mmu.c 156.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

P
Paolo Bonzini 已提交
55 56 57
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
58 59 60 61
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
62
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63
#endif
P
Paolo Bonzini 已提交
64 65

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
67

68
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
69 70 71 72
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

73
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 75 76 77
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
78 79
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 81 82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
83

84 85 86
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

87 88 89 90 91 92 93
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
94
bool tdp_enabled = false;
95

96
static int max_huge_page_level __read_mostly;
97
static int max_tdp_level __read_mostly;
98

99 100 101 102
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
103 104 105
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
106
};
107 108

#ifdef MMU_DEBUG
109
bool dbg = 0;
110
module_param(dbg, bool, 0644);
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
115 116 117
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
118
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
119

120 121 122
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123 124 125 126 127 128 129 130

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#include <trace/events/kvm.h>

137 138 139
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

140
/*
141 142
 * Return values of handle_mmio_page_fault, mmu.page_fault, and fast_page_fault().
 *
143 144 145
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
146 147
 * RET_PF_FIXED: The faulting entry has been fixed.
 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
148 149 150
 */
enum {
	RET_PF_RETRY = 0,
151 152 153 154
	RET_PF_EMULATE,
	RET_PF_INVALID,
	RET_PF_FIXED,
	RET_PF_SPURIOUS,
155 156
};

157 158 159
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
160 161
};

162 163 164 165
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
166
	int level;
167 168 169
	unsigned index;
};

170 171 172 173 174 175 176
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
177 178 179 180
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

181 182 183 184 185 186
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

187
static struct kmem_cache *pte_list_desc_cache;
188
struct kmem_cache *mmu_page_header_cache;
189
static struct percpu_counter kvm_total_used_mmu_pages;
190

191
static void mmu_spte_set(u64 *sptep, u64 spte);
192 193
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
194

195 196 197
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

198 199 200

static inline bool kvm_available_flush_tlb_with_range(void)
{
201
	return kvm_x86_ops.tlb_remote_flush_with_range;
202 203 204 205 206 207 208
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

209 210
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
211 212 213 214 215

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

216
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
217 218 219 220 221 222 223 224 225 226
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

227
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
228 229 230 231
{
	return READ_ONCE(nx_huge_pages);
}

232 233 234 235 236 237 238 239
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
246
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
247 248 249 250 251

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
252 253 254 255
}

static unsigned get_mmio_spte_access(u64 spte)
{
256
	return spte & shadow_mmio_access_mask;
257 258
}

259
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
260
			  kvm_pfn_t pfn, unsigned int access)
261 262
{
	if (unlikely(is_noslot_pfn(pfn))) {
263
		mark_mmio_spte(vcpu, sptep, gfn, access);
264 265 266 267 268
		return true;
	}

	return false;
}
269

270
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
271
{
272
	u64 kvm_gen, spte_gen, gen;
273

274 275 276
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
277

278
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
279 280 281 282
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
283 284
}

285 286 287
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
288
	/* Check if guest physical address doesn't exceed guest maximum */
289
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
290 291 292 293
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

294 295 296
        return gpa;
}

A
Avi Kivity 已提交
297 298 299 300 301
static int is_cpuid_PSE36(void)
{
	return 1;
}

302 303
static int is_nx(struct kvm_vcpu *vcpu)
{
304
	return vcpu->arch.efer & EFER_NX;
305 306
}

307 308 309 310 311 312 313
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

314
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
315
static void __set_spte(u64 *sptep, u64 spte)
316
{
317
	WRITE_ONCE(*sptep, spte);
318 319
}

320
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
321
{
322
	WRITE_ONCE(*sptep, spte);
323 324 325 326 327 328
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
329 330 331

static u64 __get_spte_lockless(u64 *sptep)
{
332
	return READ_ONCE(*sptep);
333
}
334
#else
335 336 337 338 339 340 341
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
342

343 344
static void count_spte_clear(u64 *sptep, u64 spte)
{
345
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
346 347 348 349 350 351 352 353 354

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

355 356 357
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
358

359 360 361 362 363 364 365 366 367 368 369 370
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

371
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
372 373
}

374 375 376 377 378 379 380
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

381
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
382 383 384 385 386 387 388 389

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
390
	count_spte_clear(sptep, spte);
391 392 393 394 395 396 397 398 399 400 401
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
402 403
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
404
	count_spte_clear(sptep, spte);
405 406 407

	return orig.spte;
}
408 409 410

/*
 * The idea using the light way get the spte on x86_32 guest is from
411
 * gup_get_pte (mm/gup.c).
412 413 414 415 416 417 418 419 420 421 422 423 424 425
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
426 427 428
 */
static u64 __get_spte_lockless(u64 *sptep)
{
429
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
449 450
#endif

451 452
static bool spte_has_volatile_bits(u64 spte)
{
453 454 455
	if (!is_shadow_present_pte(spte))
		return false;

456
	/*
457
	 * Always atomically update spte if it can be updated
458 459 460 461
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
462 463
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
464 465
		return true;

466
	if (spte_ad_enabled(spte)) {
467 468 469 470
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
471

472
	return false;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

487 488 489
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
490
 */
491
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
492
{
493
	u64 old_spte = *sptep;
494

495
	WARN_ON(!is_shadow_present_pte(new_spte));
496

497 498
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
499
		return old_spte;
500
	}
501

502
	if (!spte_has_volatile_bits(old_spte))
503
		__update_clear_spte_fast(sptep, new_spte);
504
	else
505
		old_spte = __update_clear_spte_slow(sptep, new_spte);
506

507 508
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

531 532
	/*
	 * For the spte updated out of mmu-lock is safe, since
533
	 * we always atomically update it, see the comments in
534 535
	 * spte_has_volatile_bits().
	 */
536
	if (spte_can_locklessly_be_made_writable(old_spte) &&
537
	      !is_writable_pte(new_spte))
538
		flush = true;
539

540
	/*
541
	 * Flush TLB when accessed/dirty states are changed in the page tables,
542 543 544
	 * to guarantee consistency between TLB and page tables.
	 */

545 546
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
547
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
548 549 550 551
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
552
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
553
	}
554

555
	return flush;
556 557
}

558 559 560 561
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
562
 * Returns non-zero if the PTE was previously valid.
563 564 565
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
566
	kvm_pfn_t pfn;
567 568 569
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
570
		__update_clear_spte_fast(sptep, 0ull);
571
	else
572
		old_spte = __update_clear_spte_slow(sptep, 0ull);
573

574
	if (!is_shadow_present_pte(old_spte))
575 576 577
		return 0;

	pfn = spte_to_pfn(old_spte);
578 579 580 581 582 583

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
584
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
585

586
	if (is_accessed_spte(old_spte))
587
		kvm_set_pfn_accessed(pfn);
588 589

	if (is_dirty_spte(old_spte))
590
		kvm_set_pfn_dirty(pfn);
591

592 593 594 595 596 597 598 599 600 601
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
602
	__update_clear_spte_fast(sptep, 0ull);
603 604
}

605 606 607 608 609
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

610 611 612 613 614 615 616
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

617
	WARN_ON_ONCE(spte_ad_enabled(spte));
618 619 620 621 622 623 624 625 626 627
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

628 629 630 631 632 633 634 635
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

636
	if (spte_ad_enabled(spte)) {
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

654 655
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
656 657 658 659 660
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
661

662 663 664 665
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
666
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
667 668 669 670
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
671 672
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
673
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
674 675
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
676
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
677
	local_irq_enable();
678 679
}

680
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
681
{
682 683
	int r;

684
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
685 686
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
687
	if (r)
688
		return r;
689 690
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
691
	if (r)
692
		return r;
693
	if (maybe_indirect) {
694 695
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
696 697 698
		if (r)
			return r;
	}
699 700
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
701 702 703 704
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
705 706 707 708
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
709 710
}

711
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
712
{
713
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714 715
}

716
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
717
{
718
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
719 720
}

721 722 723 724 725 726 727 728 729 730
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
731
	if (!sp->role.direct) {
732
		sp->gfns[index] = gfn;
733 734 735 736 737 738 739 740
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
741 742
}

M
Marcelo Tosatti 已提交
743
/*
744 745
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
746
 */
747 748 749
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
750 751 752
{
	unsigned long idx;

753
	idx = gfn_to_index(gfn, slot->base_gfn, level);
754
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
755 756
}

757 758 759 760 761 762
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

763
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

780
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
781
{
782
	struct kvm_memslots *slots;
783
	struct kvm_memory_slot *slot;
784
	gfn_t gfn;
M
Marcelo Tosatti 已提交
785

786
	kvm->arch.indirect_shadow_pages++;
787
	gfn = sp->gfn;
788 789
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
790 791

	/* the non-leaf shadow pages are keeping readonly. */
792
	if (sp->role.level > PG_LEVEL_4K)
793 794 795
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

796
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
797 798
}

P
Paolo Bonzini 已提交
799 800 801 802 803 804
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
805 806
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
807 808 809
	sp->lpage_disallowed = true;
}

810
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
811
{
812
	struct kvm_memslots *slots;
813
	struct kvm_memory_slot *slot;
814
	gfn_t gfn;
M
Marcelo Tosatti 已提交
815

816
	kvm->arch.indirect_shadow_pages--;
817
	gfn = sp->gfn;
818 819
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
820
	if (sp->role.level > PG_LEVEL_4K)
821 822 823
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

824
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
825 826
}

P
Paolo Bonzini 已提交
827 828 829 830
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
831
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
832 833
}

834 835 836
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
837 838
{
	struct kvm_memory_slot *slot;
839

