ice_lib.c 66.7 KB
Newer Older
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

#include "ice.h"
#include "ice_lib.h"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/**
 * ice_setup_rx_ctx - Configure a receive ring context
 * @ring: The Rx ring to configure
 *
 * Configure the Rx descriptor ring in RLAN context.
 */
static int ice_setup_rx_ctx(struct ice_ring *ring)
{
	struct ice_vsi *vsi = ring->vsi;
	struct ice_hw *hw = &vsi->back->hw;
	u32 rxdid = ICE_RXDID_FLEX_NIC;
	struct ice_rlan_ctx rlan_ctx;
	u32 regval;
	u16 pf_q;
	int err;

	/* what is RX queue number in global space of 2K Rx queues */
	pf_q = vsi->rxq_map[ring->q_index];

	/* clear the context structure first */
	memset(&rlan_ctx, 0, sizeof(rlan_ctx));

	rlan_ctx.base = ring->dma >> 7;

	rlan_ctx.qlen = ring->count;

	/* Receive Packet Data Buffer Size.
	 * The Packet Data Buffer Size is defined in 128 byte units.
	 */
	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;

	/* use 32 byte descriptors */
	rlan_ctx.dsize = 1;

	/* Strip the Ethernet CRC bytes before the packet is posted to host
	 * memory.
	 */
	rlan_ctx.crcstrip = 1;

	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
	rlan_ctx.l2tsel = 1;

	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;

	/* This controls whether VLAN is stripped from inner headers
	 * The VLAN in the inner L2 header is stripped to the receive
	 * descriptor if enabled by this flag.
	 */
	rlan_ctx.showiv = 0;

	/* Max packet size for this queue - must not be set to a larger value
	 * than 5 x DBUF
	 */
	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);

	/* Rx queue threshold in units of 64 */
	rlan_ctx.lrxqthresh = 1;

	 /* Enable Flexible Descriptors in the queue context which
	  * allows this driver to select a specific receive descriptor format
	  */
71 72 73 74 75 76 77 78 79 80 81
	if (vsi->type != ICE_VSI_VF) {
		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
			QRXFLXP_CNTXT_RXDID_IDX_M;

		/* increasing context priority to pick up profile id;
		 * default is 0x01; setting to 0x03 to ensure profile
		 * is programming if prev context is of same priority
		 */
		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
			QRXFLXP_CNTXT_RXDID_PRIO_M;
82

83 84
		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
	}
85 86 87 88 89 90 91 92 93 94

	/* Absolute queue number out of 2K needs to be passed */
	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
	if (err) {
		dev_err(&vsi->back->pdev->dev,
			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
			pf_q, err);
		return -EIO;
	}

95 96 97
	if (vsi->type == ICE_VSI_VF)
		return 0;

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	/* init queue specific tail register */
	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
	writel(0, ring->tail);
	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));

	return 0;
}

/**
 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 * @ring: The Tx ring to configure
 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 * @pf_q: queue index in the PF space
 *
 * Configure the Tx descriptor ring in TLAN context.
 */
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
	struct ice_vsi *vsi = ring->vsi;
	struct ice_hw *hw = &vsi->back->hw;

	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;

	tlan_ctx->port_num = vsi->port_info->lport;

	/* Transmit Queue Length */
	tlan_ctx->qlen = ring->count;

	/* PF number */
	tlan_ctx->pf_num = hw->pf_id;

	/* queue belongs to a specific VSI type
	 * VF / VM index should be programmed per vmvf_type setting:
	 * for vmvf_type = VF, it is VF number between 0-256
	 * for vmvf_type = VM, it is VM number between 0-767
	 * for PF or EMP this field should be set to zero
	 */
	switch (vsi->type) {
	case ICE_VSI_PF:
		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
		break;
140 141 142 143 144
	case ICE_VSI_VF:
		/* Firmware expects vmvf_num to be absolute VF id */
		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
		break;
145 146 147 148 149
	default:
		return;
	}

	/* make sure the context is associated with the right VSI */
150
	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	tlan_ctx->tso_ena = ICE_TX_LEGACY;
	tlan_ctx->tso_qnum = pf_q;

	/* Legacy or Advanced Host Interface:
	 * 0: Advanced Host Interface
	 * 1: Legacy Host Interface
	 */
	tlan_ctx->legacy_int = ICE_TX_LEGACY;
}

/**
 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 * @pf: the PF being configured
 * @pf_q: the PF queue
 * @ena: enable or disable state of the queue
 *
 * This routine will wait for the given Rx queue of the PF to reach the
 * enabled or disabled state.
 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 * multiple retries; else will return 0 in case of success.
 */
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
	int i;

	for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
		u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));

		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
			break;

		usleep_range(10, 20);
	}
	if (i >= ICE_Q_WAIT_RETRY_LIMIT)
		return -ETIMEDOUT;

	return 0;
}

/**
 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 * @vsi: the VSI being configured
 * @ena: start or stop the Rx rings
 */
static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	int i, j, ret = 0;

	for (i = 0; i < vsi->num_rxq; i++) {
		int pf_q = vsi->rxq_map[i];
		u32 rx_reg;

		for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
			rx_reg = rd32(hw, QRX_CTRL(pf_q));
			if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
			    ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
				break;
			usleep_range(1000, 2000);
		}

		/* Skip if the queue is already in the requested state */
		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
			continue;

		/* turn on/off the queue */
		if (ena)
			rx_reg |= QRX_CTRL_QENA_REQ_M;
		else
			rx_reg &= ~QRX_CTRL_QENA_REQ_M;
		wr32(hw, QRX_CTRL(pf_q), rx_reg);

		/* wait for the change to finish */
		ret = ice_pf_rxq_wait(pf, pf_q, ena);
		if (ret) {
			dev_err(&pf->pdev->dev,
				"VSI idx %d Rx ring %d %sable timeout\n",
				vsi->idx, pf_q, (ena ? "en" : "dis"));
			break;
		}
	}

	return ret;
}

238 239 240 241 242 243 244 245
/**
 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 * @vsi: VSI pointer
 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
 *
 * On error: returns error code (negative)
 * On success: returns 0
 */
246
static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct ice_pf *pf = vsi->back;

	/* allocate memory for both Tx and Rx ring pointers */
	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
				     sizeof(struct ice_ring *), GFP_KERNEL);
	if (!vsi->tx_rings)
		goto err_txrings;

	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
				     sizeof(struct ice_ring *), GFP_KERNEL);
	if (!vsi->rx_rings)
		goto err_rxrings;

	if (alloc_qvectors) {
		/* allocate memory for q_vector pointers */
		vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
					      vsi->num_q_vectors,
					      sizeof(struct ice_q_vector *),
					      GFP_KERNEL);
		if (!vsi->q_vectors)
			goto err_vectors;
	}

	return 0;

err_vectors:
	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
err_rxrings:
	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
err_txrings:
	return -ENOMEM;
}

/**
 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 */
287
static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
288 289 290 291 292 293 294 295 296 297
{
	struct ice_pf *pf = vsi->back;

	switch (vsi->type) {
	case ICE_VSI_PF:
		vsi->alloc_txq = pf->num_lan_tx;
		vsi->alloc_rxq = pf->num_lan_rx;
		vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
		vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
		break;
298 299 300 301 302 303 304 305 306 307
	case ICE_VSI_VF:
		vsi->alloc_txq = pf->num_vf_qps;
		vsi->alloc_rxq = pf->num_vf_qps;
		/* pf->num_vf_msix includes (VF miscellaneous vector +
		 * data queue interrupts). Since vsi->num_q_vectors is number
		 * of queues vectors, subtract 1 from the original vector
		 * count
		 */
		vsi->num_q_vectors = pf->num_vf_msix - 1;
		break;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	default:
		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		break;
	}
}

/**
 * ice_get_free_slot - get the next non-NULL location index in array
 * @array: array to search
 * @size: size of the array
 * @curr: last known occupied index to be used as a search hint
 *
 * void * is being used to keep the functionality generic. This lets us use this
 * function on any array of pointers.
 */
324
static int ice_get_free_slot(void *array, int size, int curr)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
{
	int **tmp_array = (int **)array;
	int next;

	if (curr < (size - 1) && !tmp_array[curr + 1]) {
		next = curr + 1;
	} else {
		int i = 0;

		while ((i < size) && (tmp_array[i]))
			i++;
		if (i == size)
			next = ICE_NO_VSI;
		else
			next = i;
	}
	return next;
}

