 4563
	unlock_page_cgroup(pc);

4564 4565 4566 4567 4568 4569
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4570 4571 4572 4573 4574
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4575
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4576 4577
}

4578 4579 4580 4581 4582 4583
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4584 4585 4586 4587 4588
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4608 4609
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4610 4611 4612 4613
	}
}
#endif

4614
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4615
				unsigned long long val)
4616
{
4617
	int retry_count;
4618
	u64 memswlimit, memlimit;
4619
	int ret = 0;
4620 4621
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4622
	int enlarge;
4623 4624 4625 4626 4627 4628 4629 4630 4631

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4632

4633
	enlarge = 0;
4634
	while (retry_count) {
4635 4636 4637 4638
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4639 4640 4641
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4642
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4643 4644 4645 4646 4647 4648
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4649 4650
			break;
		}
4651 4652 4653 4654 4655

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4656
		ret = res_counter_set_limit(&memcg->res, val);
4657 4658 4659 4660 4661 4662
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4663 4664 4665 4666 4667
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4668 4669
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4670 4671
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4672
		if (curusage >= oldusage)
4673 4674 4675
			retry_count--;
		else
			oldusage = curusage;
4676
	}
4677 4678
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4679

4680 4681 4682
	return ret;
}

L
Li Zefan 已提交
4683 4684
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4685
{
4686
	int retry_count;
4687
	u64 memlimit, memswlimit, oldusage, curusage;
4688 4689
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4690
	int enlarge = 0;
4691

4692
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4693
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4694
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4695 4696 4697 4698 4699 4700 4701 4702
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4703
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4704 4705 4706 4707 4708 4709 4710 4711
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4712 4713 4714
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4715
		ret = res_counter_set_limit(&memcg->memsw, val);
4716 4717 4718 4719 4720 4721
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4722 4723 4724 4725 4726
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4727 4728 4729
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4730
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4731
		/* Usage is reduced ? */
4732
		if (curusage >= oldusage)
4733
			retry_count--;
4734 4735
		else
			oldusage = curusage;
4736
	}
4737 4738
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4739 4740 4741
	return ret;
}

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4834 4835 4836 4837 4838 4839 4840
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4841
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4842 4843
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4844
 */
4845
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4846
				int node, int zid, enum lru_list lru)
4847
{
4848
	struct lruvec *lruvec;
4849
	unsigned long flags;
4850
	struct list_head *list;
4851 4852
	struct page *busy;
	struct zone *zone;
4853

K
KAMEZAWA Hiroyuki 已提交
4854
	zone = &NODE_DATA(node)->node_zones[zid];
4855 4856
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4857

4858
	busy = NULL;
4859
	do {
4860
		struct page_cgroup *pc;
4861 4862
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4863
		spin_lock_irqsave(&zone->lru_lock, flags);
4864
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4865
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4866
			break;
4867
		}
4868 4869 4870
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4871
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4872
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4873 4874
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4875
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4876

4877
		pc = lookup_page_cgroup(page);
4878

4879
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4880
			/* found lock contention or "pc" is obsolete. */
4881
			busy = page;
4882 4883 4884
			cond_resched();
		} else
			busy = NULL;
4885
	} while (!list_empty(list));
4886 4887 4888
}

/*
4889 4890
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4891
 * This enables deleting this mem_cgroup.
4892 4893
 *
 * Caller is responsible for holding css reference on the memcg.
4894
 */
4895
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4896
{
4897
	int node, zid;
4898
	u64 usage;
4899

4900
	do {
4901 4902
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4903 4904
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4905
		for_each_node_state(node, N_MEMORY) {
4906
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4907 4908
				enum lru_list lru;
				for_each_lru(lru) {
4909
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4910
							node, zid, lru);
4911
				}
4912
			}
4913
		}
4914 4915
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4916
		cond_resched();
4917

4918
		/*
4919 4920 4921 4922 4923
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4924 4925 4926 4927 4928 4929
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4930 4931 4932
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4933 4934
}

4935 4936
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4947 4948
}

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4959

4960
	/* returns EBUSY if there is a task or if we come here twice. */
4961
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4962 4963
		return -EBUSY;

4964 4965
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4966
	/* try to free all pages in this cgroup */
4967
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4968
		int progress;
4969

4970 4971 4972
		if (signal_pending(current))
			return -EINTR;

4973
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4974
						false);
4975
		if (!progress) {
4976
			nr_retries--;
4977
			/* maybe some writeback is necessary */
4978
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4979
		}
4980 4981

