cpuset.c 98.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41
#include <linux/mount.h>
D
David Howells 已提交
42
#include <linux/fs_context.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
46
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
47
#include <linux/sched.h>
48
#include <linux/sched/mm.h>
49
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
50
#include <linux/seq_file.h>
51
#include <linux/security.h>
L
Linus Torvalds 已提交
52 53 54 55 56
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
57
#include <linux/time64.h>
L
Linus Torvalds 已提交
58 59
#include <linux/backing-dev.h>
#include <linux/sort.h>
60
#include <linux/oom.h>
61
#include <linux/sched/isolation.h>
62
#include <linux/uaccess.h>
A
Arun Sharma 已提交
63
#include <linux/atomic.h>
64
#include <linux/mutex.h>
65
#include <linux/cgroup.h>
66
#include <linux/wait.h>
L
Linus Torvalds 已提交
67

68
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
69
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
70

71 72 73 74 75
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
76
	time64_t time;		/* clock (secs) when val computed */
77 78 79
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
80
struct cpuset {
81 82
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
83
	unsigned long flags;		/* "unsigned long" so bitops work */
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

105 106 107 108 109 110 111
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
112

113 114 115 116
	/*
	 * CPUs allocated to child sub-partitions (default hierarchy only)
	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
	 * - effective_cpus and subparts_cpus are mutually exclusive.
117 118 119
	 *
	 * effective_cpus contains only onlined CPUs, but subparts_cpus
	 * may have offlined ones.
120 121 122
	 */
	cpumask_var_t subparts_cpus;

123 124 125 126 127 128 129 130 131 132 133 134
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

135
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
136

137 138 139 140 141 142
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
143 144
	/* partition number for rebuild_sched_domains() */
	int pn;
145

146 147
	/* for custom sched domain */
	int relax_domain_level;
148 149 150 151 152 153

	/* number of CPUs in subparts_cpus */
	int nr_subparts_cpus;

	/* partition root state */
	int partition_root_state;
154 155 156 157 158 159 160 161

	/*
	 * Default hierarchy only:
	 * use_parent_ecpus - set if using parent's effective_cpus
	 * child_ecpus_count - # of children with use_parent_ecpus set
	 */
	int use_parent_ecpus;
	int child_ecpus_count;
162 163 164 165 166 167
};

/*
 * Partition root states:
 *
 *   0 - not a partition root
168
 *
169
 *   1 - partition root
170 171 172 173 174 175 176
 *
 *  -1 - invalid partition root
 *       None of the cpus in cpus_allowed can be put into the parent's
 *       subparts_cpus. In this case, the cpuset is not a real partition
 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 *       and the cpuset can be restored back to a partition root if the
 *       parent cpuset can give more CPUs back to this child cpuset.
177 178 179
 */
#define PRS_DISABLED		0
#define PRS_ENABLED		1
180
#define PRS_ERROR		-1
181 182 183 184 185 186 187 188

/*
 * Temporary cpumasks for working with partitions that are passed among
 * functions to avoid memory allocation in inner functions.
 */
struct tmpmasks {
	cpumask_var_t addmask, delmask;	/* For partition root */
	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
L
Linus Torvalds 已提交
189 190
};

191
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
192
{
193
	return css ? container_of(css, struct cpuset, css) : NULL;
194 195 196 197 198
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
199
	return css_cs(task_css(task, cpuset_cgrp_id));
200 201
}

202
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
203
{
T
Tejun Heo 已提交
204
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
205 206
}

L
Linus Torvalds 已提交
207 208
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
209
	CS_ONLINE,
L
Linus Torvalds 已提交
210 211
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
212
	CS_MEM_HARDWALL,
213
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
214
	CS_SCHED_LOAD_BALANCE,
215 216
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
217 218 219
} cpuset_flagbits_t;

/* convenient tests for these bits */
220
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
221
{
222
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
223 224
}

L
Linus Torvalds 已提交
225 226
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
227
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
228 229 230 231
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
232
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
233 234
}

235 236 237 238 239
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
240 241 242 243 244
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

245 246
static inline int is_memory_migrate(const struct cpuset *cs)
{
247
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
248 249
}

250 251 252 253 254 255 256 257 258 259
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

260 261
static inline int is_partition_root(const struct cpuset *cs)
{
262
	return cs->partition_root_state > 0;
263 264
}

L
Linus Torvalds 已提交
265
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
266 267
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
268
	.partition_root_state = PRS_ENABLED,
L
Linus Torvalds 已提交
269 270
};

271 272 273
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
274
 * @pos_css: used for iteration
275 276 277 278 279
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
280 281 282
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
283

284 285 286
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
287
 * @pos_css: used for iteration
288 289 290
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
291
 * with RCU read locked.  The caller may modify @pos_css by calling
292 293
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
294
 */
295 296 297
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
298

L
Linus Torvalds 已提交
299
/*
300 301 302 303
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
304
 *
305
 * A task must hold both locks to modify cpusets.  If a task holds
306
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
307
 * is the only task able to also acquire callback_lock and be able to
308 309 310
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
311 312
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
313
 * everyone else.
314 315
 *
 * Calls to the kernel memory allocator can not be made while holding
316
 * callback_lock, as that would risk double tripping on callback_lock
317 318 319
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
320
 * If a task is only holding callback_lock, then it has read-only
321 322
 * access to cpusets.
 *
323 324 325
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
326
 *
327
 * The cpuset_common_file_read() handlers only hold callback_lock across
328 329 330
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
331 332
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
333 334
 */

335
static DEFINE_MUTEX(cpuset_mutex);
336
static DEFINE_SPINLOCK(callback_lock);
337

338 339
static struct workqueue_struct *cpuset_migrate_mm_wq;

340 341 342 343 344 345
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

346 347
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

348 349 350 351 352 353 354 355 356 357
/*
 * Cgroup v2 behavior is used when on default hierarchy or the
 * cgroup_v2_mode flag is set.
 */
static inline bool is_in_v2_mode(void)
{
	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}

358 359
/*
 * This is ugly, but preserves the userspace API for existing cpuset
360
 * users. If someone tries to mount the "cpuset" filesystem, we
361 362
 * silently switch it to mount "cgroup" instead
 */
D
David Howells 已提交
363
static int cpuset_get_tree(struct fs_context *fc)
L
Linus Torvalds 已提交
364
{
D
David Howells 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	struct file_system_type *cgroup_fs;
	struct fs_context *new_fc;
	int ret;

	cgroup_fs = get_fs_type("cgroup");
	if (!cgroup_fs)
		return -ENODEV;

	new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags);
	if (IS_ERR(new_fc)) {
		ret = PTR_ERR(new_fc);
	} else {
		static const char agent_path[] = "/sbin/cpuset_release_agent";
		ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0);
		if (!ret)
			ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0);
		if (!ret)
			ret = vfs_parse_fs_string(new_fc, "release_agent",
					agent_path, sizeof(agent_path) - 1);
		if (!ret)
			ret = vfs_get_tree(new_fc);
		if (!ret) {	/* steal the result */
			fc->root = new_fc->root;
			new_fc->root = NULL;
		}
		put_fs_context(new_fc);
391
	}
D
David Howells 已提交
392
	put_filesystem(cgroup_fs);
393
	return ret;
L
Linus Torvalds 已提交
394 395
}

D
David Howells 已提交
396 397 398 399 400 401 402 403 404 405
static const struct fs_context_operations cpuset_fs_context_ops = {
	.get_tree	= cpuset_get_tree,
};

static int cpuset_init_fs_context(struct fs_context *fc)
{
	fc->ops = &cpuset_fs_context_ops;
	return 0;
}

L
Linus Torvalds 已提交
406
static struct file_system_type cpuset_fs_type = {
D
David Howells 已提交
407 408
	.name			= "cpuset",
	.init_fs_context	= cpuset_init_fs_context,
L
Linus Torvalds 已提交
409 410 411
};

/*
412
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
413
 * are online.  If none are online, walk up the cpuset hierarchy
414
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
415 416
 *
 * One way or another, we guarantee to return some non-empty subset
417
 * of cpu_online_mask.
L
Linus Torvalds 已提交
418
 *
419
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
420
 */
421
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
422
{
423
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
424
		cs = parent_cs(cs);
425 426 427 428 429 430 431 432 433 434 435 436
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
437
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
438 439 440 441
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
442 443
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
444
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
445 446
 *
 * One way or another, we guarantee to return some non-empty subset
447
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
448
 *
449
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
450
 */
451
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
452
{
453
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
454
		cs = parent_cs(cs);
455
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
456 457
}

458 459 460
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
461
 * Call with callback_lock or cpuset_mutex held.
462 463 464 465 466
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
467
		task_set_spread_page(tsk);
468
	else
469 470
		task_clear_spread_page(tsk);