344 345 346 347 348 349 350 351 352 353
/**
 * ice_vsi_delete - delete a VSI from the switch
 * @vsi: pointer to VSI being removed
 */
void ice_vsi_delete(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	struct ice_vsi_ctx ctxt;
	enum ice_status status;

354 355
	if (vsi->type == ICE_VSI_VF)
		ctxt.vf_num = vsi->vf_id;
356 357 358 359 360 361 362 363 364 365
	ctxt.vsi_num = vsi->vsi_num;

	memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props));

	status = ice_free_vsi(&pf->hw, vsi->idx, &ctxt, false, NULL);
	if (status)
		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
			vsi->vsi_num);
}

366 367 368 369 370
/**
 * ice_vsi_free_arrays - clean up VSI resources
 * @vsi: pointer to VSI being cleared
 * @free_qvectors: bool to specify if q_vectors should be deallocated
 */
371
static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	struct ice_pf *pf = vsi->back;

	/* free the ring and vector containers */
	if (free_qvectors && vsi->q_vectors) {
		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
		vsi->q_vectors = NULL;
	}
	if (vsi->tx_rings) {
		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
		vsi->tx_rings = NULL;
	}
	if (vsi->rx_rings) {
		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
		vsi->rx_rings = NULL;
	}
}

/**
 * ice_vsi_clear - clean up and deallocate the provided VSI
 * @vsi: pointer to VSI being cleared
 *
 * This deallocates the VSI's queue resources, removes it from the PF's
 * VSI array if necessary, and deallocates the VSI
 *
 * Returns 0 on success, negative on failure
 */
int ice_vsi_clear(struct ice_vsi *vsi)
{
	struct ice_pf *pf = NULL;

	if (!vsi)
		return 0;

	if (!vsi->back)
		return -EINVAL;

	pf = vsi->back;

	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
			vsi->idx);
		return -EINVAL;
	}

	mutex_lock(&pf->sw_mutex);
	/* updates the PF for this cleared VSI */

	pf->vsi[vsi->idx] = NULL;
	if (vsi->idx < pf->next_vsi)
		pf->next_vsi = vsi->idx;

	ice_vsi_free_arrays(vsi, true);
	mutex_unlock(&pf->sw_mutex);
	devm_kfree(&pf->pdev->dev, vsi);

	return 0;
}

431 432 433 434 435
/**
 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a q_vector
 */
436
static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
437 438 439 440 441 442 443 444 445 446 447
{
	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;

	if (!q_vector->tx.ring && !q_vector->rx.ring)
		return IRQ_HANDLED;

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/**
 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 * @pf: board private structure
 * @type: type of VSI
 *
 * returns a pointer to a VSI on success, NULL on failure.
 */
static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
{
	struct ice_vsi *vsi = NULL;

	/* Need to protect the allocation of the VSIs at the PF level */
	mutex_lock(&pf->sw_mutex);

	/* If we have already allocated our maximum number of VSIs,
	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
	 * is available to be populated
	 */
	if (pf->next_vsi == ICE_NO_VSI) {
		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
		goto unlock_pf;
	}

	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
	if (!vsi)
		goto unlock_pf;

	vsi->type = type;
	vsi->back = pf;
	set_bit(__ICE_DOWN, vsi->state);
	vsi->idx = pf->next_vsi;
	vsi->work_lmt = ICE_DFLT_IRQ_WORK;

	ice_vsi_set_num_qs(vsi);

	switch (vsi->type) {
	case ICE_VSI_PF:
		if (ice_vsi_alloc_arrays(vsi, true))
			goto err_rings;

		/* Setup default MSIX irq handler for VSI */
		vsi->irq_handler = ice_msix_clean_rings;
		break;
491 492 493 494
	case ICE_VSI_VF:
		if (ice_vsi_alloc_arrays(vsi, true))
			goto err_rings;
		break;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	default:
		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
		goto unlock_pf;
	}

	/* fill VSI slot in the PF struct */
	pf->vsi[pf->next_vsi] = vsi;

	/* prepare pf->next_vsi for next use */
	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
					 pf->next_vsi);
	goto unlock_pf;

err_rings:
	devm_kfree(&pf->pdev->dev, vsi);
	vsi = NULL;
unlock_pf:
	mutex_unlock(&pf->sw_mutex);
	return vsi;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 * @vsi: the VSI getting queues
 *
 * Return 0 on success and a negative value on error
 */
static int ice_vsi_get_qs_contig(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	int offset, ret = 0;

	mutex_lock(&pf->avail_q_mutex);
	/* look for contiguous block of queues for Tx */
	offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS,
					    0, vsi->alloc_txq, 0);
	if (offset < ICE_MAX_TXQS) {
		int i;

		bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq);
		for (i = 0; i < vsi->alloc_txq; i++)
			vsi->txq_map[i] = i + offset;
	} else {
		ret = -ENOMEM;
		vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER;
	}

	/* look for contiguous block of queues for Rx */
	offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS,
					    0, vsi->alloc_rxq, 0);
	if (offset < ICE_MAX_RXQS) {
		int i;

		bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq);
		for (i = 0; i < vsi->alloc_rxq; i++)
			vsi->rxq_map[i] = i + offset;
	} else {
		ret = -ENOMEM;
		vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER;
	}
	mutex_unlock(&pf->avail_q_mutex);

	return ret;
}

/**
 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI
 * @vsi: the VSI getting queues
 *
 * Return 0 on success and a negative value on error
 */
static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	int i, index = 0;

	mutex_lock(&pf->avail_q_mutex);

	if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) {
		for (i = 0; i < vsi->alloc_txq; i++) {
			index = find_next_zero_bit(pf->avail_txqs,
						   ICE_MAX_TXQS, index);
			if (index < ICE_MAX_TXQS) {
				set_bit(index, pf->avail_txqs);
				vsi->txq_map[i] = index;
			} else {
				goto err_scatter_tx;
			}
		}
	}

	if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) {
		for (i = 0; i < vsi->alloc_rxq; i++) {
			index = find_next_zero_bit(pf->avail_rxqs,
						   ICE_MAX_RXQS, index);
			if (index < ICE_MAX_RXQS) {
				set_bit(index, pf->avail_rxqs);
				vsi->rxq_map[i] = index;
			} else {
				goto err_scatter_rx;
			}
		}
	}

	mutex_unlock(&pf->avail_q_mutex);
	return 0;

err_scatter_rx:
	/* unflag any queues we have grabbed (i is failed position) */
	for (index = 0; index < i; index++) {
		clear_bit(vsi->rxq_map[index], pf->avail_rxqs);
		vsi->rxq_map[index] = 0;
	}
	i = vsi->alloc_txq;
err_scatter_tx:
	/* i is either position of failed attempt or vsi->alloc_txq */
	for (index = 0; index < i; index++) {
		clear_bit(vsi->txq_map[index], pf->avail_txqs);
		vsi->txq_map[index] = 0;
	}

	mutex_unlock(&pf->avail_q_mutex);
	return -ENOMEM;
}

/**
 * ice_vsi_get_qs - Assign queues from PF to VSI
 * @vsi: the VSI to assign queues to
 *
 * Returns 0 on success and a negative value on error
 */
626
static int ice_vsi_get_qs(struct ice_vsi *vsi)
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
{
	int ret = 0;

	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;

	/* NOTE: ice_vsi_get_qs_contig() will set the Rx/Tx mapping
	 * modes individually to scatter if assigning contiguous queues
	 * to Rx or Tx fails
	 */
	ret = ice_vsi_get_qs_contig(vsi);
	if (ret < 0) {
		if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER)
			vsi->alloc_txq = max_t(u16, vsi->alloc_txq,
					       ICE_MAX_SCATTER_TXQS);
		if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER)
			vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq,
					       ICE_MAX_SCATTER_RXQS);
		ret = ice_vsi_get_qs_scatter(vsi);
	}

	return ret;
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/**
 * ice_vsi_put_qs - Release queues from VSI to PF
 * @vsi: the VSI that is going to release queues
 */
void ice_vsi_put_qs(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	int i;

	mutex_lock(&pf->avail_q_mutex);

	for (i = 0; i < vsi->alloc_txq; i++) {
		clear_bit(vsi->txq_map[i], pf->avail_txqs);
		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
	}

	for (i = 0; i < vsi->alloc_rxq; i++) {
		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
	}

	mutex_unlock(&pf->avail_q_mutex);
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 * @vsi: the VSI being removed
 */
static void ice_rss_clean(struct ice_vsi *vsi)
{
	struct ice_pf *pf;

	pf = vsi->back;

	if (vsi->rss_hkey_user)
		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
	if (vsi->rss_lut_user)
		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
}

