cpuset.c 74.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
L
Linus Torvalds 已提交
40 41 42 43 44
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67 68 69 70
/*
 * Workqueue for cpuset related tasks.
 *
 * Using kevent workqueue may cause deadlock when memory_migrate
 * is set. So we create a separate workqueue thread for cpuset.
 */
static struct workqueue_struct *cpuset_wq;

71 72 73 74 75
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
76
int number_of_cpusets __read_mostly;
77

78
/* Forward declare cgroup structures */
79 80 81
struct cgroup_subsys cpuset_subsys;
struct cpuset;

82 83 84 85 86 87 88 89 90
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
91
struct cpuset {
92 93
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
94
	unsigned long flags;		/* "unsigned long" so bitops work */
95
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
96 97 98 99
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

100
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
101 102 103

	/* partition number for rebuild_sched_domains() */
	int pn;
104

105 106 107
	/* for custom sched domain */
	int relax_domain_level;

108 109
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
L
Linus Torvalds 已提交
110 111
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

L
Linus Torvalds 已提交
126 127 128 129
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
130
	CS_MEM_HARDWALL,
131
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
132
	CS_SCHED_LOAD_BALANCE,
133 134
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
135 136 137 138 139
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
140
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
141 142 143 144
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
145
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
146 147
}

148 149 150 151 152
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
153 154 155 156 157
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

158 159
static inline int is_memory_migrate(const struct cpuset *cs)
{
160
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 162
}

163 164 165 166 167 168 169 170 171 172
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
173 174 175 176 177
static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
};

/*
178 179 180 181 182 183 184
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
185
 *
186
 * A task must hold both mutexes to modify cpusets.  If a task
187
 * holds cgroup_mutex, then it blocks others wanting that mutex,
188
 * ensuring that it is the only task able to also acquire callback_mutex
189 190
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
191
 * also allocate memory while just holding cgroup_mutex.  While it is
192
 * performing these checks, various callback routines can briefly
193 194
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
195 196
 *
 * Calls to the kernel memory allocator can not be made while holding
197
 * callback_mutex, as that would risk double tripping on callback_mutex
198 199 200
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
201
 * If a task is only holding callback_mutex, then it has read-only
202 203
 * access to cpusets.
 *
204 205 206
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
207
 *
208
 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 210 211
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
212 213
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
214 215
 */

216
static DEFINE_MUTEX(callback_mutex);
217

218 219 220 221 222 223 224 225 226 227 228
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

229 230
/*
 * This is ugly, but preserves the userspace API for existing cpuset
231
 * users. If someone tries to mount the "cpuset" filesystem, we
232 233
 * silently switch it to mount "cgroup" instead
 */
234 235 236
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
237
{
238 239 240 241 242 243 244 245 246 247 248
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
257
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
258 259 260 261 262 263 264 265 266
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
267
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
268 269
 */

270 271
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
272
{
273
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
L
Linus Torvalds 已提交
274 275
		cs = cs->parent;
	if (cs)
276
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
277
	else
278 279
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
280 281 282 283
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
284 285 286 287
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
288 289
 *
 * One way or another, we guarantee to return some non-empty subset
290
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
291
 *
292
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
293 294 295 296
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
297 298
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
299 300
		cs = cs->parent;
	if (cs)
301 302
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
303
	else
304 305
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Called with callback_mutex/cgroup_mutex held
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
326 327 328 329 330
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
331
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
332 333 334 335
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
336
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
337 338 339 340 341
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

342 343 344 345 346 347
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
348 349 350 351 352 353 354 355 356 357 358 359 360
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
361 362 363 364 365 366 367 368
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
369
	free_cpumask_var(trial->cpus_allowed);
370 371 372
	kfree(trial);
}

L
Linus Torvalds 已提交
373 374 375 376 377 378 379
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
380
 * cgroup_mutex held.
L
Linus Torvalds 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
395
	struct cgroup *cont;
L
Linus Torvalds 已提交
396 397 398
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
399 400
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
401 402 403 404
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
405
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
406 407
		return 0;

408 409
	par = cur->parent;

L
Linus Torvalds 已提交
410 411 412 413
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

414 415 416 417
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
418 419
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
420 421
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
422
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
L
Linus Torvalds 已提交
423 424 425 426 427 428 429
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

430 431
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
432
		if (cpumask_empty(trial->cpus_allowed) ||
433 434 435 436 437
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
438 439 440
	return 0;
}

441
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
442
/*
443
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
444 445 446 447
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
448
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
449 450
}

451 452 453 454 455 456 457 458
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

473
		if (cpumask_empty(cp->cpus_allowed))
474 475 476 477 478 479 480 481 482 483 484 485
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