	}
K
KAMEZAWA Hiroyuki 已提交
4982
	lru_add_drain();
4983 4984 4985
	mem_cgroup_reparent_charges(memcg);

	return 0;
4986 4987
}

4988 4989
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4990
{
4991
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4992

4993 4994
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4995
	return mem_cgroup_force_empty(memcg);
4996 4997
}

4998 4999
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5000
{
5001
	return mem_cgroup_from_css(css)->use_hierarchy;
5002 5003
}

5004 5005
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5006 5007
{
	int retval = 0;
5008
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5009
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5010

5011
	mutex_lock(&memcg_create_mutex);
5012 5013 5014 5015

	if (memcg->use_hierarchy == val)
		goto out;

5016
	/*
5017
	 * If parent's use_hierarchy is set, we can't make any modifications
5018 5019 5020 5021 5022 5023
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5024
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5025
				(val == 1 || val == 0)) {
5026
		if (list_empty(&memcg->css.cgroup->children))
5027
			memcg->use_hierarchy = val;
5028 5029 5030 5031
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5032 5033

out:
5034
	mutex_unlock(&memcg_create_mutex);
5035 5036 5037 5038

	return retval;
}

5039

5040
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5041
					       enum mem_cgroup_stat_index idx)
5042
{
K
KAMEZAWA Hiroyuki 已提交
5043
	struct mem_cgroup *iter;
5044
	long val = 0;
5045

5046
	/* Per-cpu values can be negative, use a signed accumulator */
5047
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5048 5049 5050 5051 5052
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5053 5054
}

5055
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5056
{
K
KAMEZAWA Hiroyuki 已提交
5057
	u64 val;
5058

5059
	if (!mem_cgroup_is_root(memcg)) {
5060
		if (!swap)
5061
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5062
		else
5063
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5064 5065
	}

5066 5067 5068 5069
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5070 5071
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5072

K
KAMEZAWA Hiroyuki 已提交
5073
	if (swap)
5074
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5075 5076 5077 5078

	return val << PAGE_SHIFT;
}

5079 5080
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
5081
{
5082
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5083
	u64 val;
5084
	int name;
G
Glauber Costa 已提交
5085
	enum res_type type;
5086 5087 5088

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5089

5090 5091
	switch (type) {
	case _MEM:
5092
		if (name == RES_USAGE)
5093
			val = mem_cgroup_usage(memcg, false);
5094
		else
5095
			val = res_counter_read_u64(&memcg->res, name);
5096 5097
		break;
	case _MEMSWAP:
5098
		if (name == RES_USAGE)
5099
			val = mem_cgroup_usage(memcg, true);
5100
		else
5101
			val = res_counter_read_u64(&memcg->memsw, name);
5102
		break;
5103 5104 5105
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5106 5107 5108
	default:
		BUG();
	}
5109

5110
	return val;
B
Balbir Singh 已提交
5111
}
5112 5113

#ifdef CONFIG_MEMCG_KMEM
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5142
	mutex_lock(&memcg_create_mutex);
5143
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5144 5145 5146 5147
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
5148

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
	err = memcg_update_all_caches(memcg_id + 1);
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
5182
out:
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5211 5212 5213
	return ret;
}

5214
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5215
{
5216
	int ret = 0;
5217
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5218

5219 5220
	if (!parent)
		return 0;
5221

5222
	mutex_lock(&activate_kmem_mutex);
5223
	/*
5224 5225
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5226
	 */
5227 5228 5229
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5230
	return ret;
5231
}
5232 5233 5234 5235 5236 5237
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5238
#endif /* CONFIG_MEMCG_KMEM */
5239

5240 5241 5242 5243
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5244
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5245
			    const char *buffer)
B
Balbir Singh 已提交
5246
{
5247
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5248 5249
	enum res_type type;
	int name;
5250 5251 5252
	unsigned long long val;
	int ret;

5253 5254
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5255

5256
	switch (name) {
5257
	case RES_LIMIT:
5258 5259 5260 5261
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5262 5263
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5264 5265 5266
		if (ret)
			break;
		if (type == _MEM)
5267
			ret = mem_cgroup_resize_limit(memcg, val);
5268
		else if (type == _MEMSWAP)
5269
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5270
		else if (type == _KMEM)
5271
			ret = memcg_update_kmem_limit(memcg, val);
5272 5273
		else
			return -EINVAL;
5274
		break;
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5289 5290 5291 5292 5293
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5294 5295
}

5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5306 5307
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5320
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5321
{
5322
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5323 5324
	int name;
	enum res_type type;
5325