691 692 693 694
/**
 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 * @vsi: the VSI being configured
 */
695
static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
{
	struct ice_hw_common_caps *cap;
	struct ice_pf *pf = vsi->back;

	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
		vsi->rss_size = 1;
		return;
	}

	cap = &pf->hw.func_caps.common_cap;
	switch (vsi->type) {
	case ICE_VSI_PF:
		/* PF VSI will inherit RSS instance of PF */
		vsi->rss_table_size = cap->rss_table_size;
		vsi->rss_size = min_t(int, num_online_cpus(),
				      BIT(cap->rss_table_entry_width));
		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
		break;
714 715 716 717 718 719 720 721 722
	case ICE_VSI_VF:
		/* VF VSI will gets a small RSS table
		 * For VSI_LUT, LUT size should be set to 64 bytes
		 */
		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
		vsi->rss_size = min_t(int, num_online_cpus(),
				      BIT(cap->rss_table_entry_width));
		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
		break;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	default:
		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		break;
	}
}

/**
 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 * @ctxt: the VSI context being set
 *
 * This initializes a default VSI context for all sections except the Queues.
 */
static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
{
	u32 table = 0;

	memset(&ctxt->info, 0, sizeof(ctxt->info));
	/* VSI's should be allocated from shared pool */
	ctxt->alloc_from_pool = true;
	/* Src pruning enabled by default */
	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
	/* Traffic from VSI can be sent to LAN */
	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
	 * packets untagged/tagged.
	 */
	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
				  ICE_AQ_VSI_VLAN_MODE_M) >>
				 ICE_AQ_VSI_VLAN_MODE_S);
	/* Have 1:1 UP mapping for both ingress/egress tables */
	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
	ctxt->info.ingress_table = cpu_to_le32(table);
	ctxt->info.egress_table = cpu_to_le32(table);
	/* Have 1:1 UP mapping for outer to inner UP table */
	ctxt->info.outer_up_table = cpu_to_le32(table);
	/* No Outer tag support outer_tag_flags remains to zero */
}

/**
 * ice_vsi_setup_q_map - Setup a VSI queue map
 * @vsi: the VSI being configured
 * @ctxt: VSI context structure
 */
static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
	u16 offset = 0, qmap = 0, numq_tc;
	u16 pow = 0, max_rss = 0, qcount;
	u16 qcount_tx = vsi->alloc_txq;
	u16 qcount_rx = vsi->alloc_rxq;
	bool ena_tc0 = false;
	int i;

	/* at least TC0 should be enabled by default */
	if (vsi->tc_cfg.numtc) {
		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
			ena_tc0 = true;
	} else {
		ena_tc0 = true;
	}

	if (ena_tc0) {
		vsi->tc_cfg.numtc++;
		vsi->tc_cfg.ena_tc |= 1;
	}

	numq_tc = qcount_rx / vsi->tc_cfg.numtc;

	/* TC mapping is a function of the number of Rx queues assigned to the
	 * VSI for each traffic class and the offset of these queues.
	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
	 * queues allocated to TC0. No:of queues is a power-of-2.
	 *
	 * If TC is not enabled, the queue offset is set to 0, and allocate one
	 * queue, this way, traffic for the given TC will be sent to the default
	 * queue.
	 *
	 * Setup number and offset of Rx queues for all TCs for the VSI
	 */

811
	qcount = numq_tc;
812 813
	/* qcount will change if RSS is enabled */
	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
814 815 816 817 818 819 820 821
		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
			if (vsi->type == ICE_VSI_PF)
				max_rss = ICE_MAX_LG_RSS_QS;
			else
				max_rss = ICE_MAX_SMALL_RSS_QS;
			qcount = min_t(int, numq_tc, max_rss);
			qcount = min_t(int, qcount, vsi->rss_size);
		}
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	/* find the (rounded up) power-of-2 of qcount */
	pow = order_base_2(qcount);

	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
			/* TC is not enabled */
			vsi->tc_cfg.tc_info[i].qoffset = 0;
			vsi->tc_cfg.tc_info[i].qcount = 1;
			ctxt->info.tc_mapping[i] = 0;
			continue;
		}

		/* TC is enabled */
		vsi->tc_cfg.tc_info[i].qoffset = offset;
		vsi->tc_cfg.tc_info[i].qcount = qcount;

		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
			ICE_AQ_VSI_TC_Q_OFFSET_M) |
			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
			 ICE_AQ_VSI_TC_Q_NUM_M);
		offset += qcount;
		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
	}

	vsi->num_txq = qcount_tx;
	vsi->num_rxq = offset;

851 852 853 854 855 856 857 858
	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
		/* since there is a chance that num_rxq could have been changed
		 * in the above for loop, make num_txq equal to num_rxq.
		 */
		vsi->num_txq = vsi->num_rxq;
	}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	/* Rx queue mapping */
	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
	/* q_mapping buffer holds the info for the first queue allocated for
	 * this VSI in the PF space and also the number of queues associated
	 * with this VSI.
	 */
	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
}

/**
 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 * @ctxt: the VSI context being set
 * @vsi: the VSI being configured
 */
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
	u8 lut_type, hash_type;

	switch (vsi->type) {
	case ICE_VSI_PF:
		/* PF VSI will inherit RSS instance of PF */
		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
		break;
884 885 886 887 888
	case ICE_VSI_VF:
		/* VF VSI will gets a small RSS table which is a VSI LUT type */
		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
		break;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	default:
		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		return;
	}

	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
}

/**
 * ice_vsi_init - Create and initialize a VSI
 * @vsi: the VSI being configured
 *
 * This initializes a VSI context depending on the VSI type to be added and
 * passes it down to the add_vsi aq command to create a new VSI.
 */
908
static int ice_vsi_init(struct ice_vsi *vsi)
909 910 911 912 913 914 915 916 917 918
{
	struct ice_vsi_ctx ctxt = { 0 };
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	int ret = 0;

	switch (vsi->type) {
	case ICE_VSI_PF:
		ctxt.flags = ICE_AQ_VSI_TYPE_PF;
		break;
919 920 921 922 923
	case ICE_VSI_VF:
		ctxt.flags = ICE_AQ_VSI_TYPE_VF;
		/* VF number here is the absolute VF number (0-255) */
		ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
		break;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	default:
		return -ENODEV;
	}

	ice_set_dflt_vsi_ctx(&ctxt);
	/* if the switch is in VEB mode, allow VSI loopback */
	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
		ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;

	/* Set LUT type and HASH type if RSS is enabled */
	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
		ice_set_rss_vsi_ctx(&ctxt, vsi);

	ctxt.info.sw_id = vsi->port_info->sw_id;
	ice_vsi_setup_q_map(vsi, &ctxt);

	ret = ice_add_vsi(hw, vsi->idx, &ctxt, NULL);
	if (ret) {
		dev_err(&pf->pdev->dev,
			"Add VSI failed, err %d\n", ret);
		return -EIO;
	}

	/* keep context for update VSI operations */
	vsi->info = ctxt.info;

	/* record VSI number returned */
	vsi->vsi_num = ctxt.vsi_num;

	return ret;
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 * @vsi: VSI having the memory freed
 * @v_idx: index of the vector to be freed
 */
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
	struct ice_q_vector *q_vector;
	struct ice_ring *ring;

	if (!vsi->q_vectors[v_idx]) {
		dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
			v_idx);
		return;
	}
	q_vector = vsi->q_vectors[v_idx];

	ice_for_each_ring(ring, q_vector->tx)
		ring->q_vector = NULL;
	ice_for_each_ring(ring, q_vector->rx)
		ring->q_vector = NULL;

	/* only VSI with an associated netdev is set up with NAPI */
	if (vsi->netdev)
		netif_napi_del(&q_vector->napi);

	devm_kfree(&vsi->back->pdev->dev, q_vector);
	vsi->q_vectors[v_idx] = NULL;
}

/**
 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 * @vsi: the VSI having memory freed
 */
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
	int v_idx;

	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
		ice_free_q_vector(vsi, v_idx);
}

/**
 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
 * @vsi: the VSI being configured
 * @v_idx: index of the vector in the VSI struct
 *
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
 */
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
{
	struct ice_pf *pf = vsi->back;
	struct ice_q_vector *q_vector;

