kprobes.c 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 *  Kernel Probes (KProbes)
 *  arch/ia64/kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright (C) Intel Corporation, 2005
 *
 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 */

#include <linux/config.h>
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/moduleloader.h>

#include <asm/pgtable.h>
#include <asm/kdebug.h>
37
#include <asm/sections.h>
38

39 40
extern void jprobe_inst_return(void);

41 42
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

enum instruction_type {A, I, M, F, B, L, X, u};
static enum instruction_type bundle_encoding[32][3] = {
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { u, u, u },  			/* 06 */
  { u, u, u },  			/* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { u, u, u },  			/* 14 */
  { u, u, u },  			/* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { u, u, u },  			/* 1A */
  { u, u, u },  			/* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { u, u, u },  			/* 1E */
  { u, u, u },  			/* 1F */
};

80 81 82 83 84
/*
 * In this function we check to see if the instruction
 * is IP relative instruction and update the kprobe
 * inst flag accordingly
 */
85 86 87 88
static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
					      uint major_opcode,
					      unsigned long kprobe_inst,
					      struct kprobe *p)
89
{
R
Rusty Lynch 已提交
90 91
	p->ainsn.inst_flag = 0;
	p->ainsn.target_br_reg = 0;
92

93 94 95 96 97 98 99 100 101 102 103
	/* Check for Break instruction
 	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
		/* is a break instruction */
	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
		return;
	}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	if (bundle_encoding[template][slot] == B) {
		switch (major_opcode) {
		  case INDIRECT_CALL_OPCODE:
	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		  case IP_RELATIVE_PREDICT_OPCODE:
		  case IP_RELATIVE_BRANCH_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			break;
		  case IP_RELATIVE_CALL_OPCODE:
 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		}
 	} else if (bundle_encoding[template][slot] == X) {
		switch (major_opcode) {
		  case LONG_CALL_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
		  break;
		}
	}
	return;
}
130

131 132 133 134 135 136
/*
 * In this function we check to see if the instruction
 * on which we are inserting kprobe is supported.
 * Returns 0 if supported
 * Returns -EINVAL if unsupported
 */
137 138 139 140
static int __kprobes unsupported_inst(uint template, uint  slot,
				      uint major_opcode,
				      unsigned long kprobe_inst,
				      struct kprobe *p)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
{
	unsigned long addr = (unsigned long)p->addr;

	if (bundle_encoding[template][slot] == I) {
		switch (major_opcode) {
			case 0x0: //I_UNIT_MISC_OPCODE:
			/*
			 * Check for Integer speculation instruction
			 * - Bit 33-35 to be equal to 0x1
			 */
			if (((kprobe_inst >> 33) & 0x7) == 1) {
				printk(KERN_WARNING
					"Kprobes on speculation inst at <0x%lx> not supported\n",
					addr);
				return -EINVAL;
			}

			/*
			 * IP relative mov instruction
			 *  - Bit 27-35 to be equal to 0x30
			 */
			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
				printk(KERN_WARNING
					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
					addr);
				return -EINVAL;

			}
		}
	}
	return 0;
}


175 176 177 178 179 180
/*
 * In this function we check to see if the instruction
 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 * on which we are inserting kprobe is cmp instruction
 * with ctype as unc.
 */
181 182 183
static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
					    uint major_opcode,
					    unsigned long kprobe_inst)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	cmp_inst_t cmp_inst;
	uint ctype_unc = 0;

	if (!((bundle_encoding[template][slot] == I) ||
		(bundle_encoding[template][slot] == M)))
		goto out;

	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
		(major_opcode == 0xE)))
		goto out;

	cmp_inst.l = kprobe_inst;
	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
		/* Integere compare - Register Register (A6 type)*/
		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
				&&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
		/* Integere compare - Immediate Register (A8 type)*/
		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	}
out:
	return ctype_unc;
}