471
	if (is_spread_slab(cs))
472
		task_set_spread_slab(tsk);
473
	else
474
		task_clear_spread_slab(tsk);
475 476
}

L
Linus Torvalds 已提交
477 478 479 480 481
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
482
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
483 484 485 486
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
487
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
488 489 490 491 492
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * alloc_cpumasks - allocate three cpumasks for cpuset
 * @cs:  the cpuset that have cpumasks to be allocated.
 * @tmp: the tmpmasks structure pointer
 * Return: 0 if successful, -ENOMEM otherwise.
 *
 * Only one of the two input arguments should be non-NULL.
 */
static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
	cpumask_var_t *pmask1, *pmask2, *pmask3;

	if (cs) {
		pmask1 = &cs->cpus_allowed;
		pmask2 = &cs->effective_cpus;
		pmask3 = &cs->subparts_cpus;
	} else {
		pmask1 = &tmp->new_cpus;
		pmask2 = &tmp->addmask;
		pmask3 = &tmp->delmask;
	}

	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
		return -ENOMEM;

	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
		goto free_one;

	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
		goto free_two;

	return 0;

free_two:
	free_cpumask_var(*pmask2);
free_one:
	free_cpumask_var(*pmask1);
	return -ENOMEM;
}

/**
 * free_cpumasks - free cpumasks in a tmpmasks structure
 * @cs:  the cpuset that have cpumasks to be free.
 * @tmp: the tmpmasks structure pointer
 */
static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
	if (cs) {
		free_cpumask_var(cs->cpus_allowed);
		free_cpumask_var(cs->effective_cpus);
		free_cpumask_var(cs->subparts_cpus);
	}
	if (tmp) {
		free_cpumask_var(tmp->new_cpus);
		free_cpumask_var(tmp->addmask);
		free_cpumask_var(tmp->delmask);
	}
}

552 553 554 555
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
556
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
557
{
558 559 560 561 562 563
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

564 565 566 567
	if (alloc_cpumasks(trial, NULL)) {
		kfree(trial);
		return NULL;
	}
568

569 570
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
571
	return trial;
572 573 574
}

/**
575 576
 * free_cpuset - free the cpuset
 * @cs: the cpuset to be freed
577
 */
578
static inline void free_cpuset(struct cpuset *cs)
579
{
580 581
	free_cpumasks(cs, NULL);
	kfree(cs);
582 583
}

L
Linus Torvalds 已提交
584 585 586 587 588 589 590
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
591
 * cpuset_mutex held.
L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599 600 601 602 603
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

604
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
605
{
606
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
607
	struct cpuset *c, *par;
608 609 610
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
611 612

	/* Each of our child cpusets must be a subset of us */
613
	ret = -EBUSY;
614
	cpuset_for_each_child(c, css, cur)
615 616
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
617 618

	/* Remaining checks don't apply to root cpuset */
619
	ret = 0;
620
	if (cur == &top_cpuset)
621
		goto out;
L
Linus Torvalds 已提交
622

T
Tejun Heo 已提交
623
	par = parent_cs(cur);
624

625
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
626
	ret = -EACCES;
627
	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
628
		goto out;
L
Linus Torvalds 已提交
629

630 631 632 633
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
634
	ret = -EINVAL;
635
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
636 637
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
638
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
639
			goto out;
L
Linus Torvalds 已提交
640 641 642
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
643
			goto out;
L
Linus Torvalds 已提交
644 645
	}

646 647
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
648
	 * be changed to have empty cpus_allowed or mems_allowed.
649
	 */
650
	ret = -ENOSPC;
651
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
652 653 654 655 656 657 658
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
659

660 661 662 663 664 665 666 667 668 669
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

670 671 672 673
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
674 675
}

676
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
677
/*
678
 * Helper routine for generate_sched_domains().
679
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
680 681 682
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
683
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
684 685
}

686 687 688 689 690 691 692 693
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

694 695
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
696
{
697
	struct cpuset *cp;
698
	struct cgroup_subsys_state *pos_css;
699

700
	rcu_read_lock();
701
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
702 703
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
704
			pos_css = css_rightmost_descendant(pos_css);
705
			continue;
706
		}
707 708 709 710

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
711
	rcu_read_unlock();
712 713
}

P
Paolo Bonzini 已提交
714 715 716 717 718 719 720
/* Must be called with cpuset_mutex held.  */
static inline int nr_cpusets(void)
{
	/* jump label reference count + the top-level cpuset */
	return static_key_count(&cpusets_enabled_key.key) + 1;
}

P
Paul Jackson 已提交
721
/*
722 723 724 725 726
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
727
 * The output of this function needs to be passed to kernel/sched/core.c
728 729 730
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
731
 *
732
 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
P
Paul Jackson 已提交
733 734 735 736 737 738 739
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
740
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
741 742
 *
 * The three key local variables below are:
743 744 745 746
 *    cp - cpuset pointer, used (together with pos_css) to perform a
 *	   top-down scan of all cpusets. For our purposes, rebuilding
 *	   the schedulers sched domains, we can ignore !is_sched_load_
 *	   balance cpusets.
P
Paul Jackson 已提交
747 748 749 750 751 752 753 754
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
755
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
774
static int generate_sched_domains(cpumask_var_t **domains,
775
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
776
{
777
	struct cpuset *cp;	/* top-down scan of cpusets */
P
Paul Jackson 已提交
778 779 780
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
781
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
782
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
783
	int ndoms = 0;		/* number of sched domains in result */
784
	int nslot;		/* next empty doms[] struct cpumask slot */
785
	struct cgroup_subsys_state *pos_css;
786
	bool root_load_balance = is_sched_load_balance(&top_cpuset);
P
Paul Jackson 已提交
787 788

	doms = NULL;
789
	dattr = NULL;
790
	csa = NULL;
P
Paul Jackson 已提交
791 792

	/* Special case for the 99% of systems with one, full, sched domain */
793
	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
794 795
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
796
		if (!doms)
797 798
			goto done;

799 800 801
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
802
			update_domain_attr_tree(dattr, &top_cpuset);
803
		}
804
		cpumask_and(doms[0], top_cpuset.effective_cpus,
805
			    housekeeping_cpumask(HK_FLAG_DOMAIN));
806 807

		goto done;
P
Paul Jackson 已提交
808 809
	}

810
	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
811 812 813 814
	if (!csa)
		goto done;
	csn = 0;

815
	rcu_read_lock();
816 817
	if (root_load_balance)
		csa[csn++] = &top_cpuset;
818
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
819 820
		if (cp == &top_cpuset)
			continue;
821
		/*
822 823 824 825 826 827
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
828 829 830
		 *
		 * If root is load-balancing, we can skip @cp if it
		 * is a subset of the root's effective_cpus.
831
		 */
832
		if (!cpumask_empty(cp->cpus_allowed) &&
833
		    !(is_sched_load_balance(cp) &&
834 835
		      cpumask_intersects(cp->cpus_allowed,
					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
836
			continue;
837

838 839 840 841
		if (root_load_balance &&
		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
			continue;

842 843 844
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

845 846 847
		/* skip @cp's subtree if not a partition root */
		if (!is_partition_root(cp))
			pos_css = css_rightmost_descendant(pos_css);
848 849
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

878 879 880 881
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
882
	doms = alloc_sched_domains(ndoms);
883
	if (!doms)
884 885 886 887 888 889
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
890 891
	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
			      GFP_KERNEL);
P
Paul Jackson 已提交
892 893 894

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
895
		struct cpumask *dp;
P
Paul Jackson 已提交
896 897
		int apn = a->pn;

898 899 900 901 902
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

903
		dp = doms[nslot];
904 905 906 907

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
908 909
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
910
				warnings--;
P
Paul Jackson 已提交
911
			}
912 913
			continue;
		}
P
Paul Jackson 已提交
914

915
		cpumask_clear(dp);
916 917 918 919 920 921
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
922
				cpumask_or(dp, dp, b->effective_cpus);
923
				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
924 925 926 927 928
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
929 930
			}
		}
931
		nslot++;
P
Paul Jackson 已提交
932 933 934
	}
	BUG_ON(nslot != ndoms);

935 936 937
done:
	kfree(csa);

938 939 940 941 942 943 944
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

945 946 947 948 949 950 951 952
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
953 954 955 956 957
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
958
 *
959
 * Call with cpuset_mutex held.  Takes get_online_cpus().
960
 */
961
static void rebuild_sched_domains_locked(void)
962 963
{
	struct sched_domain_attr *attr;
964
	cpumask_var_t *doms;
965 966
	int ndoms;

967
	lockdep_assert_held(&cpuset_mutex);
968
	get_online_cpus();
969

970 971 972 973 974
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
975 976 977 978 979 980
	if (!top_cpuset.nr_subparts_cpus &&
	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
		goto out;

	if (top_cpuset.nr_subparts_cpus &&
	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
981 982
		goto out;