	/* allocate q_vector */
	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	q_vector->vsi = vsi;
	q_vector->v_idx = v_idx;
1017 1018
	if (vsi->type == ICE_VSI_VF)
		goto out;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	/* only set affinity_mask if the CPU is online */
	if (cpu_online(v_idx))
		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);

	/* This will not be called in the driver load path because the netdev
	 * will not be created yet. All other cases with register the NAPI
	 * handler here (i.e. resume, reset/rebuild, etc.)
	 */
	if (vsi->netdev)
		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
			       NAPI_POLL_WEIGHT);

1031
out:
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/* tie q_vector and VSI together */
	vsi->q_vectors[v_idx] = q_vector;

	return 0;
}

/**
 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 * @vsi: the VSI being configured
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 */
1045
static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	struct ice_pf *pf = vsi->back;
	int v_idx = 0, num_q_vectors;
	int err;

	if (vsi->q_vectors[0]) {
		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
			vsi->vsi_num);
		return -EEXIST;
	}

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		num_q_vectors = vsi->num_q_vectors;
	} else {
		err = -EINVAL;
		goto err_out;
	}

	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
		err = ice_vsi_alloc_q_vector(vsi, v_idx);
		if (err)
			goto err_out;
	}

	return 0;

err_out:
	while (v_idx--)
		ice_free_q_vector(vsi, v_idx);

	dev_err(&pf->pdev->dev,
		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
		vsi->num_q_vectors, vsi->vsi_num, err);
	vsi->num_q_vectors = 0;
	return err;
}

/**
 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
 * @vsi: ptr to the VSI
 *
 * This should only be called after ice_vsi_alloc() which allocates the
 * corresponding SW VSI structure and initializes num_queue_pairs for the
 * newly allocated VSI.
 *
 * Returns 0 on success or negative on failure
 */
1093
static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1094 1095 1096 1097
{
	struct ice_pf *pf = vsi->back;
	int num_q_vectors = 0;

1098 1099 1100
	if (vsi->sw_base_vector || vsi->hw_base_vector) {
		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n",
			vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector);
1101 1102 1103 1104 1105 1106 1107 1108 1109
		return -EEXIST;
	}

	if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		return -ENOENT;

	switch (vsi->type) {
	case ICE_VSI_PF:
		num_q_vectors = vsi->num_q_vectors;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		/* reserve slots from OS requested IRQs */
		vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker,
						  num_q_vectors, vsi->idx);
		if (vsi->sw_base_vector < 0) {
			dev_err(&pf->pdev->dev,
				"Failed to get tracking for %d SW vectors for VSI %d, err=%d\n",
				num_q_vectors, vsi->vsi_num,
				vsi->sw_base_vector);
			return -ENOENT;
		}
		pf->num_avail_sw_msix -= num_q_vectors;

		/* reserve slots from HW interrupts */
		vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
						  num_q_vectors, vsi->idx);
1125
		break;
1126 1127 1128 1129 1130 1131 1132
	case ICE_VSI_VF:
		/* take VF misc vector and data vectors into account */
		num_q_vectors = pf->num_vf_msix;
		/* For VF VSI, reserve slots only from HW interrupts */
		vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
						  num_q_vectors, vsi->idx);
		break;
1133 1134 1135 1136 1137 1138
	default:
		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		break;
	}

1139
	if (vsi->hw_base_vector < 0) {
1140
		dev_err(&pf->pdev->dev,
1141 1142
			"Failed to get tracking for %d HW vectors for VSI %d, err=%d\n",
			num_q_vectors, vsi->vsi_num, vsi->hw_base_vector);
1143 1144 1145 1146 1147
		if (vsi->type != ICE_VSI_VF) {
			ice_free_res(vsi->back->sw_irq_tracker,
				     vsi->sw_base_vector, vsi->idx);
			pf->num_avail_sw_msix += num_q_vectors;
		}
1148 1149 1150
		return -ENOENT;
	}

1151 1152
	pf->num_avail_hw_msix -= num_q_vectors;

1153 1154 1155
	return 0;
}

1156 1157 1158 1159
/**
 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
 * @vsi: the VSI having rings deallocated
 */
1160
static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
{
	int i;

	if (vsi->tx_rings) {
		for (i = 0; i < vsi->alloc_txq; i++) {
			if (vsi->tx_rings[i]) {
				kfree_rcu(vsi->tx_rings[i], rcu);
				vsi->tx_rings[i] = NULL;
			}
		}
	}
	if (vsi->rx_rings) {
		for (i = 0; i < vsi->alloc_rxq; i++) {
			if (vsi->rx_rings[i]) {
				kfree_rcu(vsi->rx_rings[i], rcu);
				vsi->rx_rings[i] = NULL;
			}
		}
	}
}

/**
 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
 * @vsi: VSI which is having rings allocated
 */
1186
static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	struct ice_pf *pf = vsi->back;
	int i;

	/* Allocate tx_rings */
	for (i = 0; i < vsi->alloc_txq; i++) {
		struct ice_ring *ring;

		/* allocate with kzalloc(), free with kfree_rcu() */
		ring = kzalloc(sizeof(*ring), GFP_KERNEL);

		if (!ring)
			goto err_out;

		ring->q_index = i;
		ring->reg_idx = vsi->txq_map[i];
		ring->ring_active = false;
		ring->vsi = vsi;
		ring->dev = &pf->pdev->dev;
		ring->count = vsi->num_desc;
		vsi->tx_rings[i] = ring;
	}

	/* Allocate rx_rings */
	for (i = 0; i < vsi->alloc_rxq; i++) {
		struct ice_ring *ring;

		/* allocate with kzalloc(), free with kfree_rcu() */
		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
		if (!ring)
			goto err_out;

		ring->q_index = i;
		ring->reg_idx = vsi->rxq_map[i];
		ring->ring_active = false;
		ring->vsi = vsi;
		ring->netdev = vsi->netdev;
		ring->dev = &pf->pdev->dev;
		ring->count = vsi->num_desc;
		vsi->rx_rings[i] = ring;
	}

	return 0;

err_out:
	ice_vsi_clear_rings(vsi);
	return -ENOMEM;
}

1236 1237 1238 1239 1240 1241 1242 1243
/**
 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 * @vsi: the VSI being configured
 *
 * This function maps descriptor rings to the queue-specific vectors allotted
 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 * and Rx rings to the vector as "efficiently" as possible.
 */
1244
static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int q_vectors = vsi->num_q_vectors;
	int tx_rings_rem, rx_rings_rem;
	int v_id;

	/* initially assigning remaining rings count to VSIs num queue value */
	tx_rings_rem = vsi->num_txq;
	rx_rings_rem = vsi->num_rxq;

	for (v_id = 0; v_id < q_vectors; v_id++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;

		/* Tx rings mapping to vector */
		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
		q_vector->num_ring_tx = tx_rings_per_v;
		q_vector->tx.ring = NULL;
1262
		q_vector->tx.itr_idx = ICE_TX_ITR;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		q_base = vsi->num_txq - tx_rings_rem;

		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
			struct ice_ring *tx_ring = vsi->tx_rings[q_id];

			tx_ring->q_vector = q_vector;
			tx_ring->next = q_vector->tx.ring;
			q_vector->tx.ring = tx_ring;
		}
		tx_rings_rem -= tx_rings_per_v;

		/* Rx rings mapping to vector */
		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
		q_vector->num_ring_rx = rx_rings_per_v;
		q_vector->rx.ring = NULL;
1278
		q_vector->rx.itr_idx = ICE_RX_ITR;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		q_base = vsi->num_rxq - rx_rings_rem;

		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
			struct ice_ring *rx_ring = vsi->rx_rings[q_id];

			rx_ring->q_vector = q_vector;
			rx_ring->next = q_vector->rx.ring;
			q_vector->rx.ring = rx_ring;
		}
		rx_rings_rem -= rx_rings_per_v;
	}
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 * ice_vsi_manage_rss_lut - disable/enable RSS
 * @vsi: the VSI being changed
 * @ena: boolean value indicating if this is an enable or disable request
 *
 * In the event of disable request for RSS, this function will zero out RSS
 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
 * LUT.
 */
int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
{
	int err = 0;
	u8 *lut;

	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
			   GFP_KERNEL);
	if (!lut)
		return -ENOMEM;

	if (ena) {
		if (vsi->rss_lut_user)
			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
		else
			ice_fill_rss_lut(lut, vsi->rss_table_size,
					 vsi->rss_size);
	}