840
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
841 842 843 844
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
845 846 847 848

	return slot;
}

849
/*
850
 * About rmap_head encoding:
851
 *
852 853
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
854
 * pte_list_desc containing more mappings.
855 856 857 858
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
859
 */
860
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
861
			struct kvm_rmap_head *rmap_head)
862
{
863
	struct pte_list_desc *desc;
864
	int i, count = 0;
865

866
	if (!rmap_head->val) {
867
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
868 869
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
870 871
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
872
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
873
		desc->sptes[1] = spte;
874
		rmap_head->val = (unsigned long)desc | 1;
875
		++count;
876
	} else {
877
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
878
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
879
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
880
			desc = desc->more;
881
			count += PTE_LIST_EXT;
882
		}
883 884
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
885 886
			desc = desc->more;
		}
A
Avi Kivity 已提交
887
		for (i = 0; desc->sptes[i]; ++i)
888
			++count;
A
Avi Kivity 已提交
889
		desc->sptes[i] = spte;
890
	}
891
	return count;
892 893
}

894
static void
895 896 897
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
898 899 900
{
	int j;

901
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
902
		;
A
Avi Kivity 已提交
903 904
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
905 906 907
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
908
		rmap_head->val = 0;
909 910 911 912
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
913
			rmap_head->val = (unsigned long)desc->more | 1;
914
	mmu_free_pte_list_desc(desc);
915 916
}

917
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
918
{
919 920
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
921 922
	int i;

923
	if (!rmap_head->val) {
924
		pr_err("%s: %p 0->BUG\n", __func__, spte);
925
		BUG();
926
	} else if (!(rmap_head->val & 1)) {
927
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
928
		if ((u64 *)rmap_head->val != spte) {
929
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
930 931
			BUG();
		}
932
		rmap_head->val = 0;
933
	} else {
934
		rmap_printk("%s:  %p many->many\n", __func__, spte);
935
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
936 937
		prev_desc = NULL;
		while (desc) {
938
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
939
				if (desc->sptes[i] == spte) {
940 941
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
942 943
					return;
				}
944
			}
945 946 947
			prev_desc = desc;
			desc = desc->more;
		}
948
		pr_err("%s: %p many->many\n", __func__, spte);
949 950 951 952
		BUG();
	}
}

953 954 955 956 957 958
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

959 960
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
961
{
962
	unsigned long idx;
963

964
	idx = gfn_to_index(gfn, slot->base_gfn, level);
965
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
966 967
}

968 969
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
970
{
971
	struct kvm_memslots *slots;
972 973
	struct kvm_memory_slot *slot;

974 975
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
976
	return __gfn_to_rmap(gfn, sp->role.level, slot);
977 978
}

979 980
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
981
	struct kvm_mmu_memory_cache *mc;
982

983
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
984
	return kvm_mmu_memory_cache_nr_free_objects(mc);
985 986
}

987 988 989
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
990
	struct kvm_rmap_head *rmap_head;
991

992
	sp = sptep_to_sp(spte);
993
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
994 995
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
996 997 998 999 1000 1001
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1002
	struct kvm_rmap_head *rmap_head;
1003

1004
	sp = sptep_to_sp(spte);
1005
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1006
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1007
	__pte_list_remove(spte, rmap_head);
1008 1009
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1023
 * information in the iterator may not be valid.
1024 1025 1026
 *
 * Returns sptep if found, NULL otherwise.
 */
1027 1028
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1029
{
1030 1031
	u64 *sptep;

1032
	if (!rmap_head->val)
1033 1034
		return NULL;

1035
	if (!(rmap_head->val & 1)) {
1036
		iter->desc = NULL;
1037 1038
		sptep = (u64 *)rmap_head->val;
		goto out;
1039 1040
	}

1041
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1042
	iter->pos = 0;
1043 1044 1045 1046
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1047 1048 1049 1050 1051 1052 1053 1054 1055
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1056 1057
	u64 *sptep;

1058 1059 1060 1061 1062
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1063
				goto out;
1064 1065 1066 1067 1068 1069 1070
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1071 1072
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1073 1074 1075 1076
		}
	}

	return NULL;
1077 1078 1079
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1080 1081
}

1082 1083
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1084
	     _spte_; _spte_ = rmap_get_next(_iter_))
1085

1086
static void drop_spte(struct kvm *kvm, u64 *sptep)
1087
{
1088
	if (mmu_spte_clear_track_bits(sptep))
1089
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1090 1091
}

1092 1093 1094 1095

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1096
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1107
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1108
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1109 1110 1111 1112

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1113 1114 1115
}

/*
1116
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1117
 * spte write-protection is caused by protecting shadow page table.
1118
 *
T
Tiejun Chen 已提交
1119
 * Note: write protection is difference between dirty logging and spte
1120 1121 1122 1123 1124
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1125
 *
1126
 * Return true if tlb need be flushed.
1127
 */
1128
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1129 1130 1131
{
	u64 spte = *sptep;

1132
	if (!is_writable_pte(spte) &&
1133
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1134 1135 1136 1137
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1138 1139
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1140
	spte = spte & ~PT_WRITABLE_MASK;
1141

1142
	return mmu_spte_update(sptep, spte);
1143 1144
}

1145 1146
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1147
				 bool pt_protect)
1148
{
1149 1150
	u64 *sptep;
	struct rmap_iterator iter;
1151
	bool flush = false;
1152

1153
	for_each_rmap_spte(rmap_head, &iter, sptep)
1154
		flush |= spte_write_protect(sptep, pt_protect);
1155

1156
	return flush;
1157 1158
}

1159
static bool spte_clear_dirty(u64 *sptep)
1160 1161 1162 1163 1164
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1165
	MMU_WARN_ON(!spte_ad_enabled(spte));
1166 1167 1168 1169
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1170
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1171 1172 1173
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1174
	if (was_writable && !spte_ad_enabled(*sptep))
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1186
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1187 1188 1189 1190 1191
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1192
	for_each_rmap_spte(rmap_head, &iter, sptep)
1193 1194
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1195
		else
1196
			flush |= spte_clear_dirty(sptep);
1197 1198 1199 1200

	return flush;
}

1201
static bool spte_set_dirty(u64 *sptep)
1202 1203 1204 1205 1206
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1207
	/*
1208
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1209 1210 1211
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1212 1213 1214 1215 1216
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1217
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1218 1219 1220 1221 1222
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1223
	for_each_rmap_spte(rmap_head, &iter, sptep)
1224 1225
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1226 1227 1228 1229

	return flush;
}

1230
/**
1231
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1232 1233 1234 1235 1236 1237 1238 1239
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1240
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1241 1242
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1243
{
1244
	struct kvm_rmap_head *rmap_head;
1245

1246
	while (mask) {
1247
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1248
					  PG_LEVEL_4K, slot);
1249
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1250

1251 1252 1253
		/* clear the first set bit */
		mask &= mask - 1;
	}
1254 1255
}

1256
/**
1257 1258
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1270
	struct kvm_rmap_head *rmap_head;
1271 1272

	while (mask) {
1273
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1274
					  PG_LEVEL_4K, slot);
1275
		__rmap_clear_dirty(kvm, rmap_head);
1276 1277 1278 1279 1280 1281 1282

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1297 1298
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1299 1300 1301
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1302 1303
}

1304 1305
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1306
{
1307
	struct kvm_rmap_head *rmap_head;
1308
	int i;
1309
	bool write_protected = false;
1310

1311
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1312
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1313
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1314 1315 1316
	}

	return write_protected;
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1327
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1328
{
1329 1330
	u64 *sptep;
	struct rmap_iterator iter;
1331
	bool flush = false;
1332

1333
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1334
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1335

1336
		pte_list_remove(rmap_head, sptep);
1337
		flush = true;
1338
	}
1339

1340 1341 1342
	return flush;
}

1343
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1344 1345 1346
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1347
	return kvm_zap_rmapp(kvm, rmap_head);
1348 1349
}

1350
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1351 1352
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1353
{
1354 1355
	u64 *sptep;
	struct rmap_iterator iter;
1356
	int need_flush = 0;
1357
	u64 new_spte;
1358
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1359
	kvm_pfn_t new_pfn;
1360 1361 1362

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1363

1364
restart:
1365
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1366
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1367
			    sptep, *sptep, gfn, level);
1368

1369
		need_flush = 1;
1370

1371
		if (pte_write(*ptep)) {
1372
			pte_list_remove(rmap_head, sptep);
1373
			goto restart;
1374
		} else {
1375 1376
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1377 1378 1379

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1380 1381
		}
	}
1382

1383 1384 1385 1386 1387
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1388
	return need_flush;
1389 1390
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1401
	struct kvm_rmap_head *rmap;
1402 1403 1404
	int level;

	/* private field. */
1405
	struct kvm_rmap_head *end_rmap;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1459 1460 1461 1462 1463
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1464
					       struct kvm_rmap_head *rmap_head,
1465
					       struct kvm_memory_slot *slot,
1466 1467
					       gfn_t gfn,
					       int level,
1468
					       unsigned long data))
1469
{
1470
	struct kvm_memslots *slots;
1471
	struct kvm_memory_slot *memslot;
1472 1473
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1474
	int i;
1475

1476 1477 1478 1479 1480
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1494
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1495
						 KVM_MAX_HUGEPAGE_LEVEL,
1496 1497 1498 1499 1500
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1501 1502
	}

1503
	return ret;
1504 1505
}

1506 1507
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1508 1509
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1510
					 struct kvm_memory_slot *slot,
1511
					 gfn_t gfn, int level,
1512 1513 1514
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1515 1516
}

1517 1518
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1519 1520 1521 1522
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1523
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1524
{
1525
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1526 1527
}