P
Paul Jackson 已提交
486
/*
487 488 489 490 491 492 493 494 495
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
496
 *
L
Li Zefan 已提交
497
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
498 499 500 501 502 503 504
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
505
 * Must be called with cgroup_lock held.
P
Paul Jackson 已提交
506 507
 *
 * The three key local variables below are:
508
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
540
static int generate_sched_domains(cpumask_var_t **domains,
541
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
542
{
543
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
P
Paul Jackson 已提交
544 545 546 547
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
548
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
549
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
550
	int ndoms = 0;		/* number of sched domains in result */
551
	int nslot;		/* next empty doms[] struct cpumask slot */
P
Paul Jackson 已提交
552 553

	doms = NULL;
554
	dattr = NULL;
555
	csa = NULL;
P
Paul Jackson 已提交
556 557 558

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
559 560
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
561
		if (!doms)
562 563
			goto done;

564 565 566
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
567
			update_domain_attr_tree(dattr, &top_cpuset);
568
		}
569
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
570 571

		goto done;
P
Paul Jackson 已提交
572 573 574 575 576 577 578
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

579 580
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
P
Paul Jackson 已提交
581 582
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
583

584 585 586
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

587
		if (cpumask_empty(cp->cpus_allowed))
588 589
			continue;

590 591 592 593 594 595 596
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
P
Paul Jackson 已提交
597
			csa[csn++] = cp;
598 599
			continue;
		}
600

P
Paul Jackson 已提交
601 602
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
603
			list_add_tail(&child->stack_list, &q);
P
Paul Jackson 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

634 635 636 637
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
638
	doms = alloc_sched_domains(ndoms);
639
	if (!doms)
640 641 642 643 644 645
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
646
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
647 648 649

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
650
		struct cpumask *dp;
P
Paul Jackson 已提交
651 652
		int apn = a->pn;

653 654 655 656 657
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

658
		dp = doms[nslot];
659 660 661 662 663 664 665 666 667 668

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
669
			}
670 671
			continue;
		}
P
Paul Jackson 已提交
672

673
		cpumask_clear(dp);
674 675 676 677 678 679
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
680
				cpumask_or(dp, dp, b->cpus_allowed);
681 682 683 684 685
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
686 687
			}
		}
688
		nslot++;
P
Paul Jackson 已提交
689 690 691
	}
	BUG_ON(nslot != ndoms);

692 693 694
done:
	kfree(csa);

695 696 697 698 699 700 701
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
 * Call with neither cgroup_mutex held nor within get_online_cpus().
 * Takes both cgroup_mutex and get_online_cpus().
 *
 * Cannot be directly called from cpuset code handling changes
 * to the cpuset pseudo-filesystem, because it cannot be called
 * from code that already holds cgroup_mutex.
 */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
	struct sched_domain_attr *attr;
720
	cpumask_var_t *doms;
721 722
	int ndoms;

723
	get_online_cpus();
724 725 726 727 728 729 730 731 732

	/* Generate domain masks and attrs */
	cgroup_lock();
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

733
	put_online_cpus();
734
}
735 736 737 738 739
#else /* !CONFIG_SMP */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
}

740
static int generate_sched_domains(cpumask_var_t **domains,
741 742 743 744 745 746
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);

/*
 * Rebuild scheduler domains, asynchronously via workqueue.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * The rebuild_sched_domains() and partition_sched_domains()
 * routines must nest cgroup_lock() inside get_online_cpus(),
 * but such cpuset changes as these must nest that locking the
 * other way, holding cgroup_lock() for much of the code.
 *
 * So in order to avoid an ABBA deadlock, the cpuset code handling
 * these user changes delegates the actual sched domain rebuilding
 * to a separate workqueue thread, which ends up processing the
 * above do_rebuild_sched_domains() function.
 */
static void async_rebuild_sched_domains(void)
{
771
	queue_work(cpuset_wq, &rebuild_sched_domains_work);
772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

/*
 * Accomplishes the same scheduler domain rebuild as the above
 * async_rebuild_sched_domains(), however it directly calls the
 * rebuild routine synchronously rather than calling it via an
 * asynchronous work thread.
 *
 * This can only be called from code that is not holding
 * cgroup_mutex (not nested in a cgroup_lock() call.)
 */
void rebuild_sched_domains(void)
{
	do_rebuild_sched_domains(NULL);
P
Paul Jackson 已提交
786 787
}

C
Cliff Wickman 已提交
788 789 790 791 792
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
793
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
794 795 796
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
797
 */
798 799
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
800
{
801
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
802 803
			(cgroup_cs(scan->cg))->cpus_allowed);
}
804