	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
	devm_kfree(&vsi->back->pdev->dev, lut);
	return err;
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/**
 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
 * @vsi: VSI to be configured
 */
static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
{
	u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
	struct ice_aqc_get_set_rss_keys *key;
	struct ice_pf *pf = vsi->back;
	enum ice_status status;
	int err = 0;
	u8 *lut;

	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);

	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
	if (!lut)
		return -ENOMEM;

	if (vsi->rss_lut_user)
		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
	else
		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);

1348 1349
	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
				    vsi->rss_table_size);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	if (status) {
		dev_err(&vsi->back->pdev->dev,
			"set_rss_lut failed, error %d\n", status);
		err = -EIO;
		goto ice_vsi_cfg_rss_exit;
	}

	key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
	if (!key) {
		err = -ENOMEM;
		goto ice_vsi_cfg_rss_exit;
	}

	if (vsi->rss_hkey_user)
		memcpy(seed, vsi->rss_hkey_user,
		       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
	else
		netdev_rss_key_fill((void *)seed,
				    ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
	memcpy(&key->standard_rss_key, seed,
	       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);

1373
	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	if (status) {
		dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
			status);
		err = -EIO;
	}

	devm_kfree(&pf->pdev->dev, key);
ice_vsi_cfg_rss_exit:
	devm_kfree(&pf->pdev->dev, lut);
	return err;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/**
 * ice_add_mac_to_list - Add a mac address filter entry to the list
 * @vsi: the VSI to be forwarded to
 * @add_list: pointer to the list which contains MAC filter entries
 * @macaddr: the MAC address to be added.
 *
 * Adds mac address filter entry to the temp list
 *
 * Returns 0 on success or ENOMEM on failure.
 */
int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
			const u8 *macaddr)
{
	struct ice_fltr_list_entry *tmp;
	struct ice_pf *pf = vsi->back;

	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
	if (!tmp)
		return -ENOMEM;

	tmp->fltr_info.flag = ICE_FLTR_TX;
1408
	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1409 1410
	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1411
	tmp->fltr_info.vsi_handle = vsi->idx;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);

	INIT_LIST_HEAD(&tmp->list_entry);
	list_add(&tmp->list_entry, add_list);

	return 0;
}

/**
 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
 * @vsi: the VSI to be updated
 */
void ice_update_eth_stats(struct ice_vsi *vsi)
{
	struct ice_eth_stats *prev_es, *cur_es;
	struct ice_hw *hw = &vsi->back->hw;
	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */

	prev_es = &vsi->eth_stats_prev;
	cur_es = &vsi->eth_stats;

	ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_bytes,
			  &cur_es->rx_bytes);

	ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_unicast,
			  &cur_es->rx_unicast);

	ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_multicast,
			  &cur_es->rx_multicast);

	ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
			  &cur_es->rx_broadcast);

	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
			  &prev_es->rx_discards, &cur_es->rx_discards);

	ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_bytes,
			  &cur_es->tx_bytes);

	ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_unicast,
			  &cur_es->tx_unicast);

	ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_multicast,
			  &cur_es->tx_multicast);

	ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
			  &cur_es->tx_broadcast);

	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
			  &prev_es->tx_errors, &cur_es->tx_errors);

	vsi->stat_offsets_loaded = true;
}

/**
 * ice_free_fltr_list - free filter lists helper
 * @dev: pointer to the device struct
 * @h: pointer to the list head to be freed
 *
 * Helper function to free filter lists previously created using
 * ice_add_mac_to_list
 */
void ice_free_fltr_list(struct device *dev, struct list_head *h)
{
	struct ice_fltr_list_entry *e, *tmp;

	list_for_each_entry_safe(e, tmp, h, list_entry) {
		list_del(&e->list_entry);
		devm_kfree(dev, e);
	}
}

/**
 * ice_vsi_add_vlan - Add VSI membership for given VLAN
 * @vsi: the VSI being configured
 * @vid: VLAN id to be added
 */
int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
{
	struct ice_fltr_list_entry *tmp;
	struct ice_pf *pf = vsi->back;
	LIST_HEAD(tmp_add_list);
	enum ice_status status;
	int err = 0;

	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
	if (!tmp)
		return -ENOMEM;

	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
	tmp->fltr_info.flag = ICE_FLTR_TX;
1512 1513
	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
	tmp->fltr_info.vsi_handle = vsi->idx;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	tmp->fltr_info.l_data.vlan.vlan_id = vid;

	INIT_LIST_HEAD(&tmp->list_entry);
	list_add(&tmp->list_entry, &tmp_add_list);

	status = ice_add_vlan(&pf->hw, &tmp_add_list);
	if (status) {
		err = -ENODEV;
		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
			vid, vsi->vsi_num);
	}

	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return err;
}

/**
 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
 * @vsi: the VSI being configured
 * @vid: VLAN id to be removed
 *
 * Returns 0 on success and negative on failure
 */
int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
{
	struct ice_fltr_list_entry *list;
	struct ice_pf *pf = vsi->back;
	LIST_HEAD(tmp_add_list);
	int status = 0;

	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
	if (!list)
		return -ENOMEM;

	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1549
	list->fltr_info.vsi_handle = vsi->idx;
1550 1551 1552
	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
	list->fltr_info.l_data.vlan.vlan_id = vid;
	list->fltr_info.flag = ICE_FLTR_TX;
1553
	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	INIT_LIST_HEAD(&list->list_entry);
	list_add(&list->list_entry, &tmp_add_list);

	if (ice_remove_vlan(&pf->hw, &tmp_add_list)) {
		dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
			vid, vsi->vsi_num);
		status = -EIO;
	}

	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return status;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/**
 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Rx VSI for operation.
 */
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
	int err = 0;
	u16 i;

1580 1581 1582
	if (vsi->type == ICE_VSI_VF)
		goto setup_rings;

1583 1584 1585 1586 1587 1588 1589
	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
		vsi->max_frame = vsi->netdev->mtu +
			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
	else
		vsi->max_frame = ICE_RXBUF_2048;

	vsi->rx_buf_len = ICE_RXBUF_2048;
1590
setup_rings:
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	/* set up individual rings */
	for (i = 0; i < vsi->num_rxq && !err; i++)
		err = ice_setup_rx_ctx(vsi->rx_rings[i]);

	if (err) {
		dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
		return -EIO;
	}
	return err;
}

/**
 * ice_vsi_cfg_txqs - Configure the VSI for Tx
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Tx VSI for operation.
 */
int ice_vsi_cfg_txqs(struct ice_vsi *vsi)
{
	struct ice_aqc_add_tx_qgrp *qg_buf;
	struct ice_aqc_add_txqs_perq *txq;
	struct ice_pf *pf = vsi->back;
	enum ice_status status;
	u16 buf_len, i, pf_q;
	int err = 0, tc = 0;
	u8 num_q_grps;

	buf_len = sizeof(struct ice_aqc_add_tx_qgrp);
	qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
	if (!qg_buf)
		return -ENOMEM;

	if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) {
		err = -EINVAL;
		goto err_cfg_txqs;
	}
	qg_buf->num_txqs = 1;
	num_q_grps = 1;

	/* set up and configure the Tx queues */
	ice_for_each_txq(vsi, i) {
		struct ice_tlan_ctx tlan_ctx = { 0 };

		pf_q = vsi->txq_map[i];
		ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q);
		/* copy context contents into the qg_buf */
		qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
		ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
			    ice_tlan_ctx_info);

		/* init queue specific tail reg. It is referred as transmit
		 * comm scheduler queue doorbell.
		 */
		vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1646
		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
					 num_q_grps, qg_buf, buf_len, NULL);
		if (status) {
			dev_err(&vsi->back->pdev->dev,
				"Failed to set LAN Tx queue context, error: %d\n",
				status);
			err = -ENODEV;
			goto err_cfg_txqs;
		}