1528
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1529 1530
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1531
{
1532
	u64 *sptep;
1533
	struct rmap_iterator iter;
1534 1535
	int young = 0;

1536 1537
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1538

1539
	trace_kvm_age_page(gfn, level, slot, young);
1540 1541 1542
	return young;
}

1543
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1544 1545
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1546
{
1547 1548
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1549

1550 1551 1552 1553
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1554 1555
}

1556 1557
#define RMAP_RECYCLE_THRESHOLD 1000

1558
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1559
{
1560
	struct kvm_rmap_head *rmap_head;
1561 1562
	struct kvm_mmu_page *sp;

1563
	sp = sptep_to_sp(spte);
1564

1565
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1566

1567
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1568 1569
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1570 1571
}

A
Andres Lagar-Cavilla 已提交
1572
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1573
{
A
Andres Lagar-Cavilla 已提交
1574
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1575 1576
}

A
Andrea Arcangeli 已提交
1577 1578 1579 1580 1581
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1582
#ifdef MMU_DEBUG
1583
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1584
{
1585 1586 1587
	u64 *pos;
	u64 *end;

1588
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1589
		if (is_shadow_present_pte(*pos)) {
1590
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1591
			       pos, *pos);
A
Avi Kivity 已提交
1592
			return 0;
1593
		}
A
Avi Kivity 已提交
1594 1595
	return 1;
}
1596
#endif
A
Avi Kivity 已提交
1597

1598 1599 1600 1601 1602 1603
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1604
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1605 1606 1607 1608 1609
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1610
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1611
{
1612
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1613
	hlist_del(&sp->hash_link);
1614 1615
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1616 1617
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1618
	kmem_cache_free(mmu_page_header_cache, sp);
1619 1620
}

1621 1622
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1623
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1624 1625
}

1626
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1627
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1628 1629 1630 1631
{
	if (!parent_pte)
		return;

1632
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1633 1634
}

1635
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1636 1637
				       u64 *parent_pte)
{
1638
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1639 1640
}

1641 1642 1643 1644
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1645
	mmu_spte_clear_no_track(parent_pte);
1646 1647
}

1648
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1649
{
1650
	struct kvm_mmu_page *sp;
1651

1652 1653
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1654
	if (!direct)
1655
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1656
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1657 1658 1659 1660 1661 1662

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1663
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1664 1665 1666
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1667 1668
}

1669
static void mark_unsync(u64 *spte);
1670
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1671
{
1672 1673 1674 1675 1676 1677
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1678 1679
}

1680
static void mark_unsync(u64 *spte)
1681
{
1682
	struct kvm_mmu_page *sp;
1683
	unsigned int index;
1684

1685
	sp = sptep_to_sp(spte);
1686 1687
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1688
		return;
1689
	if (sp->unsync_children++)
1690
		return;
1691
	kvm_mmu_mark_parents_unsync(sp);
1692 1693
}

1694
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1695
			       struct kvm_mmu_page *sp)
1696
{
1697
	return 0;
1698 1699
}

1700 1701
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1702
				 const void *pte)
1703 1704 1705 1706
{
	WARN_ON(1);
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1717 1718
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1719
{
1720
	int i;
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1733 1734 1735 1736 1737 1738 1739
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1740 1741 1742 1743
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1744

1745
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1746
		struct kvm_mmu_page *child;
1747 1748
		u64 ent = sp->spt[i];

1749 1750 1751 1752
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1753

1754
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1755 1756 1757 1758 1759 1760

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1761 1762 1763 1764
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1765
				nr_unsync_leaf += ret;
1766
			} else
1767 1768 1769 1770 1771 1772
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1773
			clear_unsync_child_bit(sp, i);
1774 1775
	}

1776 1777 1778
	return nr_unsync_leaf;
}

1779 1780
#define INVALID_INDEX (-1)

1781 1782 1783
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1784
	pvec->nr = 0;
1785 1786 1787
	if (!sp->unsync_children)
		return 0;

1788
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1789
	return __mmu_unsync_walk(sp, pvec);
1790 1791 1792 1793 1794
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1795
	trace_kvm_mmu_sync_page(sp);
1796 1797 1798 1799
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1800 1801
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1802 1803
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1804

1805 1806
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1807
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1808
		} else
1809 1810

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1811 1812
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1813
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1814

1815 1816 1817 1818 1819
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1820
/* @sp->gfn should be write-protected at the call site */
1821 1822
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1823
{
1824 1825
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1826
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1827
		return false;
1828 1829
	}

1830
	return true;
1831 1832
}

1833 1834 1835 1836
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1837
	if (!remote_flush && list_empty(invalid_list))
1838 1839 1840 1841 1842 1843 1844 1845 1846
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1847 1848 1849
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1850
{
1851
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1852
		return;
1853

1854
	if (local_flush)
1855
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1856 1857
}

1858 1859 1860 1861 1862 1863 1864
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1865 1866
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1867 1868
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1869 1870
}

1871
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1872
			 struct list_head *invalid_list)
1873
{
1874 1875
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1876 1877
}

1878
/* @gfn should be write-protected at the call site */
1879 1880
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1881 1882
{
	struct kvm_mmu_page *s;
1883
	bool ret = false;
1884

1885
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1886
		if (!s->unsync)
1887 1888
			continue;

1889
		WARN_ON(s->role.level != PG_LEVEL_4K);
1890
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1891 1892
	}

1893
	return ret;
1894 1895
}

1896
struct mmu_page_path {
1897 1898
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1899 1900
};

1901
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1902
		for (i = mmu_pages_first(&pvec, &parents);	\
1903 1904 1905
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1906 1907 1908
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1909 1910 1911 1912 1913
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1914 1915
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1916

P
Paolo Bonzini 已提交
1917
		parents->idx[level-1] = idx;
1918
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1919
			break;
1920

P
Paolo Bonzini 已提交
1921
		parents->parent[level-2] = sp;
1922 1923 1924 1925 1926
	}

	return n;
}

P
Paolo Bonzini 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1936 1937
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1938 1939
	sp = pvec->page[0].sp;
	level = sp->role.level;
1940
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1951
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1952
{
1953 1954 1955 1956 1957 1958 1959 1960 1961
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1962
		WARN_ON(idx == INVALID_INDEX);
1963
		clear_unsync_child_bit(sp, idx);
1964
		level++;
P
Paolo Bonzini 已提交
1965
	} while (!sp->unsync_children);
1966
}
1967

1968 1969 1970 1971 1972 1973 1974
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1975
	LIST_HEAD(invalid_list);
1976
	bool flush = false;
1977 1978

	while (mmu_unsync_walk(parent, &pages)) {
1979
		bool protected = false;
1980 1981

		for_each_sp(pages, sp, parents, i)
1982
			protected |= rmap_write_protect(vcpu, sp->gfn);
1983

1984
		if (protected) {
1985
			kvm_flush_remote_tlbs(vcpu->kvm);
1986 1987
			flush = false;
		}
1988

1989
		for_each_sp(pages, sp, parents, i) {
1990
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1991 1992
			mmu_pages_clear_parents(&parents);
		}
1993 1994 1995 1996 1997
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
1998
	}
1999 2000

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2001 2002
}

2003 2004
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2005
	atomic_set(&sp->write_flooding_count,  0);
2006 2007 2008 2009
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2010
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2011 2012
}

2013 2014 2015 2016
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2017
					     int direct,
2018
					     unsigned int access)
2019
{
2020
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2021
	union kvm_mmu_page_role role;
2022
	struct hlist_head *sp_list;
2023
	unsigned quadrant;
2024 2025
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2026
	bool flush = false;
2027
	int collisions = 0;
2028
	LIST_HEAD(invalid_list);
2029

2030
	role = vcpu->arch.mmu->mmu_role.base;
2031
	role.level = level;
2032
	role.direct = direct;
2033
	if (role.direct)
2034
		role.gpte_is_8_bytes = true;
2035
	role.access = access;
2036
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2037 2038 2039 2040
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2041 2042 2043

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2044 2045 2046 2047 2048
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2049 2050
		if (!need_sync && sp->unsync)
			need_sync = true;
2051

2052 2053
		if (sp->role.word != role.word)
			continue;
2054

2055 2056 2057
		if (direct_mmu)
			goto trace_get_page;

2058 2059 2060 2061 2062 2063 2064 2065
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2066
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2067
		}
2068

2069
		if (sp->unsync_children)
2070
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2071

2072
		__clear_sp_write_flooding_count(sp);
2073 2074

trace_get_page:
2075
		trace_kvm_mmu_get_page(sp, false);
2076
		goto out;
2077
	}
2078

A
Avi Kivity 已提交
2079
	++vcpu->kvm->stat.mmu_cache_miss;
2080 2081 2082

	sp = kvm_mmu_alloc_page(vcpu, direct);

2083 2084
	sp->gfn = gfn;
	sp->role = role;
2085
	hlist_add_head(&sp->hash_link, sp_list);
2086
	if (!direct) {
2087 2088 2089 2090 2091 2092
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2093
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2094
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2095

2096
		if (level > PG_LEVEL_4K && need_sync)
2097
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2098
	}
A
Avi Kivity 已提交
2099
	trace_kvm_mmu_get_page(sp, true);
2100 2101

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2102 2103 2104
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2105
	return sp;
2106 2107
}

2108 2109 2110
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2111 2112
{
	iterator->addr = addr;
2113
	iterator->shadow_addr = root;
2114
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2115

2116
	if (iterator->level == PT64_ROOT_4LEVEL &&
2117 2118
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2119 2120
		--iterator->level;