C
Cliff Wickman 已提交
805 806 807 808 809 810 811 812 813 814 815
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
816 817
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
818
{
819
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
820 821
}

822 823 824
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
825
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
826 827 828 829 830 831
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
832 833
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
834
 */
835
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
836 837 838 839 840 841
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
842 843
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
844 845
}

C
Cliff Wickman 已提交
846 847 848 849 850
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
851 852
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
853
{
854
	struct ptr_heap heap;
C
Cliff Wickman 已提交
855 856
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
857

858 859 860 861
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

862
	/*
863
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
864 865 866
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
867
	 */
868
	if (!*buf) {
869
		cpumask_clear(trialcs->cpus_allowed);
870
	} else {
871
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
872 873
		if (retval < 0)
			return retval;
874

875
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
876
			return -EINVAL;
877
	}
878
	retval = validate_change(cs, trialcs);
879 880
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
881

P
Paul Menage 已提交
882
	/* Nothing to do if the cpus didn't change */
883
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
884
		return 0;
C
Cliff Wickman 已提交
885

886 887 888 889
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

890
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
891

892
	mutex_lock(&callback_mutex);
893
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
894
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
895

P
Paul Menage 已提交
896 897
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
898
	 * that need an update.
P
Paul Menage 已提交
899
	 */
900 901 902
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
903

P
Paul Menage 已提交
904
	if (is_load_balanced)
905
		async_rebuild_sched_domains();
906
	return 0;
L
Linus Torvalds 已提交
907 908
}

909 910 911 912 913 914 915 916
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
917
 *    Call holding cgroup_mutex, so current's cpuset won't change
918
 *    during this call, as manage_mutex holds off any cpuset_attach()
919 920
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
921
 *    our task's cpuset.
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

938
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
939 940
}

941
/*
942 943 944 945 946 947 948 949 950 951 952
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
953 954 955 956 957 958 959 960 961 962 963
repeat:
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
964
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);


	/*
	 * ensure checking ->mems_allowed_change_disable after setting all new
	 * allowed nodes.
	 *
	 * the read-side task can see an nodemask with new allowed nodes and
	 * old allowed nodes. and if it allocates page when cpuset clears newly
	 * disallowed ones continuous, it can see the new allowed bits.
	 *
	 * And if setting all new allowed nodes is after the checking, setting
	 * all new allowed nodes and clearing newly disallowed ones will be done
	 * continuous, and the read-side task may find no node to alloc page.
	 */
	smp_mb();

	/*
	 * Allocation of memory is very fast, we needn't sleep when waiting
	 * for the read-side.
	 */
	while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
		task_unlock(tsk);
		if (!task_curr(tsk))
			yield();
		goto repeat;
	}

	/*
	 * ensure checking ->mems_allowed_change_disable before clearing all new
	 * disallowed nodes.
	 *
	 * if clearing newly disallowed bits before the checking, the read-side
	 * task may find no node to alloc page.
	 */
	smp_mb();

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1003
	tsk->mems_allowed = *newmems;
1004
	task_unlock(tsk);
1005 1006 1007 1008 1009 1010
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 * memory_migrate flag is set. Called with cgroup_mutex held.
1011 1012 1013 1014 1015 1016 1017 1018
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
1019 1020 1021 1022
	NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);

	if (!newmems)
		return;
1023 1024

	cs = cgroup_cs(scan->cg);
1025
	guarantee_online_mems(cs, newmems);
1026

1027
	cpuset_change_task_nodemask(p, newmems);
1028

1029 1030
	NODEMASK_FREE(newmems);

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1043 1044
static void *cpuset_being_rebound;

1045 1046 1047 1048
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1049
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1050 1051
 *
 * Called with cgroup_mutex held
1052 1053
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1054
 */
1055 1056
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
L
Linus Torvalds 已提交
1057
{
1058
	struct cgroup_scanner scan;
1059

1060
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1061

1062 1063 1064
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1065
	scan.heap = heap;
1066
	scan.data = (nodemask_t *)oldmem;
1067 1068

	/*
1069 1070 1071 1072 1073 1074
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cgroup_mutex, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
1075
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1076
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1077
	 */
1078
	cgroup_scan_tasks(&scan);
1079

1080
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1081
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1082 1083
}

1084 1085 1086
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1087 1088 1089 1090
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1091 1092 1093 1094 1095 1096
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1097 1098
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1099
{
1100
	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1101
	int retval;
1102
	struct ptr_heap heap;
1103

1104 1105 1106
	if (!oldmem)
		return -ENOMEM;

1107 1108 1109 1110
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
1111 1112 1113 1114
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1115 1116 1117 1118 1119 1120 1121 1122

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1123
		nodes_clear(trialcs->mems_allowed);
1124
	} else {
1125
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1126 1127 1128
		if (retval < 0)
			goto done;