5326 5327
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5328

5329
	switch (name) {
5330
	case RES_MAX_USAGE:
5331
		if (type == _MEM)
5332
			res_counter_reset_max(&memcg->res);
5333
		else if (type == _MEMSWAP)
5334
			res_counter_reset_max(&memcg->memsw);
5335 5336 5337 5338
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5339 5340
		break;
	case RES_FAILCNT:
5341
		if (type == _MEM)
5342
			res_counter_reset_failcnt(&memcg->res);
5343
		else if (type == _MEMSWAP)
5344
			res_counter_reset_failcnt(&memcg->memsw);
5345 5346 5347 5348
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5349 5350
		break;
	}
5351

5352
	return 0;
5353 5354
}

5355
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5356 5357
					struct cftype *cft)
{
5358
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5359 5360
}

5361
#ifdef CONFIG_MMU
5362
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5363 5364
					struct cftype *cft, u64 val)
{
5365
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366 5367 5368

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5369

5370
	/*
5371 5372 5373 5374
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5375
	 */
5376
	memcg->move_charge_at_immigrate = val;
5377 5378
	return 0;
}
5379
#else
5380
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5381 5382 5383 5384 5385
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5386

5387
#ifdef CONFIG_NUMA
5388
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5389
{
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5402
	int nid;
5403
	unsigned long nr;
5404
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5405

5406 5407 5408 5409 5410 5411 5412 5413 5414
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5415 5416
	}

5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5432 5433 5434 5435 5436 5437
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5438 5439 5440 5441 5442
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5443
static int memcg_stat_show(struct seq_file *m, void *v)
5444
{
5445
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5446 5447
	struct mem_cgroup *mi;
	unsigned int i;
5448

5449
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5450
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5451
			continue;
5452 5453
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5454
	}
L
Lee Schermerhorn 已提交
5455

5456 5457 5458 5459 5460 5461 5462 5463
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5464
	/* Hierarchical information */
5465 5466
	{
		unsigned long long limit, memsw_limit;
5467
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5468
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5469
		if (do_swap_account)
5470 5471
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5472
	}
K
KOSAKI Motohiro 已提交
5473

5474 5475 5476
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5477
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5478
			continue;
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5499
	}
K
KAMEZAWA Hiroyuki 已提交
5500

K
KOSAKI Motohiro 已提交
5501 5502 5503 5504
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5505
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5506 5507 5508 5509 5510
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5511
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5512
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5513

5514 5515 5516 5517
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5518
			}
5519 5520 5521 5522
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5523 5524 5525
	}
#endif

5526 5527 5528
	return 0;
}

5529 5530
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5531
{
5532
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5533

5534
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5535 5536
}

5537 5538
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5539
{
5540
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5541
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5542

T
Tejun Heo 已提交
5543
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5544 5545
		return -EINVAL;

5546
	mutex_lock(&memcg_create_mutex);
5547

K
KOSAKI Motohiro 已提交
5548
	/* If under hierarchy, only empty-root can set this value */
5549
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5550
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5551
		return -EINVAL;
5552
	}
K
KOSAKI Motohiro 已提交
5553 5554 5555

	memcg->swappiness = val;

5556
	mutex_unlock(&memcg_create_mutex);
5557

K
KOSAKI Motohiro 已提交
5558 5559 5560
	return 0;
}

5561 5562 5563 5564 5565 5566 5567 5568
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5569
		t = rcu_dereference(memcg->thresholds.primary);
5570
	else
5571
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5572 5573 5574 5575 5576 5577 5578

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5579
	 * current_threshold points to threshold just below or equal to usage.
5580 5581 5582
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5583
	i = t->current_threshold;
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5607
	t->current_threshold = i - 1;
5608 5609 5610 5611 5612 5613
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5614 5615 5616 5617 5618 5619 5620
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5621 5622 5623 5624 5625 5626 5627
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5628 5629 5630 5631 5632 5633 5634
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5635 5636
}

5637
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5638 5639 5640
{
	struct mem_cgroup_eventfd_list *ev;

5641
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5642 5643 5644 5645
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5646
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5647
{
K
KAMEZAWA Hiroyuki 已提交
5648 5649
	struct mem_cgroup *iter;

5650
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5651
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5652 5653
}

5654
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5655
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5656
{
5657 5658
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5659
	u64 threshold, usage;
5660
	int i, size, ret;
5661 5662 5663 5664 5665 5666

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5667

5668
	if (type == _MEM)
5669
		thresholds = &memcg->thresholds;
5670
	else if (type == _MEMSWAP)
5671
		thresholds = &memcg->memsw_thresholds;
5672 5673 5674 5675 5676 5677
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5678
	if (thresholds->primary)
5679 5680
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5681
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5682 5683