		/* Add Tx Queue TEID into the VSI Tx ring from the response
		 * This will complete configuring and enabling the queue.
		 */
		txq = &qg_buf->txqs[0];
		if (pf_q == le16_to_cpu(txq->txq_id))
			vsi->tx_rings[i]->txq_teid =
				le32_to_cpu(txq->q_teid);
	}
err_cfg_txqs:
	devm_kfree(&pf->pdev->dev, qg_buf);
	return err;
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/**
 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
 * @intrl: interrupt rate limit in usecs
 * @gran: interrupt rate limit granularity in usecs
 *
 * This function converts a decimal interrupt rate limit in usecs to the format
 * expected by firmware.
 */
static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
{
	u32 val = intrl / gran;

	if (val)
		return val | GLINT_RATE_INTRL_ENA_M;
	return 0;
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/**
 * ice_cfg_itr - configure the initial interrupt throttle values
 * @hw: pointer to the HW structure
 * @q_vector: interrupt vector that's being configured
 * @vector: HW vector index to apply the interrupt throttling to
 *
 * Configure interrupt throttling values for the ring containers that are
 * associated with the interrupt vector passed in.
 */
static void
ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector)
{
	u8 itr_gran = hw->itr_gran;

	if (q_vector->num_ring_rx) {
		struct ice_ring_container *rc = &q_vector->rx;

		rc->itr = ITR_TO_REG(ICE_DFLT_RX_ITR, itr_gran);
		rc->latency_range = ICE_LOW_LATENCY;
		wr32(hw, GLINT_ITR(rc->itr_idx, vector), rc->itr);
	}

	if (q_vector->num_ring_tx) {
		struct ice_ring_container *rc = &q_vector->tx;

		rc->itr = ITR_TO_REG(ICE_DFLT_TX_ITR, itr_gran);
		rc->latency_range = ICE_LOW_LATENCY;
		wr32(hw, GLINT_ITR(rc->itr_idx, vector), rc->itr);
	}
}

1717 1718 1719 1720 1721 1722 1723
/**
 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
 * @vsi: the VSI being configured
 */
void ice_vsi_cfg_msix(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
1724
	u16 vector = vsi->hw_base_vector;
1725 1726
	struct ice_hw *hw = &pf->hw;
	u32 txq = 0, rxq = 0;
1727
	int i, q;
1728 1729 1730 1731

	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[i];

1732
		ice_cfg_itr(hw, q_vector, vector);
1733 1734 1735

		wr32(hw, GLINT_RATE(vector),
		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

		/* Both Transmit Queue Interrupt Cause Control register
		 * and Receive Queue Interrupt Cause control register
		 * expects MSIX_INDX field to be the vector index
		 * within the function space and not the absolute
		 * vector index across PF or across device.
		 * For SR-IOV VF VSIs queue vector index always starts
		 * with 1 since first vector index(0) is used for OICR
		 * in VF space. Since VMDq and other PF VSIs are within
		 * the PF function space, use the vector index that is
		 * tracked for this PF.
		 */
		for (q = 0; q < q_vector->num_ring_tx; q++) {
1749
			int itr_idx = q_vector->tx.itr_idx;
1750 1751
			u32 val;

1752 1753
			if (vsi->type == ICE_VSI_VF)
				val = QINT_TQCTL_CAUSE_ENA_M |
1754
				      (itr_idx << QINT_TQCTL_ITR_INDX_S)  |
1755 1756 1757
				      ((i + 1) << QINT_TQCTL_MSIX_INDX_S);
			else
				val = QINT_TQCTL_CAUSE_ENA_M |
1758
				      (itr_idx << QINT_TQCTL_ITR_INDX_S)  |
1759
				      (vector << QINT_TQCTL_MSIX_INDX_S);
1760 1761 1762 1763 1764
			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
			txq++;
		}

		for (q = 0; q < q_vector->num_ring_rx; q++) {
1765
			int itr_idx = q_vector->rx.itr_idx;
1766 1767
			u32 val;

1768 1769
			if (vsi->type == ICE_VSI_VF)
				val = QINT_RQCTL_CAUSE_ENA_M |
1770
				      (itr_idx << QINT_RQCTL_ITR_INDX_S)  |
1771 1772 1773
				      ((i + 1) << QINT_RQCTL_MSIX_INDX_S);
			else
				val = QINT_RQCTL_CAUSE_ENA_M |
1774
				      (itr_idx << QINT_RQCTL_ITR_INDX_S)  |
1775
				      (vector << QINT_RQCTL_MSIX_INDX_S);
1776 1777 1778 1779 1780 1781 1782 1783
			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
			rxq++;
		}
	}

	ice_flush(hw);
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
/**
 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
 * @vsi: the VSI being changed
 */
int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_hw *hw = &vsi->back->hw;
	struct ice_vsi_ctx ctxt = { 0 };
	enum ice_status status;

	/* Here we are configuring the VSI to let the driver add VLAN tags by
	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
	 * insertion happens in the Tx hot path, in ice_tx_map.
	 */
	ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;

	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);

1803
	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (status) {
		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
			status, hw->adminq.sq_last_status);
		return -EIO;
	}

	vsi->info.vlan_flags = ctxt.info.vlan_flags;
	return 0;
}

/**
 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
 * @vsi: the VSI being changed
 * @ena: boolean value indicating if this is a enable or disable request
 */
int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_hw *hw = &vsi->back->hw;
	struct ice_vsi_ctx ctxt = { 0 };
	enum ice_status status;

	/* Here we are configuring what the VSI should do with the VLAN tag in
	 * the Rx packet. We can either leave the tag in the packet or put it in
	 * the Rx descriptor.
	 */
	if (ena) {
		/* Strip VLAN tag from Rx packet and put it in the desc */
		ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
	} else {
		/* Disable stripping. Leave tag in packet */
		ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
	}

	/* Allow all packets untagged/tagged */
	ctxt.info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;

	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);

1843
	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
1844 1845 1846 1847 1848 1849 1850 1851 1852
	if (status) {
		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
			ena, status, hw->adminq.sq_last_status);
		return -EIO;
	}

	vsi->info.vlan_flags = ctxt.info.vlan_flags;
	return 0;
}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

/**
 * ice_vsi_start_rx_rings - start VSI's Rx rings
 * @vsi: the VSI whose rings are to be started
 *
 * Returns 0 on success and a negative value on error
 */
int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
{
	return ice_vsi_ctrl_rx_rings(vsi, true);
}

/**
 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
 * @vsi: the VSI
 *
 * Returns 0 on success and a negative value on error
 */
int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
{
	return ice_vsi_ctrl_rx_rings(vsi, false);
}

/**
 * ice_vsi_stop_tx_rings - Disable Tx rings
 * @vsi: the VSI being configured
1879 1880
 * @rst_src: reset source
 * @rel_vmvf_num: Relative id of VF/VM
1881
 */
1882 1883
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
			  u16 rel_vmvf_num)
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;
	u32 *q_teids, val;
	u16 *q_ids, i;
	int err = 0;

	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
		return -EINVAL;

	q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
			       GFP_KERNEL);
	if (!q_teids)
		return -ENOMEM;

	q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
			     GFP_KERNEL);
	if (!q_ids) {
		err = -ENOMEM;
		goto err_alloc_q_ids;
	}

	/* set up the Tx queue list to be disabled */
	ice_for_each_txq(vsi, i) {
		u16 v_idx;

		if (!vsi->tx_rings || !vsi->tx_rings[i]) {
			err = -EINVAL;
			goto err_out;
		}

		q_ids[i] = vsi->txq_map[i];
		q_teids[i] = vsi->tx_rings[i]->txq_teid;

		/* clear cause_ena bit for disabled queues */
		val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
		val &= ~QINT_TQCTL_CAUSE_ENA_M;
		wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);

		/* software is expected to wait for 100 ns */
		ndelay(100);

		/* trigger a software interrupt for the vector associated to
		 * the queue to schedule NAPI handler
		 */
		v_idx = vsi->tx_rings[i]->q_vector->v_idx;
1931
		wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx),
1932 1933 1934
		     GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
	}
	status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
1935
				 rst_src, rel_vmvf_num, NULL);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	/* if the disable queue command was exercised during an active reset
	 * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as
	 * the reset operation disables queues at the hardware level anyway.
	 */
	if (status == ICE_ERR_RESET_ONGOING) {
		dev_info(&pf->pdev->dev,
			 "Reset in progress. LAN Tx queues already disabled\n");
	} else if (status) {
		dev_err(&pf->pdev->dev,
			"Failed to disable LAN Tx queues, error: %d\n",
			status);
		err = -ENODEV;
	}

err_out:
	devm_kfree(&pf->pdev->dev, q_ids);

err_alloc_q_ids:
	devm_kfree(&pf->pdev->dev, q_teids);

	return err;
}
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

/**
 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
 * @vsi: VSI to enable or disable VLAN pruning on
 * @ena: set to true to enable VLAN pruning and false to disable it
 *
 * returns 0 if VSI is updated, negative otherwise
 */
int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena)
{
	struct ice_vsi_ctx *ctxt;
	struct device *dev;
	int status;

	if (!vsi)
		return -EINVAL;

	dev = &vsi->back->pdev->dev;
	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;

	ctxt->info = vsi->info;

	if (ena) {
		ctxt->info.sec_flags |=
			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	} else {
		ctxt->info.sec_flags &=
			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	}