1129
		if (!nodes_subset(trialcs->mems_allowed,
1130 1131 1132 1133
				node_states[N_HIGH_MEMORY])) {
			retval =  -EINVAL;
			goto done;
		}
1134
	}
1135 1136
	*oldmem = cs->mems_allowed;
	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1137 1138 1139
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1140
	retval = validate_change(cs, trialcs);
1141 1142 1143
	if (retval < 0)
		goto done;

1144 1145 1146 1147
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1148
	mutex_lock(&callback_mutex);
1149
	cs->mems_allowed = trialcs->mems_allowed;
1150 1151
	mutex_unlock(&callback_mutex);

1152
	update_tasks_nodemask(cs, oldmem, &heap);
1153 1154

	heap_free(&heap);
1155
done:
1156
	NODEMASK_FREE(oldmem);
1157 1158 1159
	return retval;
}

1160 1161 1162 1163 1164
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1165
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1166
{
1167
#ifdef CONFIG_SMP
1168 1169
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1170
#endif
1171 1172 1173

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1174 1175
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1176
			async_rebuild_sched_domains();
1177 1178 1179 1180 1181
	}

	return 0;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1222 1223
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1224 1225 1226
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1227
 *
1228
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1229 1230
 */

1231 1232
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1233
{
1234
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1235
	int balance_flag_changed;
1236 1237 1238
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1239

1240 1241 1242 1243
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1244
	if (turning_on)
1245
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1246
	else
1247
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1248

1249
	err = validate_change(cs, trialcs);
1250
	if (err < 0)
1251
		goto out;
P
Paul Jackson 已提交
1252

1253 1254 1255 1256
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1257
	balance_flag_changed = (is_sched_load_balance(cs) !=
1258
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1259

1260 1261 1262
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1263
	mutex_lock(&callback_mutex);
1264
	cs->flags = trialcs->flags;
1265
	mutex_unlock(&callback_mutex);
1266

1267
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268
		async_rebuild_sched_domains();
P
Paul Jackson 已提交
1269

1270 1271 1272
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1273 1274 1275
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1276 1277
}

1278
/*
A
Adrian Bunk 已提交
1279
 * Frequency meter - How fast is some event occurring?
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1376 1377 1378
/* Protected by cgroup_lock */
static cpumask_var_t cpus_attach;

1379
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1380 1381
static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
			     struct task_struct *tsk, bool threadgroup)
L
Linus Torvalds 已提交
1382
{
1383
	int ret;
1384
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1385

1386
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
L
Linus Torvalds 已提交
1387
		return -ENOSPC;
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
	 * cannot change their cpu affinity and isolating such threads by their
	 * set of allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for success of
	 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
	 * be changed.
	 */
	if (tsk->flags & PF_THREAD_BOUND)
		return -EINVAL;
L
Linus Torvalds 已提交
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	ret = security_task_setscheduler(tsk, 0, NULL);
	if (ret)
		return ret;
	if (threadgroup) {
		struct task_struct *c;

		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			ret = security_task_setscheduler(c, 0, NULL);
			if (ret) {
				rcu_read_unlock();
				return ret;
			}
		}
		rcu_read_unlock();
	}
	return 0;
}

static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
			       struct cpuset *cs)
{
	int err;
	/*
	 * can_attach beforehand should guarantee that this doesn't fail.
	 * TODO: have a better way to handle failure here
	 */
	err = set_cpus_allowed_ptr(tsk, cpus_attach);
	WARN_ON_ONCE(err);

	cpuset_change_task_nodemask(tsk, to);
	cpuset_update_task_spread_flag(cs, tsk);

1433
}
L
Linus Torvalds 已提交
1434

1435 1436 1437
static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
			  struct cgroup *oldcont, struct task_struct *tsk,
			  bool threadgroup)
1438 1439 1440 1441
{
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1442 1443 1444 1445 1446
	NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
	NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);

	if (from == NULL || to == NULL)
		goto alloc_fail;
1447

1448
	if (cs == &top_cpuset) {
1449
		cpumask_copy(cpus_attach, cpu_possible_mask);
1450
	} else {
1451
		guarantee_online_cpus(cs, cpus_attach);
1452
	}
1453
	guarantee_online_mems(cs, to);
L
Linus Torvalds 已提交
1454

1455
	/* do per-task migration stuff possibly for each in the threadgroup */
1456
	cpuset_attach_task(tsk, to, cs);
1457 1458 1459 1460
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1461
			cpuset_attach_task(c, to, cs);
1462 1463 1464
		}
		rcu_read_unlock();
	}
1465