2121
	if (iterator->level == PT32E_ROOT_LEVEL) {
2122 2123 2124 2125
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2126
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2127

2128
		iterator->shadow_addr
2129
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2130 2131 2132 2133 2134 2135 2136
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2137 2138 2139
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2140
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2141 2142 2143
				    addr);
}

2144 2145
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2146
	if (iterator->level < PG_LEVEL_4K)
2147
		return false;
2148

2149 2150 2151 2152 2153
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2154 2155
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2156
{
2157
	if (is_last_spte(spte, iterator->level)) {
2158 2159 2160 2161
		iterator->level = 0;
		return;
	}

2162
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2163 2164 2165
	--iterator->level;
}

2166 2167
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2168
	__shadow_walk_next(iterator, *iterator->sptep);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2180
	mmu_spte_set(sptep, spte);
2181 2182 2183 2184 2185

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2186 2187
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2201
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2202 2203 2204
		if (child->role.access == direct_access)
			return;

2205
		drop_parent_pte(child, sptep);
2206
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2207 2208 2209
	}
}

2210 2211 2212
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2213 2214 2215 2216 2217 2218
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2219
		if (is_last_spte(pte, sp->role.level)) {
2220
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2221 2222 2223
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2224
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2225
			drop_parent_pte(child, spte);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2236
		}
2237
	} else if (is_mmio_spte(pte)) {
2238
		mmu_spte_clear_no_track(spte);
2239
	}
2240
	return 0;
2241 2242
}

2243 2244 2245
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2246
{
2247
	int zapped = 0;
2248 2249
	unsigned i;

2250
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2251 2252 2253
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2254 2255
}

2256
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2257
{
2258 2259
	u64 *sptep;
	struct rmap_iterator iter;
2260

2261
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2262
		drop_parent_pte(sp, sptep);
2263 2264
}

2265
static int mmu_zap_unsync_children(struct kvm *kvm,
2266 2267
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2268
{
2269 2270 2271
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2272

2273
	if (parent->role.level == PG_LEVEL_4K)
2274
		return 0;
2275 2276 2277 2278 2279

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2280
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2281
			mmu_pages_clear_parents(&parents);
2282
			zapped++;
2283 2284 2285 2286
		}
	}

	return zapped;
2287 2288
}

2289 2290 2291 2292
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2293
{
2294
	bool list_unstable;
A
Avi Kivity 已提交
2295

2296
	trace_kvm_mmu_prepare_zap_page(sp);
2297
	++kvm->stat.mmu_shadow_zapped;
2298
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2299
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2300
	kvm_mmu_unlink_parents(kvm, sp);
2301

2302 2303 2304
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2305
	if (!sp->role.invalid && !sp->role.direct)
2306
		unaccount_shadowed(kvm, sp);
2307

2308 2309
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2310
	if (!sp->root_count) {
2311
		/* Count self */
2312
		(*nr_zapped)++;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2323
		kvm_mod_used_mmu_pages(kvm, -1);
2324
	} else {
2325 2326 2327 2328 2329
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2330

2331 2332 2333 2334 2335 2336
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2337
			kvm_reload_remote_mmus(kvm);
2338
	}
2339

P
Paolo Bonzini 已提交
2340 2341 2342
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2343
	sp->role.invalid = 1;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2354 2355
}

2356 2357 2358
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2359
	struct kvm_mmu_page *sp, *nsp;
2360 2361 2362 2363

	if (list_empty(invalid_list))
		return;

2364
	/*
2365 2366 2367 2368 2369 2370 2371
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2372 2373
	 */
	kvm_flush_remote_tlbs(kvm);
2374

2375
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2376
		WARN_ON(!sp->role.invalid || sp->root_count);
2377
		kvm_mmu_free_page(sp);
2378
	}
2379 2380
}

2381 2382
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2383
{
2384 2385
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2386
	LIST_HEAD(invalid_list);
2387 2388
	bool unstable;
	int nr_zapped;
2389 2390

	if (list_empty(&kvm->arch.active_mmu_pages))
2391 2392
		return 0;

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
restart:
	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2406 2407
			break;

2408 2409
		if (unstable)
			goto restart;
2410
	}
2411

2412 2413 2414 2415 2416 2417
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2418 2419 2420 2421 2422 2423 2424
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2425 2426
}

2427 2428
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2429
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2430

2431
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2432 2433
		return 0;

2434
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2435 2436 2437 2438 2439 2440

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2441 2442
/*
 * Changing the number of mmu pages allocated to the vm
2443
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2444
 */
2445
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2446
{
2447 2448
	spin_lock(&kvm->mmu_lock);

2449
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2450 2451
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2452

2453
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2454 2455
	}

2456
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2457 2458

	spin_unlock(&kvm->mmu_lock);
2459 2460
}

2461
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2462
{
2463
	struct kvm_mmu_page *sp;
2464
	LIST_HEAD(invalid_list);
2465 2466
	int r;

2467
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2468
	r = 0;
2469
	spin_lock(&kvm->mmu_lock);
2470
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2471
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2472 2473
			 sp->role.word);
		r = 1;
2474
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2475
	}
2476
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2477 2478
	spin_unlock(&kvm->mmu_lock);

2479
	return r;
2480
}
2481
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2482

2483
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2484 2485 2486 2487 2488 2489 2490 2491
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2492 2493
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2494
{
2495
	struct kvm_mmu_page *sp;
2496

2497 2498
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2499

2500
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2501
		if (!can_unsync)
2502
			return true;
2503

2504 2505
		if (sp->unsync)
			continue;
2506

2507
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2508
		kvm_unsync_page(vcpu, sp);
2509
	}
2510

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2550
	return false;
2551 2552
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
		return 0;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2573 2574 2575
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2576
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2577 2578 2579
	return ret;
}

2580
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2581
			unsigned int pte_access, bool write_fault, int level,
2582 2583
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2584 2585
{
	int was_rmapped = 0;
2586
	int rmap_count;
2587
	int set_spte_ret;
2588
	int ret = RET_PF_FIXED;
2589
	bool flush = false;
M
Marcelo Tosatti 已提交
2590

2591 2592
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2593

2594
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2595 2596 2597 2598
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2599
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2600
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2601
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2602

2603
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2604
			drop_parent_pte(child, sptep);
2605
			flush = true;
A
Avi Kivity 已提交
2606
		} else if (pfn != spte_to_pfn(*sptep)) {
2607
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2608
				 spte_to_pfn(*sptep), pfn);
2609
			drop_spte(vcpu->kvm, sptep);
2610
			flush = true;
2611 2612
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2613
	}
2614

2615 2616 2617
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2618
		if (write_fault)
2619
			ret = RET_PF_EMULATE;
2620
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2621
	}
2622

2623
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2624 2625
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2626

2627
	if (unlikely(is_mmio_spte(*sptep)))
2628
		ret = RET_PF_EMULATE;
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2639
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2640
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2641
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2642 2643
		++vcpu->kvm->stat.lpages;

2644 2645 2646 2647 2648 2649
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2650
	}
2651

2652
	return ret;
2653 2654
}

D
Dan Williams 已提交
2655
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2656 2657 2658 2659
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2660
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2661
	if (!slot)
2662
		return KVM_PFN_ERR_FAULT;
2663

2664
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2665 2666 2667 2668 2669 2670 2671
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2672
	struct kvm_memory_slot *slot;
2673
	unsigned int access = sp->role.access;
2674 2675 2676 2677
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2678 2679
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2680 2681
		return -1;

2682
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2683 2684 2685
	if (ret <= 0)
		return -1;

2686
	for (i = 0; i < ret; i++, gfn++, start++) {
2687
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2688
			     page_to_pfn(pages[i]), true, true);
2689 2690
		put_page(pages[i]);
	}
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2707
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2722
	sp = sptep_to_sp(sptep);
2723

2724
	/*
2725 2726 2727
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2728
	 */
2729
	if (sp_ad_disabled(sp))
2730 2731
		return;

2732
	if (sp->role.level > PG_LEVEL_4K)
2733 2734 2735 2736 2737
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2738
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2739
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2740 2741 2742 2743 2744
{
	unsigned long hva;
	pte_t *pte;
	int level;

2745
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2746
		return PG_LEVEL_4K;
2747

2748 2749 2750 2751 2752 2753 2754 2755
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2756 2757 2758 2759
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
2760
		return PG_LEVEL_4K;
2761 2762 2763 2764

	return level;
}

2765
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2766 2767
				   int max_level, kvm_pfn_t *pfnp,
				   bool huge_page_disallowed, int *req_level)
2768
{
2769
	struct kvm_memory_slot *slot;
2770
	struct kvm_lpage_info *linfo;
2771
	kvm_pfn_t pfn = *pfnp;
2772
	kvm_pfn_t mask;
2773
	int level;
2774

2775 2776
	*req_level = PG_LEVEL_4K;

2777 2778
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2779

2780
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2781
		return PG_LEVEL_4K;
2782

2783 2784
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2785
		return PG_LEVEL_4K;
2786

2787
	max_level = min(max_level, max_huge_page_level);
2788
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2789 2790
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
2791 2792 2793
			break;
	}

2794 2795
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
2796 2797

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2798
	if (level == PG_LEVEL_4K)
2799
		return level;
2800

2801 2802 2803 2804 2805 2806 2807 2808
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2809 2810

	/*
2811 2812
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2813
	 */
2814 2815 2816
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2817 2818

	return level;
2819 2820
}

P
Paolo Bonzini 已提交
2821 2822 2823 2824 2825 2826
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

