gup.c 49.8 KB
Newer Older
1 2 3 4 5 6
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
7
#include <linux/memremap.h>
8 9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

13
#include <linux/sched/signal.h>
14
#include <linux/rwsem.h>
15
#include <linux/hugetlb.h>
16

17
#include <asm/mmu_context.h>
18
#include <asm/pgtable.h>
19
#include <asm/tlbflush.h>
20

21 22
#include "internal.h"

23 24
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
25
{
26 27 28 29 30 31 32 33 34 35 36 37
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

63 64 65 66 67 68
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
69
	return pte_write(pte) ||
70 71 72
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

73 74 75 76
static struct page *follow_page_pte(struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd, unsigned int flags)
{
	struct mm_struct *mm = vma->vm_mm;
77
	struct dev_pagemap *pgmap = NULL;
78 79 80
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
81

82
retry:
83
	if (unlikely(pmd_bad(*pmd)))
84
		return no_page_table(vma, flags);
85 86 87 88 89 90 91 92 93 94 95 96

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
97
		if (pte_none(pte))
98 99 100 101 102 103
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
104
		goto retry;
105
	}
106
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107
		goto no_page;
108
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 110 111
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
112 113

	page = vm_normal_page(vma, address, pte);
114 115 116 117 118 119 120 121 122 123 124
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
		if (pgmap)
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
140 141
	}

142 143 144 145 146 147 148 149 150 151 152 153 154
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

155
	if (flags & FOLL_GET) {
156
		get_page(page);
157 158 159 160 161 162 163

		/* drop the pgmap reference now that we hold the page */
		if (pgmap) {
			put_dev_pagemap(pgmap);
			pgmap = NULL;
		}
	}
164 165 166 167 168 169 170 171 172 173 174
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
175
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 177 178 179
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
201
out:
202 203 204 205 206
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
207 208 209 210
		return NULL;
	return no_page_table(vma, flags);
}

211 212 213
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
				    unsigned int flags, unsigned int *page_mask)
214 215 216 217 218 219
{
	pmd_t *pmd;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

220
	pmd = pmd_offset(pudp, address);
221 222 223
	if (pmd_none(*pmd))
		return no_page_table(vma, flags);
	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
224 225 226 227
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
228
	}
229 230 231 232 233 234 235 236
	if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pmd_val(*pmd)), flags,
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
237 238 239 240 241 242 243 244 245 246
retry:
	if (!pmd_present(*pmd)) {
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(*pmd));
		if (is_pmd_migration_entry(*pmd))
			pmd_migration_entry_wait(mm, pmd);
		goto retry;
	}
247 248 249 250 251 252 253
	if (pmd_devmap(*pmd)) {
		ptl = pmd_lock(mm, pmd);
		page = follow_devmap_pmd(vma, address, pmd, flags);
		spin_unlock(ptl);
		if (page)
			return page;
	}
254 255 256
	if (likely(!pmd_trans_huge(*pmd)))
		return follow_page_pte(vma, address, pmd, flags);

257 258 259
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
		return no_page_table(vma, flags);

260
retry_locked:
261
	ptl = pmd_lock(mm, pmd);
262 263 264 265 266 267 268
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
269 270 271 272 273 274 275 276 277 278
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
		return follow_page_pte(vma, address, pmd, flags);
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
279
			split_huge_pmd(vma, pmd, address);
280 281
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
282 283
		} else {
			get_page(page);
284
			spin_unlock(ptl);
285 286 287 288
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
289 290
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
291 292 293 294
		}

		return ret ? ERR_PTR(ret) :
			follow_page_pte(vma, address, pmd, flags);
295
	}
296 297 298 299
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
	*page_mask = HPAGE_PMD_NR - 1;
	return page;
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
				    unsigned int flags, unsigned int *page_mask)
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
321 322 323 324 325 326 327 328
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
		page = follow_devmap_pud(vma, address, pud, flags);
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

	return follow_pmd_mask(vma, address, pud, flags, page_mask);
}


static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
				    unsigned int flags, unsigned int *page_mask)
{
	p4d_t *p4d;
348
	struct page *page;
349 350 351 352 353 354 355 356