1466
	/* change mm; only needs to be done once even if threadgroup */
1467 1468
	*from = oldcs->mems_allowed;
	*to = cs->mems_allowed;
1469 1470
	mm = get_task_mm(tsk);
	if (mm) {
1471
		mpol_rebind_mm(mm, to);
1472
		if (is_memory_migrate(cs))
1473
			cpuset_migrate_mm(mm, from, to);
1474 1475
		mmput(mm);
	}
1476 1477 1478 1479

alloc_fail:
	NODEMASK_FREE(from);
	NODEMASK_FREE(to);
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1485
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1486 1487 1488 1489
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1490
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1491
	FILE_SCHED_LOAD_BALANCE,
1492
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1493 1494
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1495 1496
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1497 1498
} cpuset_filetype_t;

1499 1500 1501 1502 1503 1504
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1505
	if (!cgroup_lock_live_group(cgrp))
1506 1507 1508
		return -ENODEV;

	switch (type) {
L
Linus Torvalds 已提交
1509
	case FILE_CPU_EXCLUSIVE:
1510
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1511 1512
		break;
	case FILE_MEM_EXCLUSIVE:
1513
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1514
		break;
1515 1516 1517
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1518
	case FILE_SCHED_LOAD_BALANCE:
1519
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1520
		break;
1521
	case FILE_MEMORY_MIGRATE:
1522
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1523
		break;
1524
	case FILE_MEMORY_PRESSURE_ENABLED:
1525
		cpuset_memory_pressure_enabled = !!val;
1526 1527 1528 1529
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1530
	case FILE_SPREAD_PAGE:
1531
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1532 1533
		break;
	case FILE_SPREAD_SLAB:
1534
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1535
		break;
L
Linus Torvalds 已提交
1536 1537
	default:
		retval = -EINVAL;
1538
		break;
L
Linus Torvalds 已提交
1539
	}
1540
	cgroup_unlock();
L
Linus Torvalds 已提交
1541 1542 1543
	return retval;
}

1544 1545 1546 1547 1548 1549
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1550
	if (!cgroup_lock_live_group(cgrp))
1551
		return -ENODEV;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

1565 1566 1567 1568 1569 1570 1571
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	int retval = 0;
1572 1573
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1574 1575 1576 1577

	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

1578 1579 1580 1581
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

1582 1583
	switch (cft->private) {
	case FILE_CPULIST:
1584
		retval = update_cpumask(cs, trialcs, buf);
1585 1586
		break;
	case FILE_MEMLIST:
1587
		retval = update_nodemask(cs, trialcs, buf);
1588 1589 1590 1591 1592
		break;
	default:
		retval = -EINVAL;
		break;
	}
1593 1594

	free_trial_cpuset(trialcs);
1595 1596 1597 1598
	cgroup_unlock();
	return retval;
}

L
Linus Torvalds 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
1613
	int ret;
L
Linus Torvalds 已提交
1614

1615
	mutex_lock(&callback_mutex);
1616
	ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1617
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1618

1619
	return ret;
L
Linus Torvalds 已提交
1620 1621 1622 1623
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
1624 1625 1626 1627 1628
	NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL);
	int retval;

	if (mask == NULL)
		return -ENOMEM;
L
Linus Torvalds 已提交
1629

1630
	mutex_lock(&callback_mutex);
1631
	*mask = cs->mems_allowed;
1632
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1633

1634 1635 1636 1637 1638
	retval = nodelist_scnprintf(page, PAGE_SIZE, *mask);

	NODEMASK_FREE(mask);

	return retval;
L
Linus Torvalds 已提交
1639 1640
}

1641 1642 1643 1644 1645
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1646
{
1647
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1653
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1671
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676
out:
	free_page((unsigned long)page);
	return retval;
}

1677 1678 1679 1680 1681 1682 1683 1684 1685
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1686 1687
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1703 1704 1705

	/* Unreachable but makes gcc happy */
	return 0;
1706
}
L
Linus Torvalds 已提交
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1718 1719 1720

	/* Unrechable but makes gcc happy */
	return 0;
1721 1722
}

L
Linus Torvalds 已提交
1723 1724 1725 1726 1727

/*
 * for the common functions, 'private' gives the type of file
 */

1728 1729 1730 1731
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1732 1733
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1734 1735 1736 1737 1738 1739
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1740 1741
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1759 1760 1761 1762 1763 1764 1765
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1766 1767 1768 1769 1770 1771 1772 1773 1774
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1775 1776
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1792
		.mode = S_IRUGO,
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1808 1809
};

1810 1811
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1812 1813
	.read_u64 = cpuset_read_u64,
	.write_u64 = cpuset_write_u64,
1814 1815 1816
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

1817
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1818 1819 1820
{
	int err;