2827
	if (it.level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

2843
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2844
			int map_writable, int max_level, kvm_pfn_t pfn,
2845
			bool prefault, bool is_tdp)
2846
{
2847 2848 2849 2850
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2851
	struct kvm_shadow_walk_iterator it;
2852
	struct kvm_mmu_page *sp;
2853
	int level, req_level, ret;
2854 2855
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2856

2857
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2858
		return RET_PF_RETRY;
2859

2860 2861
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2862

2863
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2864
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2865 2866 2867 2868
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2869 2870
		if (nx_huge_page_workaround_enabled)
			disallowed_hugepage_adjust(it, gfn, &pfn, &level);
P
Paolo Bonzini 已提交
2871

2872 2873
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2874
			break;
A
Avi Kivity 已提交
2875

2876 2877 2878 2879
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2880

2881
			link_shadow_page(vcpu, it.sptep, sp);
2882 2883
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2884
				account_huge_nx_page(vcpu->kvm, sp);
2885 2886
		}
	}
2887 2888 2889 2890

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2891 2892 2893
	if (ret == RET_PF_SPURIOUS)
		return ret;

2894 2895 2896
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2897 2898
}

H
Huang Ying 已提交
2899
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2900
{
2901
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2902 2903
}

D
Dan Williams 已提交
2904
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2905
{
X
Xiao Guangrong 已提交
2906 2907 2908 2909 2910 2911
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2912
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2913

2914
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2915
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2916
		return RET_PF_RETRY;
2917
	}
2918

2919
	return -EFAULT;
2920 2921
}

2922
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2923 2924
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2925 2926
{
	/* The pfn is invalid, report the error! */
2927
	if (unlikely(is_error_pfn(pfn))) {
2928
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2929
		return true;
2930 2931
	}

2932
	if (unlikely(is_noslot_pfn(pfn)))
2933 2934
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2935

2936
	return false;
2937 2938
}

2939
static bool page_fault_can_be_fast(u32 error_code)
2940
{
2941 2942 2943 2944 2945 2946 2947
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2948 2949 2950 2951 2952
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2953
	/*
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2965 2966
	 */

2967 2968 2969
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2970 2971
}

2972 2973 2974 2975
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2976
static bool
2977
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2978
			u64 *sptep, u64 old_spte, u64 new_spte)
2979 2980 2981 2982 2983
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2996
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2997 2998
		return false;

2999
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3000 3001 3002 3003 3004 3005 3006
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3007 3008 3009 3010

	return true;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3023
/*
3024
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3025
 */
3026 3027
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3028 3029
{
	struct kvm_shadow_walk_iterator iterator;
3030
	struct kvm_mmu_page *sp;
3031
	int ret = RET_PF_INVALID;
3032
	u64 spte = 0ull;
3033
	uint retry_count = 0;
3034

3035
	if (!page_fault_can_be_fast(error_code))
3036
		return ret;
3037 3038 3039

	walk_shadow_page_lockless_begin(vcpu);

3040
	do {
3041
		u64 new_spte;
3042

3043
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3044
			if (!is_shadow_present_pte(spte))
3045 3046
				break;

3047
		sp = sptep_to_sp(iterator.sptep);
3048 3049
		if (!is_last_spte(spte, sp->role.level))
			break;
3050

3051
		/*
3052 3053 3054 3055 3056
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3057 3058 3059 3060
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3061
		if (is_access_allowed(error_code, spte)) {
3062
			ret = RET_PF_SPURIOUS;
3063 3064
			break;
		}
3065

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3077
		    spte_can_locklessly_be_made_writable(spte)) {
3078
			new_spte |= PT_WRITABLE_MASK;
3079 3080

			/*
3081 3082 3083 3084 3085 3086 3087 3088 3089
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3090
			 */
3091
			if (sp->role.level > PG_LEVEL_4K)
3092
				break;
3093
		}
3094

3095
		/* Verify that the fault can be handled in the fast path */
3096 3097
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3098 3099 3100 3101 3102
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3103
		 * Documentation/virt/kvm/locking.rst to get more detail.
3104
		 */
3105 3106 3107
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3108
			break;
3109
		}
3110 3111 3112 3113 3114 3115 3116 3117

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3118

3119
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3120
			      spte, ret);
3121 3122
	walk_shadow_page_lockless_end(vcpu);

3123
	return ret;
3124 3125
}

3126 3127
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3128
{
3129
	struct kvm_mmu_page *sp;
3130

3131
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3132
		return;
3133

3134
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3135 3136 3137 3138 3139 3140 3141

	if (kvm_mmu_put_root(kvm, sp)) {
		if (sp->tdp_mmu_page)
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3142

3143 3144 3145
	*root_hpa = INVALID_PAGE;
}

3146
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3147 3148
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3149
{
3150
	struct kvm *kvm = vcpu->kvm;
3151 3152
	int i;
	LIST_HEAD(invalid_list);
3153
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3154

3155
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3156

3157
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3158 3159 3160 3161 3162 3163 3164 3165 3166
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3167

3168
	spin_lock(&kvm->mmu_lock);
3169

3170 3171
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3172
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3173
					   &invalid_list);
3174

3175 3176 3177
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3178
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3179 3180 3181
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3182
					mmu_free_root_page(kvm,
3183 3184 3185 3186
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3187
		mmu->root_pgd = 0;
3188
	}
3189

3190 3191
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
	spin_unlock(&kvm->mmu_lock);
3192
}
3193
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3194

3195 3196 3197 3198
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3199
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3200
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3201 3202 3203 3204 3205 3206
		ret = 1;
	}

	return ret;
}

3207 3208
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3209 3210
{
	struct kvm_mmu_page *sp;
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

	spin_lock(&vcpu->kvm->mmu_lock);

	if (make_mmu_pages_available(vcpu)) {
		spin_unlock(&vcpu->kvm->mmu_lock);
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	spin_unlock(&vcpu->kvm->mmu_lock);
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
	hpa_t root;
3229
	unsigned i;
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	if (vcpu->kvm->arch.tdp_mmu_enabled) {
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);

		if (!VALID_PAGE(root))
			return -ENOSPC;
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
				      true);

3241
		if (!VALID_PAGE(root))
3242
			return -ENOSPC;
3243 3244
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3245
		for (i = 0; i < 4; ++i) {
3246
			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3247

3248 3249 3250
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3251
				return -ENOSPC;
3252
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3253
		}
3254
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3255 3256
	} else
		BUG();
3257

3258 3259
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3260 3261 3262 3263 3264

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3265
{
3266
	u64 pdptr, pm_mask;
3267
	gfn_t root_gfn, root_pgd;
3268
	hpa_t root;
3269
	int i;
3270

3271 3272
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3273

3274 3275 3276 3277 3278 3279 3280
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3281
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3282
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3283

3284 3285 3286
		root = mmu_alloc_root(vcpu, root_gfn, 0,
				      vcpu->arch.mmu->shadow_root_level, false);
		if (!VALID_PAGE(root))
3287
			return -ENOSPC;
3288
		vcpu->arch.mmu->root_hpa = root;
3289
		goto set_root_pgd;
3290
	}
3291

3292 3293
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3294 3295
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3296
	 */
3297
	pm_mask = PT_PRESENT_MASK;
3298
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3299 3300
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3301
	for (i = 0; i < 4; ++i) {
3302
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3303 3304
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3305
			if (!(pdptr & PT_PRESENT_MASK)) {
3306
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3307 3308
				continue;
			}
A
Avi Kivity 已提交
3309
			root_gfn = pdptr >> PAGE_SHIFT;
3310 3311
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3312
		}
3313

3314 3315 3316 3317
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3318
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3319
	}
3320
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3321 3322 3323 3324 3325

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3326 3327
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3328 3329 3330 3331 3332 3333 3334
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3335
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3336 3337 3338
			if (lm_root == NULL)
				return 1;

3339
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3340

3341
			vcpu->arch.mmu->lm_root = lm_root;
3342 3343
		}

3344
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3345 3346
	}

3347 3348
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3349

3350
	return 0;
3351 3352
}

3353 3354
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3355
	if (vcpu->arch.mmu->direct_map)
3356 3357 3358 3359 3360
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3361
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3362 3363 3364 3365
{
	int i;
	struct kvm_mmu_page *sp;

3366
	if (vcpu->arch.mmu->direct_map)
3367 3368
		return;

3369
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3370
		return;
3371

3372
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3373

3374 3375
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3376
		sp = to_shadow_page(root);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3395
		mmu_sync_children(vcpu, sp);
3396

3397
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3398
		spin_unlock(&vcpu->kvm->mmu_lock);
3399 3400
		return;
	}
3401 3402 3403 3404

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3405
	for (i = 0; i < 4; ++i) {
3406
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3407

3408
		if (root && VALID_PAGE(root)) {
3409
			root &= PT64_BASE_ADDR_MASK;
3410
			sp = to_shadow_page(root);
3411 3412 3413 3414
			mmu_sync_children(vcpu, sp);
		}
	}

3415
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3416
	spin_unlock(&vcpu->kvm->mmu_lock);
3417
}
N
Nadav Har'El 已提交
3418
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3419

3420
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3421
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3422
{
3423 3424
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3425 3426 3427
	return vaddr;
}

3428
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3429 3430
					 u32 access,
					 struct x86_exception *exception)
3431
{
3432 3433
	if (exception)
		exception->error_code = 0;
3434
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3435 3436
}

3437 3438 3439
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3440
	int bit7 = (pte >> 7) & 1;
3441

3442
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3443 3444
}

3445
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3446
{
3447
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3448 3449
}

3450
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3451
{
3452 3453 3454 3455 3456 3457 3458
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3459 3460 3461 3462 3463 3464
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3465 3466 3467
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3468 3469
{
	struct kvm_shadow_walk_iterator iterator;
3470
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3471
	struct rsvd_bits_validate *rsvd_check;
3472 3473
	int root, leaf;
	bool reserved = false;
3474