	/* Allocate memory for new array of thresholds */
5684
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5685
			GFP_KERNEL);
5686
	if (!new) {
5687 5688 5689
		ret = -ENOMEM;
		goto unlock;
	}
5690
	new->size = size;
5691 5692

	/* Copy thresholds (if any) to new array */
5693 5694
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5695
				sizeof(struct mem_cgroup_threshold));
5696 5697
	}

5698
	/* Add new threshold */
5699 5700
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5701 5702

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5703
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5704 5705 5706
			compare_thresholds, NULL);

	/* Find current threshold */
5707
	new->current_threshold = -1;
5708
	for (i = 0; i < size; i++) {
5709
		if (new->entries[i].threshold <= usage) {
5710
			/*
5711 5712
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5713 5714
			 * it here.
			 */
5715
			++new->current_threshold;
5716 5717
		} else
			break;
5718 5719
	}

5720 5721 5722 5723 5724
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5725

5726
	/* To be sure that nobody uses thresholds */
5727 5728 5729 5730 5731 5732 5733 5734
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5735
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5736 5737
	struct eventfd_ctx *eventfd, const char *args)
{
5738
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5739 5740
}

5741
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5742 5743
	struct eventfd_ctx *eventfd, const char *args)
{
5744
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5745 5746
}

5747
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5748
	struct eventfd_ctx *eventfd, enum res_type type)
5749
{
5750 5751
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5752
	u64 usage;
5753
	int i, j, size;
5754 5755 5756

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5757
		thresholds = &memcg->thresholds;
5758
	else if (type == _MEMSWAP)
5759
		thresholds = &memcg->memsw_thresholds;
5760 5761 5762
	else
		BUG();

5763 5764 5765
	if (!thresholds->primary)
		goto unlock;

5766 5767 5768 5769 5770 5771
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5772 5773 5774
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5775 5776 5777
			size++;
	}

5778
	new = thresholds->spare;
5779

5780 5781
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5782 5783
		kfree(new);
		new = NULL;
5784
		goto swap_buffers;
5785 5786
	}

5787
	new->size = size;
5788 5789

	/* Copy thresholds and find current threshold */
5790 5791 5792
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5793 5794
			continue;

5795
		new->entries[j] = thresholds->primary->entries[i];
5796
		if (new->entries[j].threshold <= usage) {
5797
			/*
5798
			 * new->current_threshold will not be used
5799 5800 5801
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5802
			++new->current_threshold;
5803 5804 5805 5806
		}
		j++;
	}

5807
swap_buffers:
5808 5809
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5810 5811 5812 5813 5814 5815
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5816
	rcu_assign_pointer(thresholds->primary, new);
5817

5818
	/* To be sure that nobody uses thresholds */
5819
	synchronize_rcu();
5820
unlock:
5821 5822
	mutex_unlock(&memcg->thresholds_lock);
}
5823

5824
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5825 5826
	struct eventfd_ctx *eventfd)
{
5827
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5828 5829
}

5830
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5831 5832
	struct eventfd_ctx *eventfd)
{
5833
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5834 5835
}

5836
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5837
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5838 5839 5840 5841 5842 5843 5844
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5845
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5846 5847 5848 5849 5850

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5851
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5852
		eventfd_signal(eventfd, 1);
5853
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5854 5855 5856 5857

	return 0;
}

5858
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5859
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5860 5861 5862
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5863
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5864

5865
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5866 5867 5868 5869 5870 5871
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5872
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5873 5874
}

5875
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5876
{
5877
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5878

5879 5880
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5881 5882 5883
	return 0;
}

5884
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5885 5886
	struct cftype *cft, u64 val)
{
5887
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5888
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5889 5890

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5891
	if (!parent || !((val == 0) || (val == 1)))
5892 5893
		return -EINVAL;

5894
	mutex_lock(&memcg_create_mutex);
5895
	/* oom-kill-disable is a flag for subhierarchy. */
5896
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5897
		mutex_unlock(&memcg_create_mutex);
5898 5899
		return -EINVAL;
	}
5900
	memcg->oom_kill_disable = val;
5901
	if (!val)
5902
		memcg_oom_recover(memcg);
5903
	mutex_unlock(&memcg_create_mutex);
5904 5905 5906
	return 0;
}

A
Andrew Morton 已提交
5907
#ifdef CONFIG_MEMCG_KMEM
5908
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5909
{
5910 5911
	int ret;

5912
	memcg->kmemcg_id = -1;
5913 5914 5915
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5916