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

357 358 359 360 361 362 363 364
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	return follow_pud_mask(vma, address, p4d, flags, page_mask);
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
 * @page_mask: on output, *page_mask is set according to the size of the page
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
 * Returns the mapped (struct page *), %NULL if no mapping exists, or
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
struct page *follow_page_mask(struct vm_area_struct *vma,
			      unsigned long address, unsigned int flags,
			      unsigned int *page_mask)
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	*page_mask = 0;

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

403 404 405 406 407 408
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
409 410 411 412 413 414 415 416
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
417

418 419 420
	return follow_p4d_mask(vma, address, pgd, flags, page_mask);
}

421 422 423 424 425
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
426
	p4d_t *p4d;
427 428 429 430 431 432 433 434 435 436 437 438 439
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
440 441 442
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
443 444
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
445
	if (!pmd_present(*pmd))
446 447 448 449 450 451 452 453 454 455 456 457 458
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
459 460 461 462 463 464 465

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
466 467 468 469 470 471 472 473 474
	}
	get_page(*page);
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

475 476 477 478 479
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
480 481 482 483 484 485
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
	int ret;

E
Eric B Munson 已提交
486 487 488
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
489 490
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
491 492
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
493 494 495 496
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
497 498 499 500
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
501

502
	ret = handle_mm_fault(vma, address, fault_flags);
503
	if (ret & VM_FAULT_ERROR) {
504 505 506 507
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
508 509 510 511 512 513 514 515 516 517 518
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
519
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
520 521 522 523 524 525 526 527 528 529 530 531 532 533
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
534
		*flags |= FOLL_COW;
535 536 537
	return 0;
}

538 539 540
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
541 542
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
543 544 545 546

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

547 548 549
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

550
	if (write) {
551 552 553 554 555 556 557 558 559 560 561 562
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
563
			if (!is_cow_mapping(vm_flags))
564 565 566 567 568 569 570 571 572 573 574 575
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
576 577 578 579 580
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
581
		return -EFAULT;
582 583 584
	return 0;
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
605
 * Must be called with mmap_sem held.  It may be released.  See below.
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
628 629 630 631 632 633 634 635
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
636 637 638 639 640
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
641
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
642 643 644 645
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
646
	long i = 0;
647
	unsigned int page_mask;
648
	struct vm_area_struct *vma = NULL;
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				int ret;
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
					return i ? : ret;
				page_mask = 0;
				goto next_page;
			}
681

682 683 684 685 686
			if (!vma || check_vma_flags(vma, gup_flags))
				return i ? : -EFAULT;
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
687
						gup_flags, nonblocking);
688
				continue;
689
			}
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current)))
			return i ? i : -ERESTARTSYS;
		cond_resched();
		page = follow_page_mask(vma, start, foll_flags, &page_mask);
		if (!page) {
			int ret;
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
				return i ? i : ret;
			case -EBUSY:
				return i;
			case -ENOENT:
				goto next_page;
715
			}
716
			BUG();
717 718 719 720 721 722 723
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
724
			return i ? i : PTR_ERR(page);
725
		}
726 727 728 729 730
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
			page_mask = 0;
731 732
		}
next_page:
733 734 735 736 737 738 739 740 741 742
		if (vmas) {
			vmas[i] = vma;
			page_mask = 0;
		}
		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
743 744 745 746
	} while (nr_pages);
	return i;
}

747 748
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
749
{
750 751
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
752
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
753 754 755 756

	if (!(vm_flags & vma->vm_flags))
		return false;

757 758
	/*
	 * The architecture might have a hardware protection
759
	 * mechanism other than read/write that can deny access.
760 761 762
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
763
	 */
764
	if (!arch_vma_access_permitted(vma, write, false, foreign))
765 766
		return false;