1821 1822
	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
	if (err)
L
Linus Torvalds 已提交
1823
		return err;
1824
	/* memory_pressure_enabled is in root cpuset only */
1825
	if (!cont->parent)
1826
		err = cgroup_add_file(cont, ss,
1827 1828
				      &cft_memory_pressure_enabled);
	return err;
L
Linus Torvalds 已提交
1829 1830
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1845 1846
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
1864
	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1865 1866 1867
	return;
}

L
Linus Torvalds 已提交
1868 1869
/*
 *	cpuset_create - create a cpuset
1870 1871
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1872 1873
 */

1874 1875 1876
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1877 1878
{
	struct cpuset *cs;
1879
	struct cpuset *parent;
L
Linus Torvalds 已提交
1880

1881 1882 1883 1884
	if (!cont->parent) {
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1885 1886
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1887
		return ERR_PTR(-ENOMEM);
1888 1889 1890 1891
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1892 1893

	cs->flags = 0;
1894 1895 1896 1897
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1898
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1899
	cpumask_clear(cs->cpus_allowed);
1900
	nodes_clear(cs->mems_allowed);
1901
	fmeter_init(&cs->fmeter);
1902
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1903 1904

	cs->parent = parent;
1905
	number_of_cpusets++;
1906
	return &cs->css ;
L
Linus Torvalds 已提交
1907 1908
}

P
Paul Jackson 已提交
1909 1910 1911
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1912
 * will call async_rebuild_sched_domains().
P
Paul Jackson 已提交
1913 1914
 */

1915
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1916
{
1917
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1918

P
Paul Jackson 已提交
1919
	if (is_sched_load_balance(cs))
1920
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
P
Paul Jackson 已提交
1921

1922
	number_of_cpusets--;
1923
	free_cpumask_var(cs->cpus_allowed);
1924
	kfree(cs);
L
Linus Torvalds 已提交
1925 1926
}

1927 1928 1929
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
1930
	.destroy = cpuset_destroy,
1931 1932 1933 1934 1935 1936 1937 1938
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944 1945 1946
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1947
	int err = 0;
L
Linus Torvalds 已提交
1948

1949 1950 1951
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1952
	cpumask_setall(top_cpuset.cpus_allowed);
1953
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1954

1955
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1956
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1957
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1958 1959 1960

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1961 1962
		return err;

1963 1964 1965
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1966
	number_of_cpusets = 1;
1967
	return 0;
L
Linus Torvalds 已提交
1968 1969
}

1970 1971 1972 1973 1974 1975 1976 1977
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
1978 1979
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
1980
{
1981
	struct cgroup *new_cgroup = scan->data;
1982

1983
	cgroup_attach_task(new_cgroup, tsk);
1984 1985 1986 1987 1988 1989 1990
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
1991 1992
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1993 1994 1995 1996 1997 1998
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
1999
	struct cgroup_scanner scan;
2000

2001 2002 2003 2004 2005
	scan.cg = from->css.cgroup;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cpuset_do_move_task;
	scan.heap = NULL;
	scan.data = to->css.cgroup;
2006

2007
	if (cgroup_scan_tasks(&scan))
2008 2009 2010 2011
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

2012
/*
2013
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2014 2015
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2016 2017
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2018
 *
2019 2020
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
2021
 */
2022 2023 2024 2025
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

2026 2027 2028 2029 2030
	/*
	 * The cgroup's css_sets list is in use if there are tasks
	 * in the cpuset; the list is empty if there are none;
	 * the cs->css.refcnt seems always 0.
	 */
2031 2032
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
2033

2034 2035 2036 2037 2038
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
2039
	while (cpumask_empty(parent->cpus_allowed) ||
2040
			nodes_empty(parent->mems_allowed))
2041 2042 2043 2044 2045 2046 2047 2048 2049
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
2050
 * Called with cgroup_mutex held.  We take callback_mutex to modify
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
2061
static void scan_for_empty_cpusets(struct cpuset *root)
2062
{
2063
	LIST_HEAD(queue);
2064 2065
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
2066
	struct cgroup *cont;
2067 2068 2069 2070
	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);

	if (oldmems == NULL)
		return;
2071

2072 2073 2074
	list_add_tail((struct list_head *)&root->stack_list, &queue);

	while (!list_empty(&queue)) {
2075
		cp = list_first_entry(&queue, struct cpuset, stack_list);
2076 2077 2078 2079 2080
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
2081 2082

		/* Continue past cpusets with all cpus, mems online */
2083
		if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2084 2085 2086
		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
			continue;