	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
						ICE_AQ_VSI_PROP_SW_VALID);
1996 1997

	status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL);
1998
	if (status) {
1999
		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2000
			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
			   vsi->back->hw.adminq.sq_last_status);
		goto err_out;
	}

	vsi->info.sec_flags = ctxt->info.sec_flags;
	vsi->info.sw_flags2 = ctxt->info.sw_flags2;

	devm_kfree(dev, ctxt);
	return 0;

err_out:
	devm_kfree(dev, ctxt);
	return -EIO;
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/**
 * ice_vsi_setup - Set up a VSI by a given type
 * @pf: board private structure
 * @pi: pointer to the port_info instance
 * @type: VSI type
 * @vf_id: defines VF id to which this VSI connects. This field is meant to be
 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
 *         fill-in ICE_INVAL_VFID as input.
 *
 * This allocates the sw VSI structure and its queue resources.
 *
 * Returns pointer to the successfully allocated and configured VSI sw struct on
 * success, NULL on failure.
 */
struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2032
	      enum ice_vsi_type type, u16 vf_id)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
	struct device *dev = &pf->pdev->dev;
	struct ice_vsi *vsi;
	int ret, i;

	vsi = ice_vsi_alloc(pf, type);
	if (!vsi) {
		dev_err(dev, "could not allocate VSI\n");
		return NULL;
	}

	vsi->port_info = pi;
	vsi->vsw = pf->first_sw;
2047 2048
	if (vsi->type == ICE_VSI_VF)
		vsi->vf_id = vf_id;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

	if (ice_vsi_get_qs(vsi)) {
		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
			vsi->idx);
		goto unroll_get_qs;
	}

	/* set RSS capabilities */
	ice_vsi_set_rss_params(vsi);

	/* create the VSI */
	ret = ice_vsi_init(vsi);
	if (ret)
		goto unroll_get_qs;

	switch (vsi->type) {
	case ICE_VSI_PF:
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto unroll_vsi_init;

		ret = ice_vsi_setup_vector_base(vsi);
		if (ret)
			goto unroll_alloc_q_vector;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto unroll_vector_base;

		ice_vsi_map_rings_to_vectors(vsi);

		/* Do not exit if configuring RSS had an issue, at least
		 * receive traffic on first queue. Hence no need to capture
		 * return value
		 */
		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
			ice_vsi_cfg_rss_lut_key(vsi);
		break;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	case ICE_VSI_VF:
		/* VF driver will take care of creating netdev for this type and
		 * map queues to vectors through Virtchnl, PF driver only
		 * creates a VSI and corresponding structures for bookkeeping
		 * purpose
		 */
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto unroll_vsi_init;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto unroll_alloc_q_vector;

		/* Setup Vector base only during VF init phase or when VF asks
		 * for more vectors than assigned number. In all other cases,
		 * assign hw_base_vector to the value given earlier.
		 */
		if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) {
			ret = ice_vsi_setup_vector_base(vsi);
			if (ret)
				goto unroll_vector_base;
		} else {
			vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx;
		}
		pf->q_left_tx -= vsi->alloc_txq;
		pf->q_left_rx -= vsi->alloc_rxq;
		break;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	default:
		/* if VSI type is not recognized, clean up the resources and
		 * exit
		 */
		goto unroll_vsi_init;
	}

	ice_vsi_set_tc_cfg(vsi);

	/* configure VSI nodes based on number of queues and TC's */
	for (i = 0; i < vsi->tc_cfg.numtc; i++)
		max_txqs[i] = vsi->num_txq;

2128 2129
	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
			      max_txqs);
2130 2131 2132 2133 2134 2135 2136 2137
	if (ret) {
		dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
		goto unroll_vector_base;
	}

	return vsi;

unroll_vector_base:
2138 2139 2140 2141 2142 2143
	/* reclaim SW interrupts back to the common pool */
	ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
	pf->num_avail_sw_msix += vsi->num_q_vectors;
	/* reclaim HW interrupt back to the common pool */
	ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
	pf->num_avail_hw_msix += vsi->num_q_vectors;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
unroll_alloc_q_vector:
	ice_vsi_free_q_vectors(vsi);
unroll_vsi_init:
	ice_vsi_delete(vsi);
unroll_get_qs:
	ice_vsi_put_qs(vsi);
	pf->q_left_tx += vsi->alloc_txq;
	pf->q_left_rx += vsi->alloc_rxq;
	ice_vsi_clear(vsi);

	return NULL;
}

2157 2158 2159 2160 2161 2162 2163
/**
 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
 * @vsi: the VSI being cleaned up
 */
static void ice_vsi_release_msix(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
2164
	u16 vector = vsi->hw_base_vector;
2165 2166 2167 2168 2169 2170 2171 2172
	struct ice_hw *hw = &pf->hw;
	u32 txq = 0;
	u32 rxq = 0;
	int i, q;

	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[i];

2173 2174
		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0);
		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		for (q = 0; q < q_vector->num_ring_tx; q++) {
			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
			txq++;
		}

		for (q = 0; q < q_vector->num_ring_rx; q++) {
			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
			rxq++;
		}
	}

	ice_flush(hw);
}

/**
 * ice_vsi_free_irq - Free the IRQ association with the OS
 * @vsi: the VSI being configured
 */
void ice_vsi_free_irq(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
2196
	int base = vsi->sw_base_vector;
2197 2198 2199 2200 2201 2202 2203

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		int i;

		if (!vsi->q_vectors || !vsi->irqs_ready)
			return;

2204
		ice_vsi_release_msix(vsi);
2205 2206
		if (vsi->type == ICE_VSI_VF)
			return;
2207

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		vsi->irqs_ready = false;
		for (i = 0; i < vsi->num_q_vectors; i++) {
			u16 vector = i + base;
			int irq_num;

			irq_num = pf->msix_entries[vector].vector;

			/* free only the irqs that were actually requested */
			if (!vsi->q_vectors[i] ||
			    !(vsi->q_vectors[i]->num_ring_tx ||
			      vsi->q_vectors[i]->num_ring_rx))
				continue;

			/* clear the affinity notifier in the IRQ descriptor */
			irq_set_affinity_notifier(irq_num, NULL);

			/* clear the affinity_mask in the IRQ descriptor */
			irq_set_affinity_hint(irq_num, NULL);
			synchronize_irq(irq_num);
			devm_free_irq(&pf->pdev->dev, irq_num,
				      vsi->q_vectors[i]);
		}
	}
}

/**
 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
 * @vsi: the VSI having resources freed
 */
void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
{
	int i;

	if (!vsi->tx_rings)
		return;

	ice_for_each_txq(vsi, i)
		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
			ice_free_tx_ring(vsi->tx_rings[i]);
}

/**
 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
 * @vsi: the VSI having resources freed
 */
void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
{
	int i;

	if (!vsi->rx_rings)
		return;

	ice_for_each_rxq(vsi, i)
		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
			ice_free_rx_ring(vsi->rx_rings[i]);
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/**
 * ice_vsi_close - Shut down a VSI
 * @vsi: the VSI being shut down
 */
void ice_vsi_close(struct ice_vsi *vsi)
{
	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
		ice_down(vsi);

	ice_vsi_free_irq(vsi);
	ice_vsi_free_tx_rings(vsi);
	ice_vsi_free_rx_rings(vsi);
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
/**
 * ice_free_res - free a block of resources
 * @res: pointer to the resource
 * @index: starting index previously returned by ice_get_res
 * @id: identifier to track owner
 *
 * Returns number of resources freed
 */
int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
{
	int count = 0;
	int i;

	if (!res || index >= res->num_entries)
		return -EINVAL;

	id |= ICE_RES_VALID_BIT;
	for (i = index; i < res->num_entries && res->list[i] == id; i++) {
		res->list[i] = 0;
		count++;
	}

	return count;
}

/**
 * ice_search_res - Search the tracker for a block of resources
 * @res: pointer to the resource
 * @needed: size of the block needed
 * @id: identifier to track owner
 *
 * Returns the base item index of the block, or -ENOMEM for error
 */
static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
{
	int start = res->search_hint;
	int end = start;

2317 2318 2319
	if ((start + needed) >  res->num_entries)
		return -ENOMEM;