767 768 769
	return true;
}

770 771 772 773 774 775 776
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
777 778
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
779 780 781 782 783 784 785 786 787 788 789
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
790
 * get_user_pages() only guarantees to update these in the struct page.
791 792 793 794 795 796
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
797 798
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
799 800
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
801 802
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
803 804
{
	struct vm_area_struct *vma;
805 806 807 808
	int ret, major = 0;

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
809

810
retry:
811 812 813 814
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

815
	if (!vma_permits_fault(vma, fault_flags))
816 817
		return -EFAULT;

818
	ret = handle_mm_fault(vma, address, fault_flags);
819
	major |= ret & VM_FAULT_MAJOR;
820
	if (ret & VM_FAULT_ERROR) {
821 822 823 824
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
825 826
		BUG();
	}
827 828 829 830 831 832 833 834 835 836 837

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

838
	if (tsk) {
839
		if (major)
840 841 842 843 844 845
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
846
EXPORT_SYMBOL_GPL(fixup_user_fault);
847

848 849 850 851 852 853
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
854
						int *locked,
855
						unsigned int flags)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (!pages)
			/* If it's a prefault don't insist harder */
			return ret;

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
896 897 898 899
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
			if (!pages_done)
				pages_done = ret;
			break;
		}
		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
		pages += ret;
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
		pages++;
		start += PAGE_SIZE;
	}
931
	if (lock_dropped && *locked) {
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
 * get_user_pages_locked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  to:
 *
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
 */
963
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
964
			   unsigned int gup_flags, struct page **pages,
965 966
			   int *locked)
{
967
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
968
				       pages, NULL, locked,
969
				       gup_flags | FOLL_TOUCH);
970
}
971
EXPORT_SYMBOL(get_user_pages_locked);
972 973 974 975 976 977 978 979 980 981 982 983 984

/*
 * get_user_pages_unlocked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
985 986
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
987
 */
988
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
989
			     struct page **pages, unsigned int gup_flags)
990
{
991 992 993 994 995 996
	struct mm_struct *mm = current->mm;
	int locked = 1;
	long ret;

	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
997
				      &locked, gup_flags | FOLL_TOUCH);
998 999 1000
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;
1001
}
1002
EXPORT_SYMBOL(get_user_pages_unlocked);
1003

1004
/*
1005
 * get_user_pages_remote() - pin user pages in memory
1006 1007 1008 1009 1010
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1011
 * @gup_flags:	flags modifying lookup behaviour
1012 1013 1014 1015 1016
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1017 1018 1019
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1043 1044 1045
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1046 1047 1048 1049 1050 1051 1052 1053
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1054 1055 1056 1057 1058
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1059
 */
1060 1061
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1062
		unsigned int gup_flags, struct page **pages,
1063
		struct vm_area_struct **vmas, int *locked)
1064
{
1065
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1066
				       locked,
1067
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1068 1069 1070 1071
}
EXPORT_SYMBOL(get_user_pages_remote);

/*
1072 1073
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
1074 1075 1076
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
1077
 */
1078
long get_user_pages(unsigned long start, unsigned long nr_pages,
1079
		unsigned int gup_flags, struct page **pages,
1080 1081
		struct vm_area_struct **vmas)
{
1082
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1083
				       pages, vmas, NULL,
1084
				       gup_flags | FOLL_TOUCH);
1085
}
1086
EXPORT_SYMBOL(get_user_pages);
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
#ifdef CONFIG_FS_DAX
/*
 * This is the same as get_user_pages() in that it assumes we are
 * operating on the current task's mm, but it goes further to validate
 * that the vmas associated with the address range are suitable for
 * longterm elevated page reference counts. For example, filesystem-dax
 * mappings are subject to the lifetime enforced by the filesystem and
 * we need guarantees that longterm users like RDMA and V4L2 only
 * establish mappings that have a kernel enforced revocation mechanism.
 *
 * "longterm" == userspace controlled elevated page count lifetime.
 * Contrast this to iov_iter_get_pages() usages which are transient.
 */
long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas_arg)
{
	struct vm_area_struct **vmas = vmas_arg;
	struct vm_area_struct *vma_prev = NULL;
	long rc, i;

	if (!pages)
		return -EINVAL;

	if (!vmas) {
		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
			       GFP_KERNEL);
		if (!vmas)
			return -ENOMEM;
	}