5917
	return mem_cgroup_sockets_init(memcg, ss);
5918
}
5919

5920
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5921
{
5922
	mem_cgroup_sockets_destroy(memcg);
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5949 5950 5951 5952 5953 5954 5955

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5956
		css_put(&memcg->css);
G
Glauber Costa 已提交
5957
}
5958
#else
5959
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5960 5961 5962
{
	return 0;
}
G
Glauber Costa 已提交
5963

5964 5965 5966 5967 5968
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5969 5970
{
}
5971 5972
#endif

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5986 5987 5988 5989 5990
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5991
static void memcg_event_remove(struct work_struct *work)
5992
{
5993 5994
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5995
	struct mem_cgroup *memcg = event->memcg;
5996 5997 5998

	remove_wait_queue(event->wqh, &event->wait);

5999
	event->unregister_event(memcg, event->eventfd);
6000 6001 6002 6003 6004 6005

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
6006
	css_put(&memcg->css);
6007 6008 6009 6010 6011 6012 6013
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
6014 6015
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
6016
{
6017 6018
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
6019
	struct mem_cgroup *memcg = event->memcg;
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6032
		spin_lock(&memcg->event_list_lock);
6033 6034 6035 6036 6037 6038 6039 6040
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6041
		spin_unlock(&memcg->event_list_lock);
6042 6043 6044 6045 6046
	}

	return 0;
}

6047
static void memcg_event_ptable_queue_proc(struct file *file,
6048 6049
		wait_queue_head_t *wqh, poll_table *pt)
{
6050 6051
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
6052 6053 6054 6055 6056 6057

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
6058 6059
 * DO NOT USE IN NEW FILES.
 *
6060 6061 6062 6063 6064
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6065 6066
static int memcg_write_event_control(struct cgroup_subsys_state *css,
				     struct cftype *cft, const char *buffer)
6067
{
6068
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6069
	struct mem_cgroup_event *event;
6070 6071 6072 6073
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6074
	const char *name;
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6092
	event->memcg = memcg;
6093
	INIT_LIST_HEAD(&event->list);
6094 6095 6096
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6122 6123 6124 6125 6126
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6127 6128
	 *
	 * DO NOT ADD NEW FILES.
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6142 6143
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6144 6145 6146 6147 6148
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6149
	/*
6150 6151 6152
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6153
	 */
6154 6155
	cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
					&memory_cgrp_subsys);
6156
	ret = -EINVAL;
6157
	if (IS_ERR(cfile_css))
6158
		goto out_put_cfile;
6159 6160 6161 6162
	if (cfile_css != css) {
		css_put(cfile_css);
		goto out_put_cfile;
	}
6163

6164
	ret = event->register_event(memcg, event->eventfd, buffer);
6165 6166 6167 6168 6169
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6170 6171 6172
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6173 6174 6175 6176 6177 6178 6179

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6180
	css_put(css);
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6193 6194
static struct cftype mem_cgroup_files[] = {
	{
6195
		.name = "usage_in_bytes",
6196
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6197
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6198
	},
6199 6200
	{
		.name = "max_usage_in_bytes",
6201
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6202
		.trigger = mem_cgroup_reset,
6203
		.read_u64 = mem_cgroup_read_u64,
6204
	},
B
Balbir Singh 已提交
6205
	{
6206
		.name = "limit_in_bytes",
6207
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6208
		.write_string = mem_cgroup_write,
6209
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6210
	},
6211 6212 6213 6214
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6215
		.read_u64 = mem_cgroup_read_u64,
6216
	},
B
Balbir Singh 已提交
6217 6218
	{
		.name = "failcnt",
6219
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6220
		.trigger = mem_cgroup_reset,
6221
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6222
	},
6223 6224
	{
		.name = "stat",
6225
		.seq_show = memcg_stat_show,
6226
	},
6227 6228 6229 6230
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6231 6232
	{
		.name = "use_hierarchy",
6233
		.flags = CFTYPE_INSANE,
6234 6235 6236
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6237
	{
6238 6239
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6240 6241 6242
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6243 6244 6245 6246 6247
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6248 6249 6250 6251 6252
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6253 6254
	{
		.name = "oom_control",
6255
		.seq_show = mem_cgroup_oom_control_read,
6256
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6257 6258
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6259 6260 6261
	{
		.name = "pressure_level",
	},
6262 6263 6264
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6265
		.seq_show = memcg_numa_stat_show,
6266 6267
	},
#endif
6268 6269 6270 6271 6272
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6273
		.read_u64 = mem_cgroup_read_u64,
6274 6275 6276 6277
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6278
		.read_u64 = mem_cgroup_read_u64,
6279 6280 6281 6282 6283
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6284
		.read_u64 = mem_cgroup_read_u64,
6285 6286 6287 6288 6289
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6290
		.read_u64 = mem_cgroup_read_u64,
6291
	},
6292 6293 6294
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6295
		.seq_show = mem_cgroup_slabinfo_read,
6296 6297
	},
#endif
6298
#endif
6299
	{ },	/* terminate */
6300
};
6301