2087
		*oldmems = cp->mems_allowed;
2088

2089
		/* Remove offline cpus and mems from this cpuset. */
2090
		mutex_lock(&callback_mutex);
2091
		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2092
			    cpu_active_mask);
2093 2094
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
2095 2096 2097
		mutex_unlock(&callback_mutex);

		/* Move tasks from the empty cpuset to a parent */
2098
		if (cpumask_empty(cp->cpus_allowed) ||
2099
		     nodes_empty(cp->mems_allowed))
2100
			remove_tasks_in_empty_cpuset(cp);
2101
		else {
2102
			update_tasks_cpumask(cp, NULL);
2103
			update_tasks_nodemask(cp, oldmems, NULL);
2104
		}
2105
	}
2106
	NODEMASK_FREE(oldmems);
2107 2108
}

2109 2110 2111 2112 2113 2114
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
2115
 * This routine ensures that top_cpuset.cpus_allowed tracks
2116
 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2117 2118 2119
 *
 * Called within get_online_cpus().  Needs to call cgroup_lock()
 * before calling generate_sched_domains().
2120
 */
2121
void __cpuexit cpuset_update_active_cpus(void)
2122
{
2123
	struct sched_domain_attr *attr;
2124
	cpumask_var_t *doms;
2125 2126 2127
	int ndoms;

	cgroup_lock();
2128
	mutex_lock(&callback_mutex);
2129
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2130
	mutex_unlock(&callback_mutex);
2131 2132 2133 2134 2135 2136
	scan_for_empty_cpusets(&top_cpuset);
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
2137 2138
}

2139
#ifdef CONFIG_MEMORY_HOTPLUG
2140
/*
2141
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2142 2143
 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
 * See also the previous routine cpuset_track_online_cpus().
2144
 */
2145 2146
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2147
{
2148 2149 2150 2151
	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);

	if (oldmems == NULL)
		return NOTIFY_DONE;
2152

2153
	cgroup_lock();
2154 2155
	switch (action) {
	case MEM_ONLINE:
2156
		*oldmems = top_cpuset.mems_allowed;
2157
		mutex_lock(&callback_mutex);
2158
		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2159
		mutex_unlock(&callback_mutex);
2160
		update_tasks_nodemask(&top_cpuset, oldmems, NULL);
2161 2162 2163 2164 2165 2166 2167
		break;
	case MEM_OFFLINE:
		/*
		 * needn't update top_cpuset.mems_allowed explicitly because
		 * scan_for_empty_cpusets() will update it.
		 */
		scan_for_empty_cpusets(&top_cpuset);
2168 2169 2170 2171
		break;
	default:
		break;
	}
2172
	cgroup_unlock();
2173 2174

	NODEMASK_FREE(oldmems);
2175
	return NOTIFY_OK;
2176 2177 2178
}
#endif

L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184 2185 2186
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
2187
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2188
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2189

2190
	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2191 2192 2193

	cpuset_wq = create_singlethread_workqueue("cpuset");
	BUG_ON(!cpuset_wq);
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2199
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2200
 *
2201
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

2207
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2208
{
2209
	mutex_lock(&callback_mutex);
2210
	task_lock(tsk);
2211
	guarantee_online_cpus(task_cs(tsk), pmask);
2212
	task_unlock(tsk);
2213
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
	const struct cpuset *cs;
	int cpu;

	rcu_read_lock();
	cs = task_cs(tsk);
	if (cs)
		cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
	 */

	cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
	if (cpu >= nr_cpu_ids) {
		/*
		 * Either tsk->cpus_allowed is wrong (see above) or it
		 * is actually empty. The latter case is only possible
		 * if we are racing with remove_tasks_in_empty_cpuset().
		 * Like above we can temporary set any mask and rely on
		 * set_cpus_allowed_ptr() as synchronization point.
		 */
		cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
		cpu = cpumask_any(cpu_active_mask);
	}

	return cpu;
}

L
Linus Torvalds 已提交
2258 2259
void cpuset_init_current_mems_allowed(void)
{
2260
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2261 2262
}

2263 2264 2265 2266 2267 2268
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2269
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2270 2271 2272 2273 2274 2275 2276
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2277
	mutex_lock(&callback_mutex);
2278
	task_lock(tsk);
2279
	guarantee_online_mems(task_cs(tsk), &mask);
2280
	task_unlock(tsk);
2281
	mutex_unlock(&callback_mutex);
2282 2283 2284 2285

	return mask;
}

2286
/**
2287 2288
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2289
 *
2290
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2291
 */
2292
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2293
{
2294
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2295 2296
}

2297
/*
2298 2299 2300 2301
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2302
 */
2303
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2304
{
2305
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2306 2307 2308 2309
		cs = cs->parent;
	return cs;
}