211 212 213 214
/*
 * In this function we override the bundle with
 * the break instruction at the given slot.
 */
215 216 217 218
static void __kprobes prepare_break_inst(uint template, uint  slot,
					 uint major_opcode,
					 unsigned long kprobe_inst,
					 struct kprobe *p)
219 220 221 222 223 224
{
	unsigned long break_inst = BREAK_INST;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	/*
	 * Copy the original kprobe_inst qualifying predicate(qp)
225 226 227 228
	 * to the break instruction iff !is_cmp_ctype_unc_inst
	 * because for cmp instruction with ctype equal to unc,
	 * which is a special instruction always needs to be
	 * executed regradless of qp
229
	 */
230 231
	if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
		break_inst |= (0x3f & kprobe_inst);
232 233 234 235 236 237 238 239 240 241 242 243

	switch (slot) {
	  case 0:
		bundle->quad0.slot0 = break_inst;
		break;
	  case 1:
		bundle->quad0.slot1_p0 = break_inst;
		bundle->quad1.slot1_p1 = break_inst >> (64-46);
		break;
	  case 2:
		bundle->quad1.slot2 = break_inst;
		break;
R
Rusty Lynch 已提交
244
	}
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	/*
	 * Update the instruction flag, so that we can
	 * emulate the instruction properly after we
	 * single step on original instruction
	 */
	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
}

static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
	       	unsigned long *kprobe_inst, uint *major_opcode)
{
	unsigned long kprobe_inst_p0, kprobe_inst_p1;
	unsigned int template;

	template = bundle->quad0.template;
261 262

	switch (slot) {
263 264 265
	  case 0:
 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad0.slot0;
266
		break;
267 268 269 270 271
	  case 1:
 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
  		kprobe_inst_p0 = bundle->quad0.slot1_p0;
  		kprobe_inst_p1 = bundle->quad1.slot1_p1;
  		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
272
		break;
273 274 275
	  case 2:
 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad1.slot2;
276 277
		break;
	}
278
}
279

280 281 282 283 284 285 286
/* Returns non-zero if the addr is in the Interrupt Vector Table */
static inline int in_ivt_functions(unsigned long addr)
{
	return (addr >= (unsigned long)__start_ivt_text
		&& addr < (unsigned long)__end_ivt_text);
}

287 288
static int __kprobes valid_kprobe_addr(int template, int slot,
				       unsigned long addr)
289 290
{
	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
291 292
		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
				"at 0x%lx\n", addr);
293
		return -EINVAL;
R
Rusty Lynch 已提交
294
	}
295

296 297 298 299 300 301
 	if (in_ivt_functions(addr)) {
 		printk(KERN_WARNING "Kprobes can't be inserted inside "
				"IVT functions at 0x%lx\n", addr);
 		return -EINVAL;
 	}

302 303 304 305 306 307
	if (slot == 1 && bundle_encoding[template][1] != L) {
		printk(KERN_WARNING "Inserting kprobes on slot #1 "
		       "is not supported\n");
		return -EINVAL;
	}

308 309 310
	return 0;
}

311
static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
312
{
313 314
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
315 316
}

317
static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
318
{
319 320
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
321 322
}

323 324
static inline void set_current_kprobe(struct kprobe *p,
			struct kprobe_ctlblk *kcb)
325
{
326
	__get_cpu_var(current_kprobe) = p;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340
static void kretprobe_trampoline(void)
{
}

/*
 * At this point the target function has been tricked into
 * returning into our trampoline.  Lookup the associated instance
 * and then:
 *    - call the handler function
 *    - cleanup by marking the instance as unused
 *    - long jump back to the original return address
 */
341
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head;
	struct hlist_node *node, *tmp;
	unsigned long orig_ret_address = 0;
	unsigned long trampoline_address =
		((struct fnptr *)kretprobe_trampoline)->ip;

        head = kretprobe_inst_table_head(current);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
                if (ri->task != current)
			/* another task is sharing our hash bucket */
                        continue;

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri);

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
	regs->cr_iip = orig_ret_address;

388
	reset_current_kprobe();
389 390 391 392 393 394
	unlock_kprobes();
	preempt_enable_no_resched();

        /*
         * By returning a non-zero value, we are telling
         * kprobe_handler() that we have handled unlocking
395
	 * and re-enabling preemption
396 397 398 399
         */
        return 1;
}

400 401
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
				      struct pt_regs *regs)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
{
	struct kretprobe_instance *ri;

	if ((ri = get_free_rp_inst(rp)) != NULL) {
		ri->rp = rp;
		ri->task = current;
		ri->ret_addr = (kprobe_opcode_t *)regs->b0;