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	id |= ICE_RES_VALID_BIT;

	do {
		/* skip already allocated entries */
		if (res->list[end++] & ICE_RES_VALID_BIT) {
			start = end;
			if ((start + needed) > res->num_entries)
				break;
		}

		if (end == (start + needed)) {
			int i = start;

			/* there was enough, so assign it to the requestor */
			while (i != end)
				res->list[i++] = id;

			if (end == res->num_entries)
				end = 0;

			res->search_hint = end;
			return start;
		}
	} while (1);

	return -ENOMEM;
}

/**
 * ice_get_res - get a block of resources
 * @pf: board private structure
 * @res: pointer to the resource
 * @needed: size of the block needed
 * @id: identifier to track owner
 *
 * Returns the base item index of the block, or -ENOMEM for error
 * The search_hint trick and lack of advanced fit-finding only works
 * because we're highly likely to have all the same sized requests.
 * Linear search time and any fragmentation should be minimal.
 */
int
ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
{
	int ret;

	if (!res || !pf)
		return -EINVAL;

	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
		dev_err(&pf->pdev->dev,
			"param err: needed=%d, num_entries = %d id=0x%04x\n",
			needed, res->num_entries, id);
		return -EINVAL;
	}

	/* search based on search_hint */
	ret = ice_search_res(res, needed, id);

	if (ret < 0) {
		/* previous search failed. Reset search hint and try again */
		res->search_hint = 0;
		ret = ice_search_res(res, needed, id);
	}

	return ret;
}

/**
 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
 * @vsi: the VSI being un-configured
 */
void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
2393
	int base = vsi->sw_base_vector;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	u32 val;
	int i;

	/* disable interrupt causation from each queue */
	if (vsi->tx_rings) {
		ice_for_each_txq(vsi, i) {
			if (vsi->tx_rings[i]) {
				u16 reg;

				reg = vsi->tx_rings[i]->reg_idx;
				val = rd32(hw, QINT_TQCTL(reg));
				val &= ~QINT_TQCTL_CAUSE_ENA_M;
				wr32(hw, QINT_TQCTL(reg), val);
			}
		}
	}

	if (vsi->rx_rings) {
		ice_for_each_rxq(vsi, i) {
			if (vsi->rx_rings[i]) {
				u16 reg;

				reg = vsi->rx_rings[i]->reg_idx;
				val = rd32(hw, QINT_RQCTL(reg));
				val &= ~QINT_RQCTL_CAUSE_ENA_M;
				wr32(hw, QINT_RQCTL(reg), val);
			}
		}
	}

	/* disable each interrupt */
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2428 2429
		for (i = vsi->hw_base_vector;
		     i < (vsi->num_q_vectors + vsi->hw_base_vector); i++)
2430 2431 2432 2433 2434 2435 2436 2437
			wr32(hw, GLINT_DYN_CTL(i), 0);

		ice_flush(hw);
		for (i = 0; i < vsi->num_q_vectors; i++)
			synchronize_irq(pf->msix_entries[i + base].vector);
	}
}

2438 2439 2440 2441 2442 2443 2444 2445 2446
/**
 * ice_vsi_release - Delete a VSI and free its resources
 * @vsi: the VSI being removed
 *
 * Returns 0 on success or < 0 on error
 */
int ice_vsi_release(struct ice_vsi *vsi)
{
	struct ice_pf *pf;
2447
	struct ice_vf *vf;
2448 2449 2450 2451

	if (!vsi->back)
		return -ENODEV;
	pf = vsi->back;
2452
	vf = &pf->vf[vsi->vf_id];
2453 2454 2455 2456 2457 2458 2459
	/* do not unregister and free netdevs while driver is in the reset
	 * recovery pending state. Since reset/rebuild happens through PF
	 * service task workqueue, its not a good idea to unregister netdev
	 * that is associated to the PF that is running the work queue items
	 * currently. This is done to avoid check_flush_dependency() warning
	 * on this wq
	 */
2460
	if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		unregister_netdev(vsi->netdev);
		free_netdev(vsi->netdev);
		vsi->netdev = NULL;
	}

	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
		ice_rss_clean(vsi);

	/* Disable VSI and free resources */
	ice_vsi_dis_irq(vsi);
	ice_vsi_close(vsi);

	/* reclaim interrupt vectors back to PF */
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	if (vsi->type != ICE_VSI_VF) {
		/* reclaim SW interrupts back to the common pool */
		ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector,
			     vsi->idx);
		pf->num_avail_sw_msix += vsi->num_q_vectors;
		/* reclaim HW interrupts back to the common pool */
		ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector,
			     vsi->idx);
		pf->num_avail_hw_msix += vsi->num_q_vectors;
	} else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) {
		/* Reclaim VF resources back only while freeing all VFs or
		 * vector reassignment is requested
		 */
		ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx,
			     vsi->idx);
		pf->num_avail_hw_msix += pf->num_vf_msix;
	}
2491

2492
	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	ice_vsi_delete(vsi);
	ice_vsi_free_q_vectors(vsi);
	ice_vsi_clear_rings(vsi);

	ice_vsi_put_qs(vsi);
	pf->q_left_tx += vsi->alloc_txq;
	pf->q_left_rx += vsi->alloc_rxq;

	/* retain SW VSI data structure since it is needed to unregister and
	 * free VSI netdev when PF is not in reset recovery pending state,\
	 * for ex: during rmmod.
	 */
2505
	if (!ice_is_reset_in_progress(pf->state))
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		ice_vsi_clear(vsi);

	return 0;
}

/**
 * ice_vsi_rebuild - Rebuild VSI after reset
 * @vsi: VSI to be rebuild
 *
 * Returns 0 on success and negative value on failure
 */
int ice_vsi_rebuild(struct ice_vsi *vsi)
{
	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
	int ret, i;

	if (!vsi)
		return -EINVAL;

	ice_vsi_free_q_vectors(vsi);
2526 2527 2528 2529
	ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
	ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
	vsi->sw_base_vector = 0;
	vsi->hw_base_vector = 0;
2530 2531
	ice_vsi_clear_rings(vsi);
	ice_vsi_free_arrays(vsi, false);
2532
	ice_dev_onetime_setup(&vsi->back->hw);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	ice_vsi_set_num_qs(vsi);

	/* Initialize VSI struct elements and create VSI in FW */
	ret = ice_vsi_init(vsi);
	if (ret < 0)
		goto err_vsi;

	ret = ice_vsi_alloc_arrays(vsi, false);
	if (ret < 0)
		goto err_vsi;

	switch (vsi->type) {
	case ICE_VSI_PF:
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto err_rings;

		ret = ice_vsi_setup_vector_base(vsi);
		if (ret)
			goto err_vectors;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto err_vectors;

		ice_vsi_map_rings_to_vectors(vsi);
		break;
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	case ICE_VSI_VF:
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto err_rings;

		ret = ice_vsi_setup_vector_base(vsi);
		if (ret)
			goto err_vectors;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto err_vectors;

		vsi->back->q_left_tx -= vsi->alloc_txq;
		vsi->back->q_left_rx -= vsi->alloc_rxq;
		break;
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	default:
		break;
	}

	ice_vsi_set_tc_cfg(vsi);

	/* configure VSI nodes based on number of queues and TC's */
	for (i = 0; i < vsi->tc_cfg.numtc; i++)
		max_txqs[i] = vsi->num_txq;

2586 2587
	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
			      max_txqs);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	if (ret) {
		dev_info(&vsi->back->pdev->dev,
			 "Failed VSI lan queue config\n");
		goto err_vectors;
	}
	return 0;

err_vectors:
	ice_vsi_free_q_vectors(vsi);
err_rings:
	if (vsi->netdev) {
		vsi->current_netdev_flags = 0;
		unregister_netdev(vsi->netdev);
		free_netdev(vsi->netdev);
		vsi->netdev = NULL;
	}
err_vsi:
	ice_vsi_clear(vsi);
	set_bit(__ICE_RESET_FAILED, vsi->back->state);
	return ret;
}

2610
/**
2611
 * ice_is_reset_in_progress - check for a reset in progress
2612 2613
 * @state: pf state field
 */
2614
bool ice_is_reset_in_progress(unsigned long *state)
2615
{
2616 2617 2618 2619
	return test_bit(__ICE_RESET_OICR_RECV, state) ||
	       test_bit(__ICE_PFR_REQ, state) ||
	       test_bit(__ICE_CORER_REQ, state) ||
	       test_bit(__ICE_GLOBR_REQ, state);
2620
}