6302 6303 6304 6305 6306
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6307
		.read_u64 = mem_cgroup_read_u64,
6308 6309 6310 6311 6312
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6313
		.read_u64 = mem_cgroup_read_u64,
6314 6315 6316 6317 6318
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6319
		.read_u64 = mem_cgroup_read_u64,
6320 6321 6322 6323 6324
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6325
		.read_u64 = mem_cgroup_read_u64,
6326 6327 6328 6329
	},
	{ },	/* terminate */
};
#endif
6330
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6331 6332
{
	struct mem_cgroup_per_node *pn;
6333
	struct mem_cgroup_per_zone *mz;
6334
	int zone, tmp = node;
6335 6336 6337 6338 6339 6340 6341 6342
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6343 6344
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6345
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6346 6347
	if (!pn)
		return 1;
6348 6349 6350

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6351
		lruvec_init(&mz->lruvec);
6352 6353
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6354
		mz->memcg = memcg;
6355
	}
6356
	memcg->nodeinfo[node] = pn;
6357 6358 6359
	return 0;
}

6360
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6361
{
6362
	kfree(memcg->nodeinfo[node]);
6363 6364
}

6365 6366
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6367
	struct mem_cgroup *memcg;
6368
	size_t size;
6369

6370 6371
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6372

6373
	memcg = kzalloc(size, GFP_KERNEL);
6374
	if (!memcg)
6375 6376
		return NULL;

6377 6378
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6379
		goto out_free;
6380 6381
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6382 6383

out_free:
6384
	kfree(memcg);
6385
	return NULL;
6386 6387
}

6388
/*
6389 6390 6391 6392 6393 6394 6395 6396
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6397
 */
6398 6399

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6400
{
6401
	int node;
6402

6403
	mem_cgroup_remove_from_trees(memcg);
6404 6405 6406 6407 6408 6409

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6421
	disarm_static_keys(memcg);
6422
	kfree(memcg);
6423
}
6424

6425 6426 6427
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6428
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6429
{
6430
	if (!memcg->res.parent)
6431
		return NULL;
6432
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6433
}
G
Glauber Costa 已提交
6434
EXPORT_SYMBOL(parent_mem_cgroup);
6435

6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6459
static struct cgroup_subsys_state * __ref
6460
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6461
{
6462
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6463
	long error = -ENOMEM;
6464
	int node;
B
Balbir Singh 已提交
6465

6466 6467
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6468
		return ERR_PTR(error);
6469

B
Bob Liu 已提交
6470
	for_each_node(node)
6471
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6472
			goto free_out;
6473

6474
	/* root ? */
6475
	if (parent_css == NULL) {
6476
		root_mem_cgroup = memcg;
6477 6478 6479
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6480
	}
6481

6482 6483 6484 6485 6486
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6487
	vmpressure_init(&memcg->vmpressure);
6488 6489
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6490 6491 6492 6493 6494 6495 6496 6497 6498

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6499
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6500
{
6501 6502
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6503

6504 6505 6506
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6507
	if (!parent)
6508 6509
		return 0;

6510
	mutex_lock(&memcg_create_mutex);
6511 6512 6513 6514 6515 6516

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6517 6518
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6519
		res_counter_init(&memcg->kmem, &parent->kmem);
6520

6521
		/*
6522 6523
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6524
		 */
6525
	} else {
6526 6527
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6528
		res_counter_init(&memcg->kmem, NULL);
6529 6530 6531 6532 6533
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6534
		if (parent != root_mem_cgroup)
6535
			memory_cgrp_subsys.broken_hierarchy = true;
6536
	}
6537
	mutex_unlock(&memcg_create_mutex);
6538

6539
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6540 6541
}

M
Michal Hocko 已提交
6542 6543 6544 6545 6546 6547 6548 6549
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6550
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6551 6552 6553 6554 6555 6556

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6557
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6558 6559
}

6560
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6561
{
6562
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6563
	struct mem_cgroup_event *event, *tmp;
6564 6565 6566 6567 6568 6569

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6570 6571
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6572 6573 6574
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6575
	spin_unlock(&memcg->event_list_lock);
6576