983 984 985 986 987
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
988
out:
989
	put_online_cpus();
990
}
991
#else /* !CONFIG_SMP */
992
static void rebuild_sched_domains_locked(void)
993 994 995
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
996

997 998
void rebuild_sched_domains(void)
{
999
	mutex_lock(&cpuset_mutex);
1000
	rebuild_sched_domains_locked();
1001
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
1002 1003
}

1004 1005 1006 1007
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
1008 1009 1010
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1011
 */
1012
static void update_tasks_cpumask(struct cpuset *cs)
1013
{
1014 1015 1016
	struct css_task_iter it;
	struct task_struct *task;

1017
	css_task_iter_start(&cs->css, 0, &it);
1018
	while ((task = css_task_iter_next(&it)))
1019
		set_cpus_allowed_ptr(task, cs->effective_cpus);
1020
	css_task_iter_end(&it);
1021 1022
}

1023 1024 1025 1026 1027 1028 1029
/**
 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
 * @new_cpus: the temp variable for the new effective_cpus mask
 * @cs: the cpuset the need to recompute the new effective_cpus mask
 * @parent: the parent cpuset
 *
 * If the parent has subpartition CPUs, include them in the list of
1030 1031 1032
 * allowable CPUs in computing the new effective_cpus mask. Since offlined
 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
 * to mask those out.
1033 1034 1035 1036 1037 1038 1039 1040
 */
static void compute_effective_cpumask(struct cpumask *new_cpus,
				      struct cpuset *cs, struct cpuset *parent)
{
	if (parent->nr_subparts_cpus) {
		cpumask_or(new_cpus, parent->effective_cpus,
			   parent->subparts_cpus);
		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1041
		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	} else {
		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
	}
}

/*
 * Commands for update_parent_subparts_cpumask
 */
enum subparts_cmd {
	partcmd_enable,		/* Enable partition root	 */
	partcmd_disable,	/* Disable partition root	 */
	partcmd_update,		/* Update parent's subparts_cpus */
};

/**
 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
 * @cpuset:  The cpuset that requests change in partition root state
 * @cmd:     Partition root state change command
 * @newmask: Optional new cpumask for partcmd_update
 * @tmp:     Temporary addmask and delmask
 * Return:   0, 1 or an error code
 *
 * For partcmd_enable, the cpuset is being transformed from a non-partition
 * root to a partition root. The cpus_allowed mask of the given cpuset will
 * be put into parent's subparts_cpus and taken away from parent's
 * effective_cpus. The function will return 0 if all the CPUs listed in
 * cpus_allowed can be granted or an error code will be returned.
 *
 * For partcmd_disable, the cpuset is being transofrmed from a partition
 * root back to a non-partition root. any CPUs in cpus_allowed that are in
 * parent's subparts_cpus will be taken away from that cpumask and put back
 * into parent's effective_cpus. 0 should always be returned.
 *
 * For partcmd_update, if the optional newmask is specified, the cpu
 * list is to be changed from cpus_allowed to newmask. Otherwise,
1077 1078 1079 1080 1081 1082
 * cpus_allowed is assumed to remain the same. The cpuset should either
 * be a partition root or an invalid partition root. The partition root
 * state may change if newmask is NULL and none of the requested CPUs can
 * be granted by the parent. The function will return 1 if changes to
 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
 * Error code should only be returned when newmask is non-NULL.
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
 *
 * The partcmd_enable and partcmd_disable commands are used by
 * update_prstate(). The partcmd_update command is used by
 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
 * newmask set.
 *
 * The checking is more strict when enabling partition root than the
 * other two commands.
 *
 * Because of the implicit cpu exclusive nature of a partition root,
 * cpumask changes that violates the cpu exclusivity rule will not be
 * permitted when checked by validate_change(). The validate_change()
 * function will also prevent any changes to the cpu list if it is not
 * a superset of children's cpu lists.
 */
static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
					  struct cpumask *newmask,
					  struct tmpmasks *tmp)
{
	struct cpuset *parent = parent_cs(cpuset);
	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1105
	bool part_error = false;	/* Partition error? */
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	lockdep_assert_held(&cpuset_mutex);

	/*
	 * The parent must be a partition root.
	 * The new cpumask, if present, or the current cpus_allowed must
	 * not be empty.
	 */
	if (!is_partition_root(parent) ||
	   (newmask && cpumask_empty(newmask)) ||
	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
		return -EINVAL;

	/*
	 * Enabling/disabling partition root is not allowed if there are
	 * online children.
	 */
	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
		return -EBUSY;

	/*
	 * Enabling partition root is not allowed if not all the CPUs
	 * can be granted from parent's effective_cpus or at least one
	 * CPU will be left after that.
	 */
	if ((cmd == partcmd_enable) &&
	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
		return -EINVAL;

	/*
	 * A cpumask update cannot make parent's effective_cpus become empty.
	 */
	adding = deleting = false;
	if (cmd == partcmd_enable) {
		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
		adding = true;
	} else if (cmd == partcmd_disable) {
		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
				       parent->subparts_cpus);
	} else if (newmask) {
		/*
		 * partcmd_update with newmask:
		 *
		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
		 * addmask = newmask & parent->effective_cpus
		 *		     & ~parent->subparts_cpus
		 */
		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
		deleting = cpumask_and(tmp->delmask, tmp->delmask,
				       parent->subparts_cpus);

		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
					parent->subparts_cpus);
		/*
		 * Return error if the new effective_cpus could become empty.
		 */
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		if (adding &&
		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
			if (!deleting)
				return -EINVAL;
			/*
			 * As some of the CPUs in subparts_cpus might have
			 * been offlined, we need to compute the real delmask
			 * to confirm that.
			 */
			if (!cpumask_and(tmp->addmask, tmp->delmask,
					 cpu_active_mask))
				return -EINVAL;
			cpumask_copy(tmp->addmask, parent->effective_cpus);
		}
1178 1179 1180 1181 1182 1183 1184
	} else {
		/*
		 * partcmd_update w/o newmask:
		 *
		 * addmask = cpus_allowed & parent->effectiveb_cpus
		 *
		 * Note that parent's subparts_cpus may have been
1185 1186
		 * pre-shrunk in case there is a change in the cpu list.
		 * So no deletion is needed.
1187 1188 1189
		 */
		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
				     parent->effective_cpus);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
		part_error = cpumask_equal(tmp->addmask,
					   parent->effective_cpus);
	}

	if (cmd == partcmd_update) {
		int prev_prs = cpuset->partition_root_state;

		/*
		 * Check for possible transition between PRS_ENABLED
		 * and PRS_ERROR.
		 */
		switch (cpuset->partition_root_state) {
		case PRS_ENABLED:
			if (part_error)
				cpuset->partition_root_state = PRS_ERROR;
			break;
		case PRS_ERROR:
			if (!part_error)
				cpuset->partition_root_state = PRS_ENABLED;
			break;
		}
		/*
		 * Set part_error if previously in invalid state.
		 */
		part_error = (prev_prs == PRS_ERROR);
	}

	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
		return 0;	/* Nothing need to be done */

	if (cpuset->partition_root_state == PRS_ERROR) {
		/*
		 * Remove all its cpus from parent's subparts_cpus.
		 */
		adding = false;
		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
				       parent->subparts_cpus);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	}

	if (!adding && !deleting)
		return 0;

	/*
	 * Change the parent's subparts_cpus.
	 * Newly added CPUs will be removed from effective_cpus and
	 * newly deleted ones will be added back to effective_cpus.
	 */
	spin_lock_irq(&callback_lock);
	if (adding) {
		cpumask_or(parent->subparts_cpus,
			   parent->subparts_cpus, tmp->addmask);
		cpumask_andnot(parent->effective_cpus,
			       parent->effective_cpus, tmp->addmask);
	}
	if (deleting) {
		cpumask_andnot(parent->subparts_cpus,
			       parent->subparts_cpus, tmp->delmask);
1247 1248 1249 1250
		/*
		 * Some of the CPUs in subparts_cpus might have been offlined.
		 */
		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		cpumask_or(parent->effective_cpus,
			   parent->effective_cpus, tmp->delmask);
	}

	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
	spin_unlock_irq(&callback_lock);

	return cmd == partcmd_update;
}

1261
/*
1262
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1263 1264
 * @cs:  the cpuset to consider
 * @tmp: temp variables for calculating effective_cpus & partition setup
1265 1266 1267
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
1268
 *
1269
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1270 1271 1272
 *
 * Called with cpuset_mutex held
 */
1273
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1274 1275
{
	struct cpuset *cp;
1276
	struct cgroup_subsys_state *pos_css;
1277
	bool need_rebuild_sched_domains = false;
1278 1279

	rcu_read_lock();
1280 1281 1282
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