		/* Replace the return addr with trampoline addr */
		regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;

		add_rp_inst(ri);
	} else {
		rp->nmissed++;
	}
}

419
int __kprobes arch_prepare_kprobe(struct kprobe *p)
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	unsigned long addr = (unsigned long) p->addr;
	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
	unsigned long kprobe_inst=0;
	unsigned int slot = addr & 0xf, template, major_opcode = 0;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
	memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));

 	template = bundle->quad0.template;

	if(valid_kprobe_addr(template, slot, addr))
		return -EINVAL;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get kprobe_inst and major_opcode from the bundle */
	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);

442 443 444
	if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
			return -EINVAL;

445
	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
R
Rusty Lynch 已提交
446 447 448 449

	return 0;
}

450
void __kprobes arch_arm_kprobe(struct kprobe *p)
R
Rusty Lynch 已提交
451 452 453 454 455
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
456 457 458
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

459
void __kprobes arch_disarm_kprobe(struct kprobe *p)
460 461 462 463 464 465 466 467 468
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	/* p->opcode contains the original unaltered bundle */
	memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

469
void __kprobes arch_remove_kprobe(struct kprobe *p)
470 471 472 473 474 475 476
{
}

/*
 * We are resuming execution after a single step fault, so the pt_regs
 * structure reflects the register state after we executed the instruction
 * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
477 478 479
 * the ip to point back to the original stack address. To set the IP address
 * to original stack address, handle the case where we need to fixup the
 * relative IP address and/or fixup branch register.
480
 */
481
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
482
{
R
Rusty Lynch 已提交
483
  	unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
484 485 486
  	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 	unsigned long template;
 	int slot = ((unsigned long)p->addr & 0xf);
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	template = p->opcode.bundle.quad0.template;

 	if (slot == 1 && bundle_encoding[template][1] == L)
 		slot = 2;

	if (p->ainsn.inst_flag) {

		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
			/* Fix relative IP address */
 			regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
		}

		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
		/*
		 * Fix target branch register, software convention is
		 * to use either b0 or b6 or b7, so just checking
		 * only those registers
		 */
			switch (p->ainsn.target_br_reg) {
			case 0:
				if ((regs->b0 == bundle_addr) ||
					(regs->b0 == bundle_addr + 0x10)) {
					regs->b0 = (regs->b0 - bundle_addr) +
						resume_addr;
				}
				break;
			case 6:
				if ((regs->b6 == bundle_addr) ||
					(regs->b6 == bundle_addr + 0x10)) {
					regs->b6 = (regs->b6 - bundle_addr) +
						resume_addr;
				}
				break;
			case 7:
				if ((regs->b7 == bundle_addr) ||
					(regs->b7 == bundle_addr + 0x10)) {
					regs->b7 = (regs->b7 - bundle_addr) +
						resume_addr;
				}
				break;
			} /* end switch */
		}
		goto turn_ss_off;
	}
532

533 534 535 536 537 538 539 540
	if (slot == 2) {
 		if (regs->cr_iip == bundle_addr + 0x10) {
 			regs->cr_iip = resume_addr + 0x10;
 		}
 	} else {
 		if (regs->cr_iip == bundle_addr) {
 			regs->cr_iip = resume_addr;
 		}
541
	}
542

543 544 545
turn_ss_off:
  	/* Turn off Single Step bit */
  	ia64_psr(regs)->ss = 0;
546 547
}

548
static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
549
{
R
Rusty Lynch 已提交
550
	unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
551 552
	unsigned long slot = (unsigned long)p->addr & 0xf;

553 554 555 556 557
	/* single step inline if break instruction */
	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
	else
		regs->cr_iip = bundle_addr & ~0xFULL;
558 559 560 561 562 563 564 565 566 567

	if (slot > 2)
		slot = 0;

	ia64_psr(regs)->ri = slot;

	/* turn on single stepping */
	ia64_psr(regs)->ss = 1;
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
{
	unsigned int slot = ia64_psr(regs)->ri;
	unsigned int template, major_opcode;
	unsigned long kprobe_inst;
	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
	bundle_t bundle;

	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
	template = bundle.quad0.template;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get Kprobe probe instruction at given slot*/
	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);

	/* For break instruction,
	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
		/* Not a break instruction */
		return 0;
	}

	/* Is a break instruction */
	return 1;
}

600
static int __kprobes pre_kprobes_handler(struct die_args *args)
601 602 603
{
	struct kprobe *p;
	int ret = 0;
604
	struct pt_regs *regs = args->regs;
605
	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
606
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
607 608 609 610 611