3475
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3476

3477
	walk_shadow_page_lockless_begin(vcpu);
3478

3479 3480
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3481 3482 3483 3484 3485
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3486
		leaf--;
3487

3488 3489
		if (!is_shadow_present_pte(spte))
			break;
3490

3491 3492 3493 3494 3495 3496 3497
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3498 3499
	}

3500 3501
	walk_shadow_page_lockless_end(vcpu);

3502 3503 3504
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3505
		while (root > leaf) {
3506 3507 3508 3509 3510
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
3511

3512 3513
	*sptep = spte;
	return reserved;
3514 3515
}

P
Paolo Bonzini 已提交
3516
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3517 3518
{
	u64 spte;
3519
	bool reserved;
3520

3521
	if (mmio_info_in_cache(vcpu, addr, direct))
3522
		return RET_PF_EMULATE;
3523

3524
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3525
	if (WARN_ON(reserved))
3526
		return -EINVAL;
3527 3528 3529

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3530
		unsigned int access = get_mmio_spte_access(spte);
3531

3532
		if (!check_mmio_spte(vcpu, spte))
3533
			return RET_PF_INVALID;
3534

3535 3536
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3537 3538

		trace_handle_mmio_page_fault(addr, gfn, access);
3539
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3540
		return RET_PF_EMULATE;
3541 3542 3543 3544 3545 3546
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3547
	return RET_PF_RETRY;
3548 3549
}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3584 3585
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3586 3587
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3588

3589
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3590
	arch.gfn = gfn;
3591
	arch.direct_map = vcpu->arch.mmu->direct_map;
3592
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3593

3594 3595
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3596 3597
}

3598
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3599 3600
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
3601
{
3602
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3603 3604
	bool async;

3605 3606
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3607
		*pfn = KVM_PFN_NOSLOT;
3608
		*writable = false;
3609 3610 3611
		return false;
	}

3612 3613
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3614 3615 3616
	if (!async)
		return false; /* *pfn has correct page already */

3617
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3618
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3619
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3620
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3621 3622
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3623
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3624 3625 3626
			return true;
	}

3627
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3628 3629 3630
	return false;
}

3631 3632
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3633
{
3634
	bool write = error_code & PFERR_WRITE_MASK;
3635
	bool map_writable;
A
Avi Kivity 已提交
3636

3637 3638 3639
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3640
	int r;
3641

3642
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3643
		return RET_PF_EMULATE;
3644

3645 3646 3647
	r = fast_page_fault(vcpu, gpa, error_code);
	if (r != RET_PF_INVALID)
		return r;
3648

3649
	r = mmu_topup_memory_caches(vcpu, false);
3650 3651
	if (r)
		return r;
3652

3653 3654 3655 3656 3657 3658
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

3659
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3660
		return r;
A
Avi Kivity 已提交
3661

3662 3663 3664 3665
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
3666 3667
	r = make_mmu_pages_available(vcpu);
	if (r)
3668
		goto out_unlock;
3669 3670
	r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
			 prefault, is_tdp);
3671

3672 3673 3674 3675
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3676 3677
}

3678 3679 3680 3681 3682 3683 3684
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3685
				 PG_LEVEL_2M, false);
3686 3687
}

3688
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3689
				u64 fault_address, char *insn, int insn_len)
3690 3691
{
	int r = 1;
3692
	u32 flags = vcpu->arch.apf.host_apf_flags;
3693

3694 3695 3696 3697 3698 3699
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3700
	vcpu->arch.l1tf_flush_l1d = true;
3701
	if (!flags) {
3702 3703
		trace_kvm_page_fault(fault_address, error_code);

3704
		if (kvm_event_needs_reinjection(vcpu))
3705 3706 3707
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3708
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3709
		vcpu->arch.apf.host_apf_flags = 0;
3710
		local_irq_disable();
3711
		kvm_async_pf_task_wait_schedule(fault_address);
3712
		local_irq_enable();
3713 3714
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3715
	}
3716

3717 3718 3719 3720
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3721 3722
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3723
{
3724
	int max_level;
3725

3726
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3727
	     max_level > PG_LEVEL_4K;
3728 3729
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3730
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3731

3732 3733
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3734
	}
3735

3736 3737
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3738 3739
}

3740 3741
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3742 3743 3744
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3745
	context->sync_page = nonpaging_sync_page;
3746
	context->invlpg = NULL;
3747
	context->update_pte = nonpaging_update_pte;
3748
	context->root_level = 0;
A
Avi Kivity 已提交
3749
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3750
	context->direct_map = true;
3751
	context->nx = false;
A
Avi Kivity 已提交
3752 3753
}

3754
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3755 3756
				  union kvm_mmu_page_role role)
{
3757
	return (role.direct || pgd == root->pgd) &&
3758 3759
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3760 3761
}

3762
/*
3763
 * Find out if a previously cached root matching the new pgd/role is available.
3764 3765 3766 3767 3768 3769
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3770
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3771 3772 3773 3774
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3775
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3776

3777
	root.pgd = mmu->root_pgd;
3778 3779
	root.hpa = mmu->root_hpa;

3780
	if (is_root_usable(&root, new_pgd, new_role))
3781 3782
		return true;

3783 3784 3785
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3786
		if (is_root_usable(&root, new_pgd, new_role))
3787 3788 3789 3790
			break;
	}

	mmu->root_hpa = root.hpa;
3791
	mmu->root_pgd = root.pgd;
3792 3793 3794 3795

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3796
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3797
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3798
{
3799
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3800 3801 3802 3803 3804 3805 3806

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3807
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3808
		return cached_root_available(vcpu, new_pgd, new_role);
3809 3810

	return false;
A
Avi Kivity 已提交
3811 3812
}

3813
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3814
			      union kvm_mmu_page_role new_role,
3815
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3816
{
3817
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3830
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3831
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3832
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3843
	__clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3844 3845
}

3846
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3847
		     bool skip_mmu_sync)
3848
{
3849
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3850
			  skip_tlb_flush, skip_mmu_sync);
3851
}
3852
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3853

3854 3855
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3856
	return kvm_read_cr3(vcpu);
3857 3858
}

3859
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3860
			   unsigned int access, int *nr_present)
3861 3862 3863 3864 3865 3866 3867 3868
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3869
		mark_mmio_spte(vcpu, sptep, gfn, access);
3870 3871 3872 3873 3874 3875
		return true;
	}

	return false;
}

3876 3877
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3878
{
3879 3880 3881 3882 3883 3884 3885
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3886
	/*
3887 3888 3889
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3890
	 */
3891
	gpte |= level - PG_LEVEL_4K - 1;
3892

3893
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3894 3895
}

3896 3897 3898 3899 3900
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3901 3902 3903 3904 3905 3906 3907 3908
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3909 3910 3911 3912
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3913
			bool pse, bool amd)
3914 3915
{
	u64 exb_bit_rsvd = 0;
3916
	u64 gbpages_bit_rsvd = 0;
3917
	u64 nonleaf_bit8_rsvd = 0;
3918

3919
	rsvd_check->bad_mt_xwr = 0;
3920

3921
	if (!nx)
3922
		exb_bit_rsvd = rsvd_bits(63, 63);
3923
	if (!gbpages)
3924
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3925 3926 3927 3928 3929

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3930
	if (amd)
3931 3932
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3933
	switch (level) {
3934 3935
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3936 3937 3938 3939
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3940

3941
		if (!pse) {
3942
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3943 3944 3945
			break;
		}

3946 3947
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3948
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3949 3950
		else
			/* 32 bits PSE 4MB page */
3951
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3952 3953
		break;
	case PT32E_ROOT_LEVEL:
3954
		rsvd_check->rsvd_bits_mask[0][2] =
3955
			rsvd_bits(maxphyaddr, 63) |
3956
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3957
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3958
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3959
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3960
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3961
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3962 3963
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3964 3965
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3966
		break;
3967 3968 3969 3970 3971 3972
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
3973
		fallthrough;
3974
	case PT64_ROOT_4LEVEL:
3975 3976
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3977
			rsvd_bits(maxphyaddr, 51);
3978
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3979
			gbpages_bit_rsvd |
3980
			rsvd_bits(maxphyaddr, 51);
3981 3982 3983 3984 3985 3986 3987
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3988
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3989
			rsvd_bits(13, 29);
3990
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3991 3992
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3993 3994
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3995 3996 3997 3998
		break;
	}
}

3999 4000 4001 4002 4003
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4004 4005
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4006 4007
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4008 4009
}

4010 4011 4012
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4013
{
4014
	u64 bad_mt_xwr;
4015

4016 4017
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4018
	rsvd_check->rsvd_bits_mask[0][3] =
4019
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4020
	rsvd_check->rsvd_bits_mask[0][2] =
4021
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4022
	rsvd_check->rsvd_bits_mask[0][1] =
4023
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4024
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4025 4026

	/* large page */
4027
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4028 4029
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4030
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4031
	rsvd_check->rsvd_bits_mask[1][1] =
4032
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4033
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4034

4035 4036 4037 4038 4039 4040 4041 4042
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4043
	}
4044
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4045 4046
}

4047 4048 4049 4050 4051 4052 4053
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4054 4055 4056 4057 4058 4059 4060 4061
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4062 4063
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4064 4065
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4066

4067 4068 4069 4070
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4071 4072
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4073
				shadow_phys_bits,
4074
				context->shadow_root_level, uses_nx,
4075 4076
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4077 4078 4079 4080 4081 4082 4083 4084 4085