1283
		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1284

1285 1286 1287 1288
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
1289
		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1290
			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1291 1292 1293 1294 1295 1296 1297 1298 1299
			if (!cp->use_parent_ecpus) {
				cp->use_parent_ecpus = true;
				parent->child_ecpus_count++;
			}
		} else if (cp->use_parent_ecpus) {
			cp->use_parent_ecpus = false;
			WARN_ON_ONCE(!parent->child_ecpus_count);
			parent->child_ecpus_count--;
		}
1300

1301 1302 1303 1304
		/*
		 * Skip the whole subtree if the cpumask remains the same
		 * and has no partition root state.
		 */
1305
		if (!cp->partition_root_state &&
1306
		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1307 1308
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1309
		}
1310

1311 1312 1313 1314 1315 1316
		/*
		 * update_parent_subparts_cpumask() should have been called
		 * for cs already in update_cpumask(). We should also call
		 * update_tasks_cpumask() again for tasks in the parent
		 * cpuset if the parent's subparts_cpus changes.
		 */
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		if ((cp != cs) && cp->partition_root_state) {
			switch (parent->partition_root_state) {
			case PRS_DISABLED:
				/*
				 * If parent is not a partition root or an
				 * invalid partition root, clear the state
				 * state and the CS_CPU_EXCLUSIVE flag.
				 */
				WARN_ON_ONCE(cp->partition_root_state
					     != PRS_ERROR);
				cp->partition_root_state = 0;

				/*
				 * clear_bit() is an atomic operation and
				 * readers aren't interested in the state
				 * of CS_CPU_EXCLUSIVE anyway. So we can
				 * just update the flag without holding
				 * the callback_lock.
				 */
				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
				break;

			case PRS_ENABLED:
				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
					update_tasks_cpumask(parent);
				break;

			case PRS_ERROR:
				/*
				 * When parent is invalid, it has to be too.
				 */
				cp->partition_root_state = PRS_ERROR;
				if (cp->nr_subparts_cpus) {
					cp->nr_subparts_cpus = 0;
					cpumask_clear(cp->subparts_cpus);
				}
				break;
			}
1355 1356
		}

1357
		if (!css_tryget_online(&cp->css))
1358 1359 1360
			continue;
		rcu_read_unlock();

1361
		spin_lock_irq(&callback_lock);
1362 1363

		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1364 1365 1366 1367 1368
		if (cp->nr_subparts_cpus &&
		   (cp->partition_root_state != PRS_ENABLED)) {
			cp->nr_subparts_cpus = 0;
			cpumask_clear(cp->subparts_cpus);
		} else if (cp->nr_subparts_cpus) {
1369 1370 1371
			/*
			 * Make sure that effective_cpus & subparts_cpus
			 * are mutually exclusive.
1372 1373 1374 1375 1376
			 *
			 * In the unlikely event that effective_cpus
			 * becomes empty. we clear cp->nr_subparts_cpus and
			 * let its child partition roots to compete for
			 * CPUs again.
1377 1378 1379
			 */
			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
				       cp->subparts_cpus);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
			if (cpumask_empty(cp->effective_cpus)) {
				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
				cpumask_clear(cp->subparts_cpus);
				cp->nr_subparts_cpus = 0;
			} else if (!cpumask_subset(cp->subparts_cpus,
						   tmp->new_cpus)) {
				cpumask_andnot(cp->subparts_cpus,
					cp->subparts_cpus, tmp->new_cpus);
				cp->nr_subparts_cpus
					= cpumask_weight(cp->subparts_cpus);
			}
1391
		}
1392
		spin_unlock_irq(&callback_lock);
1393

1394
		WARN_ON(!is_in_v2_mode() &&
1395 1396
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

1397
		update_tasks_cpumask(cp);
1398

1399
		/*
1400 1401 1402 1403
		 * On legacy hierarchy, if the effective cpumask of any non-
		 * empty cpuset is changed, we need to rebuild sched domains.
		 * On default hierarchy, the cpuset needs to be a partition
		 * root as well.
1404 1405
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
1406 1407 1408
		    is_sched_load_balance(cp) &&
		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
		    is_partition_root(cp)))
1409 1410
			need_rebuild_sched_domains = true;

1411 1412 1413 1414
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
1415 1416 1417

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
1418 1419
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/**
 * update_sibling_cpumasks - Update siblings cpumasks
 * @parent:  Parent cpuset
 * @cs:      Current cpuset
 * @tmp:     Temp variables
 */
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
				    struct tmpmasks *tmp)
{
	struct cpuset *sibling;
	struct cgroup_subsys_state *pos_css;

	/*
	 * Check all its siblings and call update_cpumasks_hier()
	 * if their use_parent_ecpus flag is set in order for them
	 * to use the right effective_cpus value.
	 */
	rcu_read_lock();
	cpuset_for_each_child(sibling, pos_css, parent) {
		if (sibling == cs)
			continue;
		if (!sibling->use_parent_ecpus)
			continue;

		update_cpumasks_hier(sibling, tmp);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
1449 1450 1451
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
1452
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
1453 1454
 * @buf: buffer of cpu numbers written to this cpuset
 */
1455 1456
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
1457
{
C
Cliff Wickman 已提交
1458
	int retval;
1459
	struct tmpmasks tmp;
L
Linus Torvalds 已提交
1460

1461
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1462 1463 1464
	if (cs == &top_cpuset)
		return -EACCES;

1465
	/*
1466
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1467 1468 1469
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
1470
	 */
1471
	if (!*buf) {
1472
		cpumask_clear(trialcs->cpus_allowed);
1473
	} else {
1474
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1475 1476
		if (retval < 0)
			return retval;
1477

1478 1479
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
1480
			return -EINVAL;
1481
	}
P
Paul Jackson 已提交
1482

P
Paul Menage 已提交
1483
	/* Nothing to do if the cpus didn't change */
1484
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
1485
		return 0;
C
Cliff Wickman 已提交
1486

1487 1488 1489 1490
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
#ifdef CONFIG_CPUMASK_OFFSTACK
	/*
	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
	 * to allocated cpumasks.
	 */
	tmp.addmask  = trialcs->subparts_cpus;
	tmp.delmask  = trialcs->effective_cpus;
	tmp.new_cpus = trialcs->cpus_allowed;
#endif

	if (cs->partition_root_state) {
		/* Cpumask of a partition root cannot be empty */
		if (cpumask_empty(trialcs->cpus_allowed))
			return -EINVAL;
		if (update_parent_subparts_cpumask(cs, partcmd_update,
					trialcs->cpus_allowed, &tmp) < 0)
			return -EINVAL;
	}

1510
	spin_lock_irq(&callback_lock);
1511
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1512 1513 1514 1515 1516 1517 1518 1519 1520

	/*
	 * Make sure that subparts_cpus is a subset of cpus_allowed.
	 */
	if (cs->nr_subparts_cpus) {
		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
			       cs->cpus_allowed);
		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
	}
1521
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
1522

1523
	update_cpumasks_hier(cs, &tmp);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	if (cs->partition_root_state) {
		struct cpuset *parent = parent_cs(cs);

		/*
		 * For partition root, update the cpumasks of sibling
		 * cpusets if they use parent's effective_cpus.
		 */
		if (parent->child_ecpus_count)
			update_sibling_cpumasks(parent, cs, &tmp);
	}
1535
	return 0;
L
Linus Torvalds 已提交
1536 1537
}

1538
/*
1539 1540 1541 1542 1543
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
1544 1545
 */

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1564 1565 1566
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1567
	struct cpuset_migrate_mm_work *mwork;
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1580

1581
static void cpuset_post_attach(void)
1582 1583
{
	flush_workqueue(cpuset_migrate_mm_wq);
1584 1585
}

1586
/*
1587 1588 1589 1590
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1591 1592 1593 1594
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1595 1596 1597 1598
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1599 1600
	task_lock(tsk);

1601 1602
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1603

1604
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1605
	mpol_rebind_task(tsk, newmems);
1606
	tsk->mems_allowed = *newmems;
1607

1608 1609
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1610

1611
	task_unlock(tsk);
1612 1613
}

1614 1615
static void *cpuset_being_rebound;

1616 1617 1618 1619
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1620 1621 1622
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1623
 */
1624
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1625
{
1626
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1627 1628
	struct css_task_iter it;
	struct task_struct *task;
1629

1630
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1631

1632
	guarantee_online_mems(cs, &newmems);
1633

1634
	/*
1635 1636 1637 1638
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1639
	 * the global cpuset_mutex, we know that no other rebind effort
1640
	 * will be contending for the global variable cpuset_being_rebound.
1641
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1642
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1643
	 */
1644
	css_task_iter_start(&cs->css, 0, &it);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1660 1661
		else
			mmput(mm);
1662 1663
	}
	css_task_iter_end(&it);
1664

1665 1666 1667 1668 1669 1670
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1671
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1672
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1673 1674
}