	/* Handle recursion cases */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
612
			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
613 614
	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
  				ia64_psr(regs)->ss = 0;
615 616 617
				unlock_kprobes();
				goto no_kprobe;
			}
618 619 620 621 622 623
			/* We have reentered the pre_kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
624 625
			save_previous_kprobe(kcb);
			set_current_kprobe(p, kcb);
626 627
			p->nmissed++;
			prepare_ss(p, regs);
628
			kcb->kprobe_status = KPROBE_REENTER;
629
			return 1;
630
		} else if (args->err == __IA64_BREAK_JPROBE) {
631 632 633
			/*
			 * jprobe instrumented function just completed
			 */
634
			p = __get_cpu_var(current_kprobe);
635 636 637
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
638 639 640
		} else {
			/* Not our break */
			goto no_kprobe;
641 642 643 644 645 646 647
		}
	}

	lock_kprobes();
	p = get_kprobe(addr);
	if (!p) {
		unlock_kprobes();
648 649 650 651 652 653 654 655 656 657 658 659 660
		if (!is_ia64_break_inst(regs)) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;

		}

		/* Not one of our break, let kernel handle it */
661 662 663
		goto no_kprobe;
	}

664 665 666 667 668
	/*
	 * This preempt_disable() matches the preempt_enable_no_resched()
	 * in post_kprobes_handler()
	 */
	preempt_disable();
669 670
	set_current_kprobe(p, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
671 672 673 674

	if (p->pre_handler && p->pre_handler(p, regs))
		/*
		 * Our pre-handler is specifically requesting that we just
675 676
		 * do a return.  This is used for both the jprobe pre-handler
		 * and the kretprobe trampoline
677 678 679 680 681
		 */
		return 1;

ss_probe:
	prepare_ss(p, regs);
682
	kcb->kprobe_status = KPROBE_HIT_SS;
683 684 685 686 687 688
	return 1;

no_kprobe:
	return ret;
}

689
static int __kprobes post_kprobes_handler(struct pt_regs *regs)
690
{
691 692 693 694
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
695 696
		return 0;

697 698 699
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
700
	}
701

702
	resume_execution(cur, regs);
703

704
	/*Restore back the original saved kprobes variables and continue. */
705 706
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
707 708
		goto out;
	}
709
	reset_current_kprobe();
710
	unlock_kprobes();
711 712

out:
713 714 715 716
	preempt_enable_no_resched();
	return 1;
}

717
static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
718
{
719 720 721 722
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
723 724
		return 0;

725
	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
726 727
		return 1;

728 729 730
	if (kcb->kprobe_status & KPROBE_HIT_SS) {
		resume_execution(cur, regs);
		reset_current_kprobe();
731 732 733 734 735 736 737
		unlock_kprobes();
		preempt_enable_no_resched();
	}

	return 0;
}

738 739
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
740 741
{
	struct die_args *args = (struct die_args *)data;
742 743 744
	int ret = NOTIFY_DONE;

	preempt_disable();
745 746
	switch(val) {
	case DIE_BREAK:
747
		if (pre_kprobes_handler(args))
748
			ret = NOTIFY_STOP;
749 750 751
		break;
	case DIE_SS:
		if (post_kprobes_handler(args->regs))
752
			ret = NOTIFY_STOP;
753 754 755
		break;
	case DIE_PAGE_FAULT:
		if (kprobes_fault_handler(args->regs, args->trapnr))
756
			ret = NOTIFY_STOP;
757 758 759
	default:
		break;
	}
760 761
	preempt_enable();
	return ret;
762 763
}

764
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
765
{
766 767
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
768
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
769

770
	/* save architectural state */
771
	kcb->jprobe_saved_regs = *regs;
772 773 774 775 776 777 778 779 780 781 782 783 784

	/* after rfi, execute the jprobe instrumented function */
	regs->cr_iip = addr & ~0xFULL;
	ia64_psr(regs)->ri = addr & 0xf;
	regs->r1 = ((struct fnptr *)(jp->entry))->gp;

	/*
	 * fix the return address to our jprobe_inst_return() function
	 * in the jprobes.S file
	 */
 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;

	return 1;
785 786
}

787
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
788
{
789 790 791
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	*regs = kcb->jprobe_saved_regs;
792
	return 1;
793
}
794 795 796 797 798

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

799
int __init arch_init_kprobes(void)
800 801 802 803 804
{
	trampoline_p.addr =
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
	return register_kprobe(&trampoline_p);
}