6577 6578
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6579
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6580
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6581
	mem_cgroup_destroy_all_caches(memcg);
6582
	vmpressure_cleanup(&memcg->vmpressure);
6583 6584
}

6585
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6586
{
6587
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6624

6625
	memcg_destroy_kmem(memcg);
6626
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6627 6628
}

6629
#ifdef CONFIG_MMU
6630
/* Handlers for move charge at task migration. */
6631 6632
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6633
{
6634 6635
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6636
	struct mem_cgroup *memcg = mc.to;
6637

6638
	if (mem_cgroup_is_root(memcg)) {
6639 6640 6641 6642 6643 6644 6645 6646
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6647
		 * "memcg" cannot be under rmdir() because we've already checked
6648 6649 6650 6651
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6652
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6653
			goto one_by_one;
6654
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6655
						PAGE_SIZE * count, &dummy)) {
6656
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6673 6674
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6675
		if (ret)
6676
			/* mem_cgroup_clear_mc() will do uncharge later */
6677
			return ret;
6678 6679
		mc.precharge++;
	}
6680 6681 6682 6683
	return ret;
}

/**
6684
 * get_mctgt_type - get target type of moving charge
6685 6686 6687
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6688
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6689 6690 6691 6692 6693 6694
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6695 6696 6697
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6698 6699 6700 6701 6702
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6703
	swp_entry_t	ent;
6704 6705 6706
};

enum mc_target_type {
6707
	MC_TARGET_NONE = 0,
6708
	MC_TARGET_PAGE,
6709
	MC_TARGET_SWAP,
6710 6711
};

D
Daisuke Nishimura 已提交
6712 6713
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6714
{
D
Daisuke Nishimura 已提交
6715
	struct page *page = vm_normal_page(vma, addr, ptent);
6716

D
Daisuke Nishimura 已提交
6717 6718 6719 6720
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6721
		if (!move_anon())
D
Daisuke Nishimura 已提交
6722
			return NULL;
6723 6724
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6725 6726 6727 6728 6729 6730 6731
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6732
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6733 6734 6735 6736 6737 6738 6739 6740
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6741 6742 6743 6744
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6745
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6746 6747 6748 6749 6750
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6751 6752 6753 6754 6755 6756 6757
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6758

6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6778 6779 6780 6781 6782 6783
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6784
		if (do_swap_account)
6785
			*entry = swap;
6786
		page = find_get_page(swap_address_space(swap), swap.val);
6787
	}
6788
#endif
6789 6790 6791
	return page;
}

6792
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6793 6794 6795 6796
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6797
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6798 6799 6800 6801 6802 6803
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6804 6805
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6806 6807

	if (!page && !ent.val)
6808
		return ret;
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6824 6825
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6826
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6827 6828 6829
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6830 6831 6832 6833
	}
	return ret;
}

6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6848
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6869 6870 6871 6872 6873 6874 6875 6876
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6877
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6878 6879
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6880
		spin_unlock(ptl);
6881
		return 0;
6882
	}
6883

6884 6885
	if (pmd_trans_unstable(pmd))
		return 0;
6886 6887
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6888
		if (get_mctgt_type(vma, addr, *pte, NULL))
6889 6890 6891 6892
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6893 6894 6895
	return 0;
}

6896 6897 6898 6899 6900
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6901
	down_read(&mm->mmap_sem);
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6913
	up_read(&mm->mmap_sem);
6914 6915 6916 6917 6918 6919 6920 6921 6922

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6923 6924 6925 6926 6927
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6928 6929
}

6930 6931
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6932
{
6933 6934
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6935
	int i;
6936

6937
	/* we must uncharge all the leftover precharges from mc.to */
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6949
	}
6950 6951 6952 6953 6954 6955
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6956 6957 6958

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6959 6960 6961 6962 6963 6964 6965 6966 6967

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6968
		/* we've already done css_get(mc.to) */
6969 6970
		mc.moved_swap = 0;
	}
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6986
	spin_lock(&mc.lock);
6987 6988
	mc.from = NULL;
	mc.to = NULL;
6989
	spin_unlock(&mc.lock);
6990
	mem_cgroup_end_move(from);
6991 6992
}

6993
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6994
				 struct cgroup_taskset *tset)
6995
{
6996
	struct task_struct *p = cgroup_taskset_first(tset);
6997
	int ret = 0;
6998
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6999
	unsigned long move_charge_at_immigrate;
7000

7001 7002 7003 7004 7005 7006 7007
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
7008 7009 7010
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7011
		VM_BUG_ON(from == memcg);
7012 7013 7014 7015 7016