1675
/*
1676 1677 1678
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1679
 *
1680 1681
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1682
 *
1683
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1684 1685 1686
 *
 * Called with cpuset_mutex held
 */
1687
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1688 1689
{
	struct cpuset *cp;
1690
	struct cgroup_subsys_state *pos_css;
1691 1692

	rcu_read_lock();
1693 1694 1695 1696 1697
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1698 1699 1700 1701
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1702
		if (is_in_v2_mode() && nodes_empty(*new_mems))
1703 1704
			*new_mems = parent->effective_mems;

1705 1706 1707 1708
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1709
		}
1710

1711
		if (!css_tryget_online(&cp->css))
1712 1713 1714
			continue;
		rcu_read_unlock();

1715
		spin_lock_irq(&callback_lock);
1716
		cp->effective_mems = *new_mems;
1717
		spin_unlock_irq(&callback_lock);
1718

1719
		WARN_ON(!is_in_v2_mode() &&
1720
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1721

1722
		update_tasks_nodemask(cp);
1723 1724 1725 1726 1727 1728 1729

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1730 1731 1732
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1733 1734 1735 1736
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1737
 *
1738
 * Call with cpuset_mutex held. May take callback_lock during call.
1739 1740 1741 1742
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1743 1744
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1745 1746 1747 1748
{
	int retval;

	/*
1749
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1750 1751
	 * it's read-only
	 */
1752 1753 1754 1755
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1756 1757 1758 1759 1760 1761 1762 1763

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1764
		nodes_clear(trialcs->mems_allowed);
1765
	} else {
1766
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1767 1768 1769
		if (retval < 0)
			goto done;

1770
		if (!nodes_subset(trialcs->mems_allowed,
1771 1772
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1773 1774
			goto done;
		}
1775
	}
1776 1777

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1778 1779 1780
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1781
	retval = validate_change(cs, trialcs);
1782 1783 1784
	if (retval < 0)
		goto done;

1785
	spin_lock_irq(&callback_lock);
1786
	cs->mems_allowed = trialcs->mems_allowed;
1787
	spin_unlock_irq(&callback_lock);
1788

1789
	/* use trialcs->mems_allowed as a temp variable */
1790
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1791 1792 1793 1794
done:
	return retval;
}

1795
bool current_cpuset_is_being_rebound(void)
1796
{
1797
	bool ret;
1798 1799 1800 1801 1802 1803

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1804 1805
}

1806
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1807
{
1808
#ifdef CONFIG_SMP
1809
	if (val < -1 || val >= sched_domain_level_max)
1810
		return -EINVAL;
1811
#endif
1812 1813 1814

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1815 1816
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1817
			rebuild_sched_domains_locked();
1818 1819 1820 1821 1822
	}

	return 0;
}

1823
/**
1824 1825 1826
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1827 1828 1829
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1830
 */
1831
static void update_tasks_flags(struct cpuset *cs)
1832
{
1833 1834 1835
	struct css_task_iter it;
	struct task_struct *task;

1836
	css_task_iter_start(&cs->css, 0, &it);
1837 1838 1839
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1840 1841
}

L
Linus Torvalds 已提交
1842 1843
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1844 1845 1846
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1847
 *
1848
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1849 1850
 */

1851 1852
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1853
{
1854
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1855
	int balance_flag_changed;
1856 1857
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1858

1859 1860 1861 1862
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1863
	if (turning_on)
1864
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1865
	else
1866
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1867

1868
	err = validate_change(cs, trialcs);
1869
	if (err < 0)
1870
		goto out;
P
Paul Jackson 已提交
1871 1872

	balance_flag_changed = (is_sched_load_balance(cs) !=
1873
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1874

1875 1876 1877
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1878
	spin_lock_irq(&callback_lock);
1879
	cs->flags = trialcs->flags;
1880
	spin_unlock_irq(&callback_lock);
1881

1882
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1883
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1884

1885
	if (spread_flag_changed)
1886
		update_tasks_flags(cs);
1887
out:
1888
	free_cpuset(trialcs);
1889
	return err;
L
Linus Torvalds 已提交
1890 1891
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/*
 * update_prstate - update partititon_root_state
 * cs:	the cpuset to update
 * val: 0 - disabled, 1 - enabled
 *
 * Call with cpuset_mutex held.
 */
static int update_prstate(struct cpuset *cs, int val)
{
	int err;
	struct cpuset *parent = parent_cs(cs);
	struct tmpmasks tmp;

	if ((val != 0) && (val != 1))
		return -EINVAL;
	if (val == cs->partition_root_state)
		return 0;

	/*
1911
	 * Cannot force a partial or invalid partition root to a full
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	 * partition root.
	 */
	if (val && cs->partition_root_state)
		return -EINVAL;

	if (alloc_cpumasks(NULL, &tmp))
		return -ENOMEM;

	err = -EINVAL;
	if (!cs->partition_root_state) {
		/*
		 * Turning on partition root requires setting the
		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
		 * cannot be NULL.
		 */
		if (cpumask_empty(cs->cpus_allowed))
			goto out;

		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
		if (err)
			goto out;

		err = update_parent_subparts_cpumask(cs, partcmd_enable,
						     NULL, &tmp);
		if (err) {
			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
			goto out;
		}
		cs->partition_root_state = PRS_ENABLED;
	} else {
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		/*
		 * Turning off partition root will clear the
		 * CS_CPU_EXCLUSIVE bit.
		 */
		if (cs->partition_root_state == PRS_ERROR) {
			cs->partition_root_state = 0;
			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
			err = 0;
			goto out;
		}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		err = update_parent_subparts_cpumask(cs, partcmd_disable,
						     NULL, &tmp);
		if (err)
			goto out;

		cs->partition_root_state = 0;

		/* Turning off CS_CPU_EXCLUSIVE will not return error */
		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
	}

	/*
	 * Update cpumask of parent's tasks except when it is the top
	 * cpuset as some system daemons cannot be mapped to other CPUs.
	 */
	if (parent != &top_cpuset)
		update_tasks_cpumask(parent);

1971 1972 1973
	if (parent->child_ecpus_count)
		update_sibling_cpumasks(parent, cs, &tmp);

1974 1975 1976
	rebuild_sched_domains_locked();
out:
	free_cpumasks(NULL, &tmp);
1977
	return err;
L
Linus Torvalds 已提交
1978 1979
}

1980
/*
A
Adrian Bunk 已提交
1981
 * Frequency meter - How fast is some event occurring?
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
2026
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
2042 2043 2044 2045 2046
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

2081 2082
static struct cpuset *cpuset_attach_old_cs;

2083
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2084
static int cpuset_can_attach(struct cgroup_taskset *tset)
2085
{
2086 2087
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
2088 2089
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
2090

2091
	/* used later by cpuset_attach() */
2092 2093
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
2094

2095 2096
	mutex_lock(&cpuset_mutex);

2097
	/* allow moving tasks into an empty cpuset if on default hierarchy */
2098
	ret = -ENOSPC;
2099
	if (!is_in_v2_mode() &&
2100
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2101
		goto out_unlock;
2102

2103
	cgroup_taskset_for_each(task, css, tset) {
2104 2105
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
2106 2107 2108 2109
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
2110
	}
2111

2112 2113 2114 2115 2116
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
2117 2118 2119 2120
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
2121
}
2122

2123
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2124
{
2125 2126 2127 2128
	struct cgroup_subsys_state *css;

	cgroup_taskset_first(tset, &css);

2129
	mutex_lock(&cpuset_mutex);
2130
	css_cs(css)->attach_in_progress--;
2131
	mutex_unlock(&cpuset_mutex);
2132
}
L
Linus Torvalds 已提交
2133

2134
/*
2135
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2136 2137 2138 2139 2140
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

2141
static void cpuset_attach(struct cgroup_taskset *tset)
2142
{
2143
	/* static buf protected by cpuset_mutex */
2144
	static nodemask_t cpuset_attach_nodemask_to;
2145
	struct task_struct *task;
2146
	struct task_struct *leader;
2147 2148
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
2149
	struct cpuset *oldcs = cpuset_attach_old_cs;
2150

2151 2152 2153
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

2154 2155
	mutex_lock(&cpuset_mutex);

2156 2157 2158 2159
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
2160
		guarantee_online_cpus(cs, cpus_attach);
2161

2162
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2163

2164
	cgroup_taskset_for_each(task, css, tset) {
2165 2166 2167 2168 2169 2170 2171 2172 2173
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
2174

2175
	/*
2176 2177
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
2178
	 */
2179
	cpuset_attach_nodemask_to = cs->effective_mems;
2180
	cgroup_taskset_for_each_leader(leader, css, tset) {
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
2194
			if (is_memory_migrate(cs))
2195 2196
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
2197 2198
			else
				mmput(mm);
2199
		}
2200
	}
2201

2202
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2203

2204
	cs->attach_in_progress--;
2205 2206
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
2207 2208