2310
/**
2311 2312
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2313
 * @gfp_mask: memory allocation flags
2314
 *
2315 2316 2317 2318 2319 2320
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2321 2322
 * Otherwise, no.
 *
2323 2324 2325
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2326
 *
2327 2328
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2329 2330 2331 2332 2333 2334 2335
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2336
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2337 2338
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2339
 * GFP_KERNEL allocations are not so marked, so can escape to the
2340
 * nearest enclosing hardwalled ancestor cpuset.
2341
 *
2342 2343 2344 2345 2346 2347 2348
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2349
 *
2350
 * The first call here from mm/page_alloc:get_page_from_freelist()
2351 2352 2353
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2354 2355 2356 2357 2358 2359
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2360 2361
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2362
 *	TIF_MEMDIE   - any node ok
2363
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2364
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2365 2366
 *
 * Rule:
2367
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2368 2369
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2370
 */
2371
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2372
{
2373
	const struct cpuset *cs;	/* current cpuset ancestors */
2374
	int allowed;			/* is allocation in zone z allowed? */
2375

2376
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2377
		return 1;
2378
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2379 2380
	if (node_isset(node, current->mems_allowed))
		return 1;
2381 2382 2383 2384 2385 2386
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2387 2388 2389
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2390 2391 2392
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2393
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2394
	mutex_lock(&callback_mutex);
2395 2396

	task_lock(current);
2397
	cs = nearest_hardwall_ancestor(task_cs(current));
2398 2399
	task_unlock(current);

2400
	allowed = node_isset(node, cs->mems_allowed);
2401
	mutex_unlock(&callback_mutex);
2402
	return allowed;
L
Linus Torvalds 已提交
2403 2404
}

2405
/*
2406 2407
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2408 2409
 * @gfp_mask: memory allocation flags
 *
2410 2411 2412 2413 2414
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2415 2416 2417 2418 2419 2420 2421
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2422 2423
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2424 2425 2426 2427
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2428
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2429 2430 2431 2432 2433
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2434 2435 2436 2437 2438 2439
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2440 2441 2442
	return 0;
}

P
Paul Jackson 已提交
2443 2444 2445 2446 2447 2448 2449 2450
/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2451
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2452 2453
}

2454
/**
2455 2456
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2481
static int cpuset_spread_node(int *rotor)
2482 2483 2484
{
	int node;

2485
	node = next_node(*rotor, current->mems_allowed);
2486 2487
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2488
	*rotor = node;
2489 2490
	return node;
}
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

int cpuset_mem_spread_node(void)
{
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2502 2503
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2504
/**
2505 2506 2507 2508 2509 2510 2511 2512
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2513 2514
 **/

2515 2516
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2517
{
2518
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
	struct dentry *dentry;

	dentry = task_cs(tsk)->css.cgroup->dentry;
	spin_lock(&cpuset_buffer_lock);
	snprintf(cpuset_name, CPUSET_NAME_LEN,
		 dentry ? (const char *)dentry->d_name.name : "/");
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
	       tsk->comm, cpuset_name, cpuset_nodelist);
	spin_unlock(&cpuset_buffer_lock);
}

2544 2545 2546 2547 2548 2549
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2550
int cpuset_memory_pressure_enabled __read_mostly;
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2573
	fmeter_markevent(&task_cs(current)->fmeter);
2574 2575 2576
	task_unlock(current);
}

2577
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2578 2579 2580 2581
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2582 2583
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2584
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2585
 *    anyway.
L
Linus Torvalds 已提交
2586
 */
P
Paul Jackson 已提交
2587
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2588
{
2589
	struct pid *pid;
L
Linus Torvalds 已提交
2590 2591
	struct task_struct *tsk;
	char *buf;
2592
	struct cgroup_subsys_state *css;
2593
	int retval;
L
Linus Torvalds 已提交
2594

2595
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2596 2597
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2598 2599 2600
		goto out;

	retval = -ESRCH;
2601 2602
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2603 2604
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2605

2606
	retval = -EINVAL;
2607 2608 2609
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2610
	if (retval < 0)
2611
		goto out_unlock;
L
Linus Torvalds 已提交
2612 2613
	seq_puts(m, buf);
	seq_putc(m, '\n');
2614
out_unlock:
2615
	cgroup_unlock();
2616 2617
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2618
	kfree(buf);
2619
out:
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2625 2626
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2627 2628
}

2629
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2635
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2636

2637
/* Display task mems_allowed in /proc/<pid>/status file. */
2638 2639 2640
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2641
	seq_nodemask(m, &task->mems_allowed);
2642
	seq_printf(m, "\n");
2643
	seq_printf(m, "Mems_allowed_list:\t");
2644
	seq_nodemask_list(m, &task->mems_allowed);
2645
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2646
}