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7017 7018 7019 7020
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7021
			VM_BUG_ON(mc.moved_charge);
7022
			VM_BUG_ON(mc.moved_swap);
7023
			mem_cgroup_start_move(from);
7024
			spin_lock(&mc.lock);
7025
			mc.from = from;
7026
			mc.to = memcg;
7027
			mc.immigrate_flags = move_charge_at_immigrate;
7028
			spin_unlock(&mc.lock);
7029
			/* We set mc.moving_task later */
7030 7031 7032 7033

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7034 7035
		}
		mmput(mm);
7036 7037 7038 7039
	}
	return ret;
}

7040
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7041
				     struct cgroup_taskset *tset)
7042
{
7043
	mem_cgroup_clear_mc();
7044 7045
}

7046 7047 7048
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7049
{
7050 7051 7052 7053
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7054 7055 7056 7057
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7058

7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
7069
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7070
		if (mc.precharge < HPAGE_PMD_NR) {
7071
			spin_unlock(ptl);
7072 7073 7074 7075 7076 7077 7078 7079
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7080
							pc, mc.from, mc.to)) {
7081 7082 7083 7084 7085 7086 7087
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7088
		spin_unlock(ptl);
7089
		return 0;
7090 7091
	}

7092 7093
	if (pmd_trans_unstable(pmd))
		return 0;
7094 7095 7096 7097
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7098
		swp_entry_t ent;
7099 7100 7101 7102

		if (!mc.precharge)
			break;

7103
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7104 7105 7106 7107 7108
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7109
			if (!mem_cgroup_move_account(page, 1, pc,
7110
						     mc.from, mc.to)) {
7111
				mc.precharge--;
7112 7113
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7114 7115
			}
			putback_lru_page(page);
7116
put:			/* get_mctgt_type() gets the page */
7117 7118
			put_page(page);
			break;
7119 7120
		case MC_TARGET_SWAP:
			ent = target.ent;
7121
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7122
				mc.precharge--;
7123 7124 7125
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7126
			break;
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7141
		ret = mem_cgroup_do_precharge(1);
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7185
	up_read(&mm->mmap_sem);
7186 7187
}

7188
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7189
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7190
{
7191
	struct task_struct *p = cgroup_taskset_first(tset);
7192
	struct mm_struct *mm = get_task_mm(p);
7193 7194

	if (mm) {
7195 7196
		if (mc.to)
			mem_cgroup_move_charge(mm);
7197 7198
		mmput(mm);
	}
7199 7200
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7201
}
7202
#else	/* !CONFIG_MMU */
7203
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7204
				 struct cgroup_taskset *tset)
7205 7206 7207
{
	return 0;
}
7208
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7209
				     struct cgroup_taskset *tset)
7210 7211
{
}
7212
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7213
				 struct cgroup_taskset *tset)
7214 7215 7216
{
}
#endif
B
Balbir Singh 已提交
7217

7218 7219 7220 7221
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7222
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7223 7224 7225 7226 7227 7228
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7229 7230
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7231 7232
}

7233
struct cgroup_subsys memory_cgrp_subsys = {
7234
	.css_alloc = mem_cgroup_css_alloc,
7235
	.css_online = mem_cgroup_css_online,
7236 7237
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7238 7239
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7240
	.attach = mem_cgroup_move_task,
7241
	.bind = mem_cgroup_bind,
7242
	.base_cftypes = mem_cgroup_files,
7243
	.early_init = 0,
B
Balbir Singh 已提交
7244
};
7245

A
Andrew Morton 已提交
7246
#ifdef CONFIG_MEMCG_SWAP
7247 7248
static int __init enable_swap_account(char *s)
{
7249
	if (!strcmp(s, "1"))
7250
		really_do_swap_account = 1;
7251
	else if (!strcmp(s, "0"))
7252 7253 7254
		really_do_swap_account = 0;
	return 1;
}
7255
__setup("swapaccount=", enable_swap_account);
7256

7257 7258
static void __init memsw_file_init(void)
{
7259
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7260 7261 7262 7263 7264 7265 7266 7267
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7268
}
7269

7270
#else
7271
static void __init enable_swap_cgroup(void)
7272 7273
{
}
7274
#endif
7275 7276

/*
7277 7278 7279 7280 7281 7282
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7283 7284 7285 7286
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7287
	enable_swap_cgroup();
7288
	mem_cgroup_soft_limit_tree_init();
7289
	memcg_stock_init();
7290 7291 7292
	return 0;
}
subsys_initcall(mem_cgroup_init);