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
2214
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
2215 2216
	FILE_CPULIST,
	FILE_MEMLIST,
2217 2218
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
2219
	FILE_SUBPARTS_CPULIST,
L
Linus Torvalds 已提交
2220 2221
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
2222
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
2223
	FILE_SCHED_LOAD_BALANCE,
2224
	FILE_PARTITION_ROOT,
2225
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2226 2227
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
2228 2229
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
2230 2231
} cpuset_filetype_t;

2232 2233
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
2234
{
2235
	struct cpuset *cs = css_cs(css);
2236
	cpuset_filetype_t type = cft->private;
2237
	int retval = 0;
2238

2239
	mutex_lock(&cpuset_mutex);
2240 2241
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
2242
		goto out_unlock;
2243
	}
2244 2245

	switch (type) {
L
Linus Torvalds 已提交
2246
	case FILE_CPU_EXCLUSIVE:
2247
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
2248 2249
		break;
	case FILE_MEM_EXCLUSIVE:
2250
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
2251
		break;
2252 2253 2254
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
2255
	case FILE_SCHED_LOAD_BALANCE:
2256
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2257
		break;
2258
	case FILE_MEMORY_MIGRATE:
2259
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2260
		break;
2261
	case FILE_MEMORY_PRESSURE_ENABLED:
2262
		cpuset_memory_pressure_enabled = !!val;
2263
		break;
2264
	case FILE_SPREAD_PAGE:
2265
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2266 2267
		break;
	case FILE_SPREAD_SLAB:
2268
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2269
		break;
L
Linus Torvalds 已提交
2270 2271
	default:
		retval = -EINVAL;
2272
		break;
L
Linus Torvalds 已提交
2273
	}
2274 2275
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2276 2277 2278
	return retval;
}

2279 2280
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
2281
{
2282
	struct cpuset *cs = css_cs(css);
2283
	cpuset_filetype_t type = cft->private;
2284
	int retval = -ENODEV;
2285

2286 2287 2288
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
2289

2290 2291 2292 2293 2294 2295 2296 2297
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
2298 2299
out_unlock:
	mutex_unlock(&cpuset_mutex);
2300 2301 2302
	return retval;
}

2303 2304 2305
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
2306 2307
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
2308
{
2309
	struct cpuset *cs = css_cs(of_css(of));
2310
	struct cpuset *trialcs;
2311
	int retval = -ENODEV;
2312

2313 2314
	buf = strstrip(buf);

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
2325 2326 2327 2328 2329 2330 2331 2332
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
2333
	 */
2334 2335
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
2336 2337
	flush_work(&cpuset_hotplug_work);

2338 2339 2340
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
2341

2342
	trialcs = alloc_trial_cpuset(cs);
2343 2344
	if (!trialcs) {
		retval = -ENOMEM;
2345
		goto out_unlock;
2346
	}
2347

2348
	switch (of_cft(of)->private) {
2349
	case FILE_CPULIST:
2350
		retval = update_cpumask(cs, trialcs, buf);
2351 2352
		break;
	case FILE_MEMLIST:
2353
		retval = update_nodemask(cs, trialcs, buf);
2354 2355 2356 2357 2358
		break;
	default:
		retval = -EINVAL;
		break;
	}
2359

2360
	free_cpuset(trialcs);
2361 2362
out_unlock:
	mutex_unlock(&cpuset_mutex);
2363 2364
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
2365
	flush_workqueue(cpuset_migrate_mm_wq);
2366
	return retval ?: nbytes;
2367 2368
}

L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375 2376
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
2377
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
2378
{
2379 2380
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
2381
	int ret = 0;
L
Linus Torvalds 已提交
2382

2383
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
2384 2385 2386

	switch (type) {
	case FILE_CPULIST:
2387
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
2388 2389
		break;
	case FILE_MEMLIST:
2390
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
2391
		break;
2392
	case FILE_EFFECTIVE_CPULIST:
2393
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2394 2395
		break;
	case FILE_EFFECTIVE_MEMLIST:
2396
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2397
		break;
2398 2399 2400
	case FILE_SUBPARTS_CPULIST:
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
		break;
L
Linus Torvalds 已提交
2401
	default:
2402
		ret = -EINVAL;
L
Linus Torvalds 已提交
2403 2404
	}

2405
	spin_unlock_irq(&callback_lock);
2406
	return ret;
L
Linus Torvalds 已提交
2407 2408
}

2409
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2410
{
2411
	struct cpuset *cs = css_cs(css);
2412 2413 2414 2415 2416 2417
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
2418 2419
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
2435 2436 2437

	/* Unreachable but makes gcc happy */
	return 0;
2438
}
L
Linus Torvalds 已提交
2439

2440
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2441
{
2442
	struct cpuset *cs = css_cs(css);
2443 2444 2445 2446 2447 2448 2449
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
2450 2451 2452

	/* Unrechable but makes gcc happy */
	return 0;
2453 2454
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static int sched_partition_show(struct seq_file *seq, void *v)
{
	struct cpuset *cs = css_cs(seq_css(seq));

	switch (cs->partition_root_state) {
	case PRS_ENABLED:
		seq_puts(seq, "root\n");
		break;
	case PRS_DISABLED:
		seq_puts(seq, "member\n");
		break;
	case PRS_ERROR:
		seq_puts(seq, "root invalid\n");
		break;
	}
	return 0;
}

static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
				     size_t nbytes, loff_t off)
{
	struct cpuset *cs = css_cs(of_css(of));
	int val;
	int retval = -ENODEV;

	buf = strstrip(buf);

	/*
2483
	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2484
	 */
2485
	if (!strcmp(buf, "root"))
2486
		val = PRS_ENABLED;
2487
	else if (!strcmp(buf, "member"))
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		val = PRS_DISABLED;
	else
		return -EINVAL;

	css_get(&cs->css);
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;

	retval = update_prstate(cs, val);
out_unlock:
	mutex_unlock(&cpuset_mutex);
	css_put(&cs->css);
	return retval ?: nbytes;
}
L
Linus Torvalds 已提交
2503 2504 2505 2506 2507

/*
 * for the common functions, 'private' gives the type of file
 */

2508
static struct cftype legacy_files[] = {
2509 2510
	{
		.name = "cpus",
2511
		.seq_show = cpuset_common_seq_show,
2512
		.write = cpuset_write_resmask,
2513
		.max_write_len = (100U + 6 * NR_CPUS),
2514 2515 2516 2517 2518
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
2519
		.seq_show = cpuset_common_seq_show,
2520
		.write = cpuset_write_resmask,
2521
		.max_write_len = (100U + 6 * MAX_NUMNODES),
2522 2523 2524
		.private = FILE_MEMLIST,
	},

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

2551 2552 2553 2554 2555 2556 2557
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

2558 2559 2560 2561 2562 2563 2564 2565 2566
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
2567 2568
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
2582
		.private = FILE_MEMORY_PRESSURE,
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
2598

2599 2600 2601 2602 2603 2604 2605
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
2606

2607 2608
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
/*
 * This is currently a minimal set for the default hierarchy. It can be
 * expanded later on by migrating more features and control files from v1.
 */
static struct cftype dfl_files[] = {
	{
		.name = "cpus",
		.seq_show = cpuset_common_seq_show,
		.write = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
		.private = FILE_CPULIST,
		.flags = CFTYPE_NOT_ON_ROOT,
	},

	{
		.name = "mems",
		.seq_show = cpuset_common_seq_show,
		.write = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
		.private = FILE_MEMLIST,
		.flags = CFTYPE_NOT_ON_ROOT,
	},

	{
		.name = "cpus.effective",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "mems.effective",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

2645
	{
2646
		.name = "cpus.partition",
2647 2648
		.seq_show = sched_partition_show,
		.write = sched_partition_write,
2649 2650 2651 2652
		.private = FILE_PARTITION_ROOT,
		.flags = CFTYPE_NOT_ON_ROOT,
	},

2653 2654 2655 2656 2657 2658 2659
	{
		.name = "cpus.subpartitions",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_SUBPARTS_CPULIST,
		.flags = CFTYPE_DEBUG,
	},

2660 2661 2662 2663
	{ }	/* terminate */
};


L
Linus Torvalds 已提交
2664
/*
2665
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
2666
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
2667 2668
 */

2669 2670
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
2671
{
T
Tejun Heo 已提交
2672
	struct cpuset *cs;
L
Linus Torvalds 已提交
2673

2674
	if (!parent_css)
2675
		return &top_cpuset.css;
2676

T
Tejun Heo 已提交
2677
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
2678
	if (!cs)
2679
		return ERR_PTR(-ENOMEM);
2680 2681 2682 2683 2684

	if (alloc_cpumasks(cs, NULL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
2685

P
Paul Jackson 已提交
2686
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2687
	nodes_clear(cs->mems_allowed);
2688
	nodes_clear(cs->effective_mems);
2689
	fmeter_init(&cs->fmeter);
2690
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
2691