	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);

	for (i = 0; i < rc; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			break;
	}

	/*
	 * Either get_user_pages() failed, or the vma validation
	 * succeeded, in either case we don't need to put_page() before
	 * returning.
	 */
	if (i >= rc)
		goto out;

	for (i = 0; i < rc; i++)
		put_page(pages[i]);
	rc = -EOPNOTSUPP;
out:
	if (vmas != vmas_arg)
		kfree(vmas);
	return rc;
}
EXPORT_SYMBOL(get_user_pages_longterm);
#endif /* CONFIG_FS_DAX */

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

E
Eric B Munson 已提交
1184 1185 1186
	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(len != PAGE_ALIGN(len));
	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

1272 1273 1274 1275 1276
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
1277
 * to be freed afterwards by put_page().
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1300 1301

/*
1302
 * Generic Fast GUP
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1323 1324
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1325 1326 1327 1328 1329 1330 1331 1332 1333
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1334
#ifdef CONFIG_HAVE_GENERIC_GUP
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#ifndef gup_get_pte
/*
 * We assume that the PTE can be read atomically. If this is not the case for
 * your architecture, please provide the helper.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
#endif

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1357
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1358 1359 1360
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
1361 1362
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1363 1364 1365 1366
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1367
		pte_t pte = gup_get_pte(ptep);
1368
		struct page *head, *page;
1369 1370 1371

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1372
		 * path using the pte_protnone check.
1373
		 */
1374 1375 1376 1377 1378 1379
		if (pte_protnone(pte))
			goto pte_unmap;

		if (!pte_access_permitted(pte, write))
			goto pte_unmap;

1380 1381 1382 1383 1384 1385 1386
		if (pte_devmap(pte)) {
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1387 1388 1389 1390
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);
1391
		head = compound_head(page);
1392

1393
		if (!page_cache_get_speculative(head))
1394 1395 1396
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1397
			put_page(head);
1398 1399 1400
			goto pte_unmap;
		}

1401
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1402 1403

		SetPageReferenced(page);
1404 1405 1406 1407 1408 1409 1410 1411
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1412 1413
	if (pgmap)
		put_dev_pagemap(pgmap);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
	return 0;
}
1433
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1434

1435
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1456 1457 1458

	if (pgmap)
		put_dev_pagemap(pgmap);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	return 1;
}

static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;

	fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
}

static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;

	fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
}
#else
static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1495 1496 1497
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
1498
	struct page *head, *page;
1499 1500
	int refs;

1501
	if (!pmd_access_permitted(orig, write))
1502 1503
		return 0;

1504 1505 1506
	if (pmd_devmap(orig))
		return __gup_device_huge_pmd(orig, addr, end, pages, nr);

1507
	refs = 0;
1508
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1509 1510 1511 1512 1513 1514 1515
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1516
	head = compound_head(pmd_page(orig));
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1529
	SetPageReferenced(head);
1530 1531 1532 1533 1534 1535
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
1536
	struct page *head, *page;
1537 1538
	int refs;

1539
	if (!pud_access_permitted(orig, write))
1540 1541
		return 0;

1542 1543 1544
	if (pud_devmap(orig))
		return __gup_device_huge_pud(orig, addr, end, pages, nr);