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4086 4087 4088
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4089 4090 4091 4092 4093 4094
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4095 4096 4097 4098 4099 4100 4101 4102
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4103 4104 4105 4106 4107
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4108
	if (boot_cpu_is_amd())
4109
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4110
					shadow_phys_bits,
4111
					context->shadow_root_level, false,
4112 4113
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4114
	else
4115
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4116
					    shadow_phys_bits,
4117 4118
					    false);

4119 4120 4121 4122 4123 4124 4125
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4137
				    shadow_phys_bits, execonly);
4138 4139
}

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4150 4151
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4152
{
4153 4154 4155 4156 4157 4158 4159 4160 4161
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4162 4163

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4164 4165
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4166
		/*
4167 4168
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4169
		 */
4170

4171
		/* Faults from writes to non-writable pages */
4172
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4173
		/* Faults from user mode accesses to supervisor pages */
4174
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4175
		/* Faults from fetches of non-executable pages*/
4176
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4202
			 * conditions are true:
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4216
		}
4217 4218

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4219 4220 4221
	}
}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4297
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4298
{
4299 4300 4301 4302 4303
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4304 4305
}

4306 4307 4308
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4309
{
4310
	context->nx = is_nx(vcpu);
4311
	context->root_level = level;
4312

4313
	reset_rsvds_bits_mask(vcpu, context);
4314
	update_permission_bitmask(vcpu, context, false);
4315
	update_pkru_bitmask(vcpu, context, false);
4316
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4317

4318
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4319 4320
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4321
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4322
	context->invlpg = paging64_invlpg;
4323
	context->update_pte = paging64_update_pte;
4324
	context->shadow_root_level = level;
4325
	context->direct_map = false;
A
Avi Kivity 已提交
4326 4327
}

4328 4329
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4330
{
4331 4332 4333 4334
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4335 4336
}

4337 4338
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4339
{
4340
	context->nx = false;
4341
	context->root_level = PT32_ROOT_LEVEL;
4342

4343
	reset_rsvds_bits_mask(vcpu, context);
4344
	update_permission_bitmask(vcpu, context, false);
4345
	update_pkru_bitmask(vcpu, context, false);
4346
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4347 4348 4349

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4350
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4351
	context->invlpg = paging32_invlpg;
4352
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4353
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4354
	context->direct_map = false;
A
Avi Kivity 已提交
4355 4356
}

4357 4358
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4359
{
4360
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4361 4362
}

4363 4364 4365 4366
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4367
	ext.cr0_pg = !!is_paging(vcpu);
4368
	ext.cr4_pae = !!is_pae(vcpu);
4369 4370 4371 4372
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4373
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4374 4375 4376 4377 4378 4379

	ext.valid = 1;

	return ext;
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4399 4400 4401
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4402
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4403 4404
		return 4;

4405
	return max_tdp_level;
4406 4407
}

4408 4409
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4410
{
4411
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4412

4413
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4414
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4415
	role.base.direct = true;
4416
	role.base.gpte_is_8_bytes = true;
4417 4418 4419 4420

	return role;
}

4421
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4422
{
4423
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4424 4425
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4426

4427 4428 4429 4430
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4431
	context->page_fault = kvm_tdp_page_fault;
4432
	context->sync_page = nonpaging_sync_page;
4433
	context->invlpg = NULL;
4434
	context->update_pte = nonpaging_update_pte;
4435
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4436
	context->direct_map = true;
4437
	context->get_guest_pgd = get_cr3;
4438
	context->get_pdptr = kvm_pdptr_read;
4439
	context->inject_page_fault = kvm_inject_page_fault;
4440 4441

	if (!is_paging(vcpu)) {
4442
		context->nx = false;
4443 4444 4445
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4446
		context->nx = is_nx(vcpu);
4447 4448
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4449 4450
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4451
	} else if (is_pae(vcpu)) {
4452
		context->nx = is_nx(vcpu);
4453
		context->root_level = PT32E_ROOT_LEVEL;
4454 4455
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4456
	} else {
4457
		context->nx = false;
4458
		context->root_level = PT32_ROOT_LEVEL;
4459 4460
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4461 4462
	}

4463
	update_permission_bitmask(vcpu, context, false);
4464
	update_pkru_bitmask(vcpu, context, false);
4465
	update_last_nonleaf_level(vcpu, context);
4466
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4467 4468
}

4469
static union kvm_mmu_role
4470
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4471 4472 4473 4474 4475 4476 4477
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4478
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4479

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4491
	if (!is_long_mode(vcpu))
4492
		role.base.level = PT32E_ROOT_LEVEL;
4493
	else if (is_la57_mode(vcpu))
4494
		role.base.level = PT64_ROOT_5LEVEL;
4495
	else
4496
		role.base.level = PT64_ROOT_4LEVEL;
4497 4498 4499 4500

	return role;
}

4501 4502 4503
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4504
{
4505
	if (!(cr0 & X86_CR0_PG))
4506
		nonpaging_init_context(vcpu, context);
4507
	else if (efer & EFER_LMA)
4508
		paging64_init_context(vcpu, context);
4509
	else if (cr4 & X86_CR4_PAE)
4510
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4511
	else
4512
		paging32_init_context(vcpu, context);
4513

4514
	context->mmu_role.as_u64 = new_role.as_u64;
4515
	reset_shadow_zero_bits_mask(vcpu, context);
4516
}
4517 4518 4519

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4520
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4521 4522 4523 4524
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4525
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4526 4527
}

4528 4529 4530 4531 4532 4533 4534
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4535
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4536 4537 4538 4539

	return role;
}

4540 4541 4542
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4543
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4544
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4545

4546 4547
	context->shadow_root_level = new_role.base.level;

4548 4549
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4550
	if (new_role.as_u64 != context->mmu_role.as_u64)
4551
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4552 4553
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4554

4555 4556
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4557
				   bool execonly, u8 level)
4558
{
4559
	union kvm_mmu_role role = {0};
4560

4561 4562
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4563

4564
	role.base.level = level;
4565
	role.base.gpte_is_8_bytes = true;
4566 4567 4568 4569
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4570

4571 4572 4573 4574 4575 4576 4577
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4578
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4579
	role.ext.execonly = execonly;
4580 4581 4582 4583

	return role;
}

4584
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4585
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4586
{
4587
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4588
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4589 4590
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4591
						   execonly, level);
4592

4593
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4594 4595 4596

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4597

4598
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4599 4600

	context->nx = true;
4601
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4602 4603 4604 4605 4606
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4607
	context->root_level = level;
N
Nadav Har'El 已提交
4608
	context->direct_map = false;
4609
	context->mmu_role.as_u64 = new_role.as_u64;
4610

N
Nadav Har'El 已提交
4611
	update_permission_bitmask(vcpu, context, true);
4612
	update_pkru_bitmask(vcpu, context, true);
4613
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4614
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4615
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4616 4617 4618
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4619
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4620
{
4621
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4622

4623 4624 4625 4626 4627
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4628
	context->get_guest_pgd     = get_cr3;
4629 4630
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4631 4632
}

4633
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4634
{
4635
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4636 4637
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4638 4639 4640 4641
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4642
	g_context->get_guest_pgd     = get_cr3;
4643
	g_context->get_pdptr         = kvm_pdptr_read;
4644 4645
	g_context->inject_page_fault = kvm_inject_page_fault;

4646 4647 4648 4649 4650 4651
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4652
	/*
4653
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4654 4655 4656 4657 4658
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4659 4660
	 */
	if (!is_paging(vcpu)) {
4661
		g_context->nx = false;
4662 4663 4664
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4665
		g_context->nx = is_nx(vcpu);
4666 4667
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4668
		reset_rsvds_bits_mask(vcpu, g_context);
4669 4670
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4671
		g_context->nx = is_nx(vcpu);
4672
		g_context->root_level = PT32E_ROOT_LEVEL;
4673
		reset_rsvds_bits_mask(vcpu, g_context);
4674 4675
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4676
		g_context->nx = false;
4677
		g_context->root_level = PT32_ROOT_LEVEL;
4678
		reset_rsvds_bits_mask(vcpu, g_context);
4679 4680 4681
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4682
	update_permission_bitmask(vcpu, g_context, false);
4683
	update_pkru_bitmask(vcpu, g_context, false);
4684
	update_last_nonleaf_level(vcpu, g_context);
4685 4686
}

4687
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4688
{
4689
	if (reset_roots) {
4690 4691
		uint i;

4692
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4693 4694

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4695
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4696 4697
	}

4698
	if (mmu_is_nested(vcpu))
4699
		init_kvm_nested_mmu(vcpu);
4700
	else if (tdp_enabled)
4701
		init_kvm_tdp_mmu(vcpu);
4702
	else
4703
		init_kvm_softmmu(vcpu);
4704
}
4705
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4706

4707 4708 4709
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4710 4711
	union kvm_mmu_role role;

4712
	if (tdp_enabled)
4713
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4714
	else
4715 4716 4717
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4718
}
4719

4720
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4721
{
4722
	kvm_mmu_unload(vcpu);
4723
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4724
}
4725
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4726 4727

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4728
{
4729 4730
	int r;

4731
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4732 4733
	if (r)
		goto out;
4734
	r = mmu_alloc_roots(vcpu);
4735
	kvm_mmu_sync_roots(vcpu);
4736 4737
	if (r)
		goto out;
4738
	kvm_mmu_load_pgd(vcpu);
4739
	kvm_x86_ops.tlb_flush_current(vcpu);
4740 4741
out:
	return r;
A
Avi Kivity 已提交
4742
}
A
Avi Kivity 已提交
4743 4744 4745 4746
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4747 4748 4749 4750
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4751
}
4752
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4753