T
Tejun Heo 已提交
2692 2693 2694
	return &cs->css;
}

2695
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2696
{
2697
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2698
	struct cpuset *parent = parent_cs(cs);
2699
	struct cpuset *tmp_cs;
2700
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
2701 2702 2703 2704

	if (!parent)
		return 0;

2705 2706
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
2707
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2708 2709 2710 2711
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
2712

2713
	cpuset_inc();
2714

2715
	spin_lock_irq(&callback_lock);
2716
	if (is_in_v2_mode()) {
2717 2718
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
2719 2720
		cs->use_parent_ecpus = true;
		parent->child_ecpus_count++;
2721
	}
2722
	spin_unlock_irq(&callback_lock);
2723

2724
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2725
		goto out_unlock;
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2740
	rcu_read_lock();
2741
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2742 2743
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2744
			goto out_unlock;
2745
		}
2746
	}
2747
	rcu_read_unlock();
2748

2749
	spin_lock_irq(&callback_lock);
2750
	cs->mems_allowed = parent->mems_allowed;
2751
	cs->effective_mems = parent->mems_allowed;
2752
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2753
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2754
	spin_unlock_irq(&callback_lock);
2755 2756
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2757 2758 2759
	return 0;
}

2760 2761 2762
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
2763 2764 2765 2766 2767 2768
 * will call rebuild_sched_domains_locked(). That is not needed
 * in the default hierarchy where only changes in partition
 * will cause repartitioning.
 *
 * If the cpuset has the 'sched.partition' flag enabled, simulate
 * turning 'sched.partition" off.
2769 2770
 */

2771
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2772
{
2773
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2774

2775
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2776

2777 2778 2779 2780 2781
	if (is_partition_root(cs))
		update_prstate(cs, 0);

	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    is_sched_load_balance(cs))
T
Tejun Heo 已提交
2782 2783
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2784 2785 2786 2787 2788 2789 2790
	if (cs->use_parent_ecpus) {
		struct cpuset *parent = parent_cs(cs);

		cs->use_parent_ecpus = false;
		parent->child_ecpus_count--;
	}

2791
	cpuset_dec();
T
Tejun Heo 已提交
2792
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2793

2794
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2795 2796
}

2797
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2798
{
2799
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2800

2801
	free_cpuset(cs);
L
Linus Torvalds 已提交
2802 2803
}

2804 2805 2806
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2807
	spin_lock_irq(&callback_lock);
2808

2809
	if (is_in_v2_mode()) {
2810 2811 2812 2813 2814 2815 2816 2817
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2818
	spin_unlock_irq(&callback_lock);
2819 2820 2821
	mutex_unlock(&cpuset_mutex);
}

2822 2823 2824 2825 2826
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2827
static void cpuset_fork(struct task_struct *task)
2828 2829 2830 2831
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

2832
	set_cpus_allowed_ptr(task, current->cpus_ptr);
2833 2834 2835
	task->mems_allowed = current->mems_allowed;
}

2836
struct cgroup_subsys cpuset_cgrp_subsys = {
2837 2838 2839 2840 2841 2842 2843
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2844
	.post_attach	= cpuset_post_attach,
2845
	.bind		= cpuset_bind,
2846
	.fork		= cpuset_fork,
2847 2848
	.legacy_cftypes	= legacy_files,
	.dfl_cftypes	= dfl_files,
2849
	.early_init	= true,
2850
	.threaded	= true,
2851 2852
};

L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859 2860
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2861
	int err = 0;
L
Linus Torvalds 已提交
2862

N
Nicholas Mc Guire 已提交
2863 2864
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2865
	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2866

2867
	cpumask_setall(top_cpuset.cpus_allowed);
2868
	nodes_setall(top_cpuset.mems_allowed);
2869 2870
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2871

2872
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2873
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2874
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2875 2876 2877

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2878 2879
		return err;

N
Nicholas Mc Guire 已提交
2880
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2881

2882
	return 0;
L
Linus Torvalds 已提交
2883 2884
}

2885
/*
2886
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2887 2888
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2889 2890
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2891
 */
2892 2893 2894 2895 2896 2897 2898 2899
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2900
	parent = parent_cs(cs);
2901
	while (cpumask_empty(parent->cpus_allowed) ||
2902
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2903
		parent = parent_cs(parent);
2904

2905
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2906
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2907 2908
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2909
	}
2910 2911
}

2912 2913 2914 2915
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2916 2917 2918
{
	bool is_empty;

2919
	spin_lock_irq(&callback_lock);
2920 2921 2922 2923
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2924
	spin_unlock_irq(&callback_lock);
2925 2926 2927 2928 2929

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2930
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2931
		update_tasks_cpumask(cs);
2932
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2951 2952 2953 2954
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2955
{
2956 2957 2958 2959 2960
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2961
	spin_lock_irq(&callback_lock);
2962 2963
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2964
	spin_unlock_irq(&callback_lock);
2965

2966
	if (cpus_updated)
2967
		update_tasks_cpumask(cs);
2968
	if (mems_updated)
2969 2970 2971
		update_tasks_nodemask(cs);
}

2972 2973 2974 2975 2976 2977 2978
static bool force_rebuild;

void cpuset_force_rebuild(void)
{
	force_rebuild = true;
}

2979
/**
2980
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2981
 * @cs: cpuset in interest
2982
 * @tmp: the tmpmasks structure pointer
2983
 *
2984 2985 2986
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2987
 */
2988
static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2989
{
2990 2991 2992 2993
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2994
	struct cpuset *parent;
2995 2996
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2997

2998
	mutex_lock(&cpuset_mutex);
2999

3000 3001 3002 3003 3004 3005 3006 3007 3008
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	parent =  parent_cs(cs);
	compute_effective_cpumask(&new_cpus, cs, parent);
	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);

	if (cs->nr_subparts_cpus)
		/*
		 * Make sure that CPUs allocated to child partitions
		 * do not show up in effective_cpus.
		 */
		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);

	if (!tmp || !cs->partition_root_state)
		goto update_tasks;
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	/*
	 * In the unlikely event that a partition root has empty
	 * effective_cpus or its parent becomes erroneous, we have to
	 * transition it to the erroneous state.
	 */
	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
	   (parent->partition_root_state == PRS_ERROR))) {
		if (cs->nr_subparts_cpus) {
			cs->nr_subparts_cpus = 0;
			cpumask_clear(cs->subparts_cpus);
			compute_effective_cpumask(&new_cpus, cs, parent);
		}
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
		/*
		 * If the effective_cpus is empty because the child
		 * partitions take away all the CPUs, we can keep
		 * the current partition and let the child partitions
		 * fight for available CPUs.
		 */
		if ((parent->partition_root_state == PRS_ERROR) ||
		     cpumask_empty(&new_cpus)) {
			update_parent_subparts_cpumask(cs, partcmd_disable,
						       NULL, tmp);
			cs->partition_root_state = PRS_ERROR;
		}
		cpuset_force_rebuild();
	}

	/*
	 * On the other hand, an erroneous partition root may be transitioned
	 * back to a regular one or a partition root with no CPU allocated
	 * from the parent may change to erroneous.
	 */
	if (is_partition_root(parent) &&
	   ((cs->partition_root_state == PRS_ERROR) ||
	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
		cpuset_force_rebuild();

update_tasks:
3063 3064
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3065

3066
	if (is_in_v2_mode())
3067 3068
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
3069
	else
3070 3071
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
3072

3073
	mutex_unlock(&cpuset_mutex);
3074 3075
}

3076
/**
3077
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3078
 *
3079 3080 3081 3082 3083
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
3084
 *
3085
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3086 3087
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
3088
 *
3089 3090
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
3091
 */
3092
static void cpuset_hotplug_workfn(struct work_struct *work)
3093
{
3094 3095
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
3096
	bool cpus_updated, mems_updated;
3097
	bool on_dfl = is_in_v2_mode();
3098 3099 3100 3101
	struct tmpmasks tmp, *ptmp = NULL;

	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
		ptmp = &tmp;
3102

3103
	mutex_lock(&cpuset_mutex);
3104

3105 3106 3107
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
3108

3109 3110 3111 3112 3113
	/*
	 * If subparts_cpus is populated, it is likely that the check below
	 * will produce a false positive on cpus_updated when the cpu list
	 * isn't changed. It is extra work, but it is better to be safe.
	 */
3114 3115
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3116

3117 3118
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
3119
		spin_lock_irq(&callback_lock);
3120 3121
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
		/*
		 * Make sure that CPUs allocated to child partitions
		 * do not show up in effective_cpus. If no CPU is left,
		 * we clear the subparts_cpus & let the child partitions
		 * fight for the CPUs again.
		 */
		if (top_cpuset.nr_subparts_cpus) {
			if (cpumask_subset(&new_cpus,
					   top_cpuset.subparts_cpus)) {
				top_cpuset.nr_subparts_cpus = 0;
				cpumask_clear(top_cpuset.subparts_cpus);
			} else {
				cpumask_andnot(&new_cpus, &new_cpus,
					       top_cpuset.subparts_cpus);
			}
		}
3138
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3139
		spin_unlock_irq(&callback_lock);
3140 3141
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
3142