1545
	refs = 0;
1546
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1547 1548 1549 1550 1551 1552 1553
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1554
	head = compound_head(pud_page(orig));
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1567
	SetPageReferenced(head);
1568 1569 1570
	return 1;
}

1571 1572 1573 1574 1575
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
			unsigned long end, int write,
			struct page **pages, int *nr)
{
	int refs;
1576
	struct page *head, *page;
1577

1578
	if (!pgd_access_permitted(orig, write))
1579 1580
		return 0;

1581
	BUILD_BUG_ON(pgd_devmap(orig));
1582
	refs = 0;
1583
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1584 1585 1586 1587 1588 1589 1590
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1591
	head = compound_head(pgd_page(orig));
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1604
	SetPageReferenced(head);
1605 1606 1607
	return 1;
}

1608 1609 1610 1611 1612 1613 1614 1615
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
1616
		pmd_t pmd = READ_ONCE(*pmdp);
1617 1618

		next = pmd_addr_end(addr, end);
1619
		if (!pmd_present(pmd))
1620 1621 1622 1623 1624 1625 1626 1627
			return 0;

		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
1628
			if (pmd_protnone(pmd))
1629 1630 1631 1632 1633 1634
				return 0;

			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
				pages, nr))
				return 0;

1635 1636 1637 1638 1639 1640 1641 1642
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
					 PMD_SHIFT, next, write, pages, nr))
				return 0;
1643
		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1644
			return 0;
1645 1646 1647 1648 1649
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

1650
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1651
			 int write, struct page **pages, int *nr)
1652 1653 1654 1655
{
	unsigned long next;
	pud_t *pudp;

1656
	pudp = pud_offset(&p4d, addr);
1657
	do {
1658
		pud_t pud = READ_ONCE(*pudp);
1659 1660 1661 1662

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
1663
		if (unlikely(pud_huge(pud))) {
1664
			if (!gup_huge_pud(pud, pudp, addr, next, write,
1665 1666 1667 1668 1669
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
					 PUD_SHIFT, next, write, pages, nr))
1670 1671 1672 1673 1674 1675 1676 1677
				return 0;
		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
			 int write, struct page **pages, int *nr)
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
					 P4D_SHIFT, next, write, pages, nr))
				return 0;
1696
		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1697 1698 1699 1700 1701 1702
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
static void gup_pgd_range(unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
					 PGDIR_SHIFT, next, write, pages, nr))
				return;
		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
			return;
	} while (pgdp++, addr = next, addr != end);
}

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
{
	unsigned long len, end;

	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
	return end >= start;
}
#endif

1744 1745
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1746 1747 1748
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
1749 1750 1751 1752 1753
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
	unsigned long addr, len, end;
1754
	unsigned long flags;
1755 1756 1757 1758 1759 1760 1761 1762
	int nr = 0;

	start &= PAGE_MASK;
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1763
					(void __user *)start, len)))
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
	 * for more details.
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

1778 1779 1780 1781 1782
	if (gup_fast_permitted(start, nr_pages, write)) {
		local_irq_save(flags);
		gup_pgd_range(addr, end, write, pages, &nr);
		local_irq_restore(flags);
	}
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	return nr;
}

/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages)
{
1806
	unsigned long addr, len, end;
1807
	int nr = 0, ret = 0;
1808 1809

	start &= PAGE_MASK;
1810 1811 1812 1813
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

1814 1815 1816
	if (nr_pages <= 0)
		return 0;

1817 1818
	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
					(void __user *)start, len)))
1819
		return -EFAULT;
1820 1821

	if (gup_fast_permitted(start, nr_pages, write)) {
1822 1823 1824
		local_irq_disable();
		gup_pgd_range(addr, end, write, pages, &nr);
		local_irq_enable();
1825 1826
		ret = nr;
	}
1827 1828 1829 1830 1831 1832

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

1833 1834
		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
				write ? FOLL_WRITE : 0);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}

1848
#endif /* CONFIG_HAVE_GENERIC_GUP */