4754
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4755 4756
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4757
{
4758
	if (sp->role.level != PG_LEVEL_4K) {
4759 4760
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4761
        }
4762

A
Avi Kivity 已提交
4763
	++vcpu->kvm->stat.mmu_pte_updated;
4764
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4765 4766
}

4767 4768 4769 4770 4771 4772 4773 4774
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4775 4776
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4777 4778 4779
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4780
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4781
				    int *bytes)
4782
{
4783
	u64 gentry = 0;
4784
	int r;
4785 4786 4787

	/*
	 * Assume that the pte write on a page table of the same type
4788 4789
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4790
	 */
4791
	if (is_pae(vcpu) && *bytes == 4) {
4792
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4793 4794
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4795 4796
	}

4797 4798 4799 4800
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4801 4802
	}

4803 4804 4805 4806 4807 4808 4809
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4810
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4811
{
4812 4813 4814 4815
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4816
	if (sp->role.level == PG_LEVEL_4K)
4817
		return false;
4818

4819 4820
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4836
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4837 4838 4839 4840 4841 4842 4843 4844

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4860
	if (!sp->role.gpte_is_8_bytes) {
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

4898
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4899 4900
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4901 4902 4903 4904 4905 4906
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4907
	bool remote_flush, local_flush;
4908 4909 4910 4911 4912

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4913
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4914 4915
		return;

4916
	remote_flush = local_flush = false;
4917 4918 4919 4920 4921 4922 4923 4924

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
4925
	mmu_topup_memory_caches(vcpu, true);
4926 4927

	spin_lock(&vcpu->kvm->mmu_lock);
4928 4929 4930

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

4931
	++vcpu->kvm->stat.mmu_pte_write;
4932
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4933

4934
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4935
		if (detect_write_misaligned(sp, gpa, bytes) ||
4936
		      detect_write_flooding(sp)) {
4937
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4938
			++vcpu->kvm->stat.mmu_flooded;
4939 4940
			continue;
		}
4941 4942 4943 4944 4945

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4946
		local_flush = true;
4947
		while (npte--) {
4948 4949
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

4950
			entry = *spte;
4951
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4952
			if (gentry &&
4953 4954
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
4955
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4956
			if (need_remote_flush(entry, *spte))
4957
				remote_flush = true;
4958
			++spte;
4959 4960
		}
	}
4961
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4962
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4963
	spin_unlock(&vcpu->kvm->mmu_lock);
4964 4965
}

4966 4967
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4968 4969
	gpa_t gpa;
	int r;
4970

4971
	if (vcpu->arch.mmu->direct_map)
4972 4973
		return 0;

4974
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4975 4976

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4977

4978
	return r;
4979
}
4980
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4981

4982
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
4983
		       void *insn, int insn_len)
4984
{
4985
	int r, emulation_type = EMULTYPE_PF;
4986
	bool direct = vcpu->arch.mmu->direct_map;
4987

4988
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
4989 4990
		return RET_PF_RETRY;

4991
	r = RET_PF_INVALID;
4992
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
4993
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
4994
		if (r == RET_PF_EMULATE)
4995 4996
			goto emulate;
	}
4997

4998
	if (r == RET_PF_INVALID) {
4999 5000
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5001 5002
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5003 5004
	}

5005
	if (r < 0)
5006
		return r;
5007 5008
	if (r != RET_PF_EMULATE)
		return 1;
5009

5010 5011 5012 5013 5014 5015 5016
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5017
	if (vcpu->arch.mmu->direct_map &&
5018
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5019
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5020 5021 5022
		return 1;
	}

5023 5024 5025 5026 5027 5028
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5029 5030 5031 5032
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5033
	 */
5034
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5035
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5036
emulate:
5037
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5038
				       insn_len);
5039 5040 5041
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5042 5043
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5044
{
5045
	int i;
5046

5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5057 5058
		return;

5059 5060
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5061

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5081

5082 5083 5084
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5085 5086 5087 5088
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5089

5090 5091
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5092
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5093
	bool tlb_flush = false;
5094
	uint i;
5095 5096

	if (pcid == kvm_get_active_pcid(vcpu)) {
5097
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5098
		tlb_flush = true;
5099 5100
	}

5101 5102
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5103
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5104 5105 5106
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5107
	}
5108

5109
	if (tlb_flush)
5110
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5111

5112 5113 5114
	++vcpu->stat.invlpg;

	/*
5115 5116 5117
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5118 5119 5120 5121
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5122 5123
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5124
{
5125
	tdp_enabled = enable_tdp;
5126
	max_tdp_level = tdp_max_root_level;
5127 5128

	/*
5129
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5130 5131 5132 5133 5134 5135
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5136
		max_huge_page_level = tdp_huge_page_level;
5137
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5138
		max_huge_page_level = PG_LEVEL_1G;
5139
	else
5140
		max_huge_page_level = PG_LEVEL_2M;
5141
}
5142
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5163 5164 5165
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5166 5167 5168 5169 5170 5171 5172
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5173 5174
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5196
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5197
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5198 5199 5200 5201 5202 5203
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5204
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5205
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5206 5207 5208 5209 5210 5211
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5212 5213
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5214 5215
}

5216
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5217
{
5218 5219
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5220 5221
}

5222
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5223
{
5224
	struct page *page;
A
Avi Kivity 已提交
5225 5226
	int i;

5227 5228 5229 5230 5231 5232
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5233
	/*
5234 5235 5236 5237 5238 5239 5240
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5241
	 */
5242
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5243 5244
		return 0;

5245
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5246
	if (!page)
5247 5248
		return -ENOMEM;

5249
	mmu->pae_root = page_address(page);
5250
	for (i = 0; i < 4; ++i)
5251
		mmu->pae_root[i] = INVALID_PAGE;
5252

A
Avi Kivity 已提交
5253 5254 5255
	return 0;
}

5256
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5257
{
5258
	int ret;
5259

5260
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5261 5262
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5263
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5264
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5265

5266 5267
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5268 5269
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5270

5271
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5272

5273
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5274 5275 5276
	if (ret)
		return ret;

5277
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5278 5279 5280 5281 5282 5283 5284
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5285 5286
}

5287
#define BATCH_ZAP_PAGES	10
5288 5289 5290
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5291
	int nr_zapped, batch = 0;
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5304 5305 5306
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5307
		 */
5308
		if (WARN_ON(sp->role.invalid))
5309 5310
			continue;

5311 5312 5313 5314 5315 5316
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5317
		if (batch >= BATCH_ZAP_PAGES &&
5318
		    cond_resched_lock(&kvm->mmu_lock)) {
5319
			batch = 0;
5320 5321 5322
			goto restart;
		}

5323 5324
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5325
			batch += nr_zapped;
5326
			goto restart;
5327
		}
5328 5329
	}

5330 5331 5332 5333 5334
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5335
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5349 5350
	lockdep_assert_held(&kvm->slots_lock);

5351
	spin_lock(&kvm->mmu_lock);
5352
	trace_kvm_mmu_zap_all_fast(kvm);
5353 5354 5355 5356 5357 5358 5359 5360 5361

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5362

5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5373 5374 5375 5376
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5377 5378 5379 5380 5381
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5382
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5383 5384
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5385
{
5386
	kvm_mmu_zap_all_fast(kvm);
5387 5388
}

5389
void kvm_mmu_init_vm(struct kvm *kvm)
5390
{
5391
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5392

5393 5394
	kvm_mmu_init_tdp_mmu(kvm);

5395
	node->track_write = kvm_mmu_pte_write;
5396
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5397
	kvm_page_track_register_notifier(kvm, node);
5398 5399
}

5400
void kvm_mmu_uninit_vm(struct kvm *kvm)
5401
{
5402
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5403

5404
	kvm_page_track_unregister_notifier(kvm, node);
5405 5406

	kvm_mmu_uninit_tdp_mmu(kvm);
5407 5408
}

X
Xiao Guangrong 已提交
5409 5410 5411 5412
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5413
	int i;
X
Xiao Guangrong 已提交
5414 5415

	spin_lock(&kvm->mmu_lock);
5416 5417 5418 5419 5420 5421 5422 5423 5424
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5425

5426
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5427
						PG_LEVEL_4K,
5428
						KVM_MAX_HUGEPAGE_LEVEL,
5429
						start, end - 1, true);
5430
		}
X
Xiao Guangrong 已提交
5431 5432 5433 5434 5435
	}

	spin_unlock(&kvm->mmu_lock);
}

5436 5437
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5438
{
5439
	return __rmap_write_protect(kvm, rmap_head, false);
5440 5441
}

5442
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5443 5444
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5445
{
5446
	bool flush;
A
Avi Kivity 已提交
5447

5448
	spin_lock(&kvm->mmu_lock);
5449
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5450
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5451
	spin_unlock(&kvm->mmu_lock);
5452 5453 5454 5455 5456 5457 5458 5459

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5460
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5461 5462 5463
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5464
	if (flush)
5465
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5466
}
5467

5468
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5469
					 struct kvm_rmap_head *rmap_head)
5470 5471 5472 5473
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5474
	kvm_pfn_t pfn;
5475 5476
	struct kvm_mmu_page *sp;

5477
restart:
5478
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5479
		sp = sptep_to_sp(sptep);
5480 5481 5482
		pfn = spte_to_pfn(*sptep);

		/*
5483 5484 5485 5486 5487
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5488
		 */
5489
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5490 5491
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5492
			pte_list_remove(rmap_head, sptep);
5493 5494 5495 5496 5497 5498 5499

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5500 5501
			goto restart;
		}