3143 3144
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
3145
		spin_lock_irq(&callback_lock);
3146 3147
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
3148
		top_cpuset.effective_mems = new_mems;
3149
		spin_unlock_irq(&callback_lock);
3150
		update_tasks_nodemask(&top_cpuset);
3151
	}
3152

3153 3154
	mutex_unlock(&cpuset_mutex);

3155 3156
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
3157
		struct cpuset *cs;
3158
		struct cgroup_subsys_state *pos_css;
3159

3160
		rcu_read_lock();
3161
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3162
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3163 3164
				continue;
			rcu_read_unlock();
3165

3166
			cpuset_hotplug_update_tasks(cs, ptmp);
3167

3168 3169 3170 3171 3172
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
3173

3174
	/* rebuild sched domains if cpus_allowed has changed */
3175 3176
	if (cpus_updated || force_rebuild) {
		force_rebuild = false;
3177
		rebuild_sched_domains();
3178
	}
3179 3180

	free_cpumasks(NULL, ptmp);
3181 3182
}

3183
void cpuset_update_active_cpus(void)
3184
{
3185 3186 3187 3188 3189 3190
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 */
	schedule_work(&cpuset_hotplug_work);
3191 3192
}

3193 3194 3195 3196 3197
void cpuset_wait_for_hotplug(void)
{
	flush_work(&cpuset_hotplug_work);
}

3198
/*
3199 3200
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
3201
 * See cpuset_update_active_cpus() for CPU hotplug handling.
3202
 */
3203 3204
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
3205
{
3206
	schedule_work(&cpuset_hotplug_work);
3207
	return NOTIFY_OK;
3208
}
3209 3210 3211 3212 3213

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
3214

L
Linus Torvalds 已提交
3215 3216 3217 3218
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
3219
 */
L
Linus Torvalds 已提交
3220 3221
void __init cpuset_init_smp(void)
{
3222
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3223
	top_cpuset.mems_allowed = node_states[N_MEMORY];
3224
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3225

3226 3227 3228
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

3229
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3230 3231 3232

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
3233 3234 3235 3236 3237
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3238
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
3239
 *
3240
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
3241
 * attached to the specified @tsk.  Guaranteed to return some non-empty
3242
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
3243 3244 3245
 * tasks cpuset.
 **/

3246
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
3247
{
3248 3249 3250
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
3251
	rcu_read_lock();
3252
	guarantee_online_cpus(task_cs(tsk), pmask);
3253
	rcu_read_unlock();
3254
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
3255 3256
}

3257
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3258 3259
{
	rcu_read_lock();
3260
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
3276 3277 3278
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
3279 3280 3281
	 */
}

3282
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
3283
{
3284
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
3285 3286
}

3287 3288 3289 3290 3291 3292
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
3293
 * subset of node_states[N_MEMORY], even if this means going outside the
3294 3295 3296 3297 3298 3299
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
3300
	unsigned long flags;
3301

3302
	spin_lock_irqsave(&callback_lock, flags);
3303
	rcu_read_lock();
3304
	guarantee_online_mems(task_cs(tsk), &mask);
3305
	rcu_read_unlock();
3306
	spin_unlock_irqrestore(&callback_lock, flags);
3307 3308 3309 3310

	return mask;
}

3311
/**
3312 3313
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
3314
 *
3315
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
3316
 */
3317
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
3318
{
3319
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
3320 3321
}

3322
/*
3323 3324
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
3325
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3326
 * (an unusual configuration), then returns the root cpuset.
3327
 */
3328
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3329
{
T
Tejun Heo 已提交
3330 3331
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
3332 3333 3334
	return cs;
}

3335
/**
3336
 * cpuset_node_allowed - Can we allocate on a memory node?
3337
 * @node: is this an allowed node?
3338
 * @gfp_mask: memory allocation flags
3339
 *
3340 3341 3342
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3343
 * yes.  If current has access to memory reserves as an oom victim, yes.
3344 3345 3346
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3347
 * and do not allow allocations outside the current tasks cpuset
3348
 * unless the task has been OOM killed.
3349
 * GFP_KERNEL allocations are not so marked, so can escape to the
3350
 * nearest enclosing hardwalled ancestor cpuset.
3351
 *
3352
 * Scanning up parent cpusets requires callback_lock.  The
3353 3354 3355 3356
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3357
 * cpuset are short of memory, might require taking the callback_lock.
3358
 *
3359
 * The first call here from mm/page_alloc:get_page_from_freelist()
3360 3361 3362
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
3363 3364 3365 3366 3367 3368
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
3369 3370
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
3371
 *	tsk_is_oom_victim   - any node ok
3372
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3373
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
3374
 */
3375
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3376
{
3377
	struct cpuset *cs;		/* current cpuset ancestors */
3378
	int allowed;			/* is allocation in zone z allowed? */
3379
	unsigned long flags;
3380

3381
	if (in_interrupt())
3382
		return true;
3383
	if (node_isset(node, current->mems_allowed))
3384
		return true;
3385 3386 3387 3388
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
3389
	if (unlikely(tsk_is_oom_victim(current)))
3390
		return true;
3391
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3392
		return false;
3393

3394
	if (current->flags & PF_EXITING) /* Let dying task have memory */
3395
		return true;
3396

3397
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3398
	spin_lock_irqsave(&callback_lock, flags);
3399

3400
	rcu_read_lock();
3401
	cs = nearest_hardwall_ancestor(task_cs(current));
3402
	allowed = node_isset(node, cs->mems_allowed);
3403
	rcu_read_unlock();
3404

3405
	spin_unlock_irqrestore(&callback_lock, flags);
3406
	return allowed;
L
Linus Torvalds 已提交
3407 3408
}

3409
/**
3410 3411
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

3436
static int cpuset_spread_node(int *rotor)
3437
{
3438
	return *rotor = next_node_in(*rotor, current->mems_allowed);
3439
}
3440 3441 3442

int cpuset_mem_spread_node(void)
{
3443 3444 3445 3446
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

3447 3448 3449 3450 3451
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
3452 3453 3454 3455
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

3456 3457 3458
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

3459 3460
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

3461
/**
3462 3463 3464 3465 3466 3467 3468 3469
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
3470 3471
 **/

3472 3473
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
3474
{
3475
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3476 3477
}

3478
/**
3479
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3480
 *
3481
 * Description: Prints current's name, cpuset name, and cached copy of its
3482
 * mems_allowed to the kernel log.
3483
 */
3484
void cpuset_print_current_mems_allowed(void)
3485
{
3486
	struct cgroup *cgrp;
3487

3488
	rcu_read_lock();
3489

3490
	cgrp = task_cs(current)->css.cgroup;
3491
	pr_cont(",cpuset=");
T
Tejun Heo 已提交
3492
	pr_cont_cgroup_name(cgrp);
3493
	pr_cont(",mems_allowed=%*pbl",
3494
		nodemask_pr_args(&current->mems_allowed));
3495

3496
	rcu_read_unlock();
3497 3498
}

3499 3500 3501 3502 3503 3504
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

3505
int cpuset_memory_pressure_enabled __read_mostly;
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
3527
	rcu_read_lock();
3528
	fmeter_markevent(&task_cs(current)->fmeter);
3529
	rcu_read_unlock();
3530 3531
}

3532
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
3533 3534 3535 3536
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
3537 3538
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
3539
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3540
 *    anyway.
L
Linus Torvalds 已提交
3541
 */
Z
Zefan Li 已提交
3542 3543
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
3544
{
3545
	char *buf;
3546
	struct cgroup_subsys_state *css;
3547
	int retval;
L
Linus Torvalds 已提交
3548

3549
	retval = -ENOMEM;
T
Tejun Heo 已提交
3550
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
3551
	if (!buf)
3552 3553
		goto out;

3554
	css = task_get_css(tsk, cpuset_cgrp_id);
3555 3556
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
3557
	css_put(css);
3558
	if (retval >= PATH_MAX)
3559 3560
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
3561
		goto out_free;
3562
	seq_puts(m, buf);
L
Linus Torvalds 已提交
3563
	seq_putc(m, '\n');
T
Tejun Heo 已提交
3564
	retval = 0;
3565
out_free:
L
Linus Torvalds 已提交
3566
	kfree(buf);
3567
out:
L
Linus Torvalds 已提交
3568 3569
	return retval;
}
3570
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
3571

3572
/* Display task mems_allowed in /proc/<pid>/status file. */
3573 3574
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
3575 3576 3577 3578
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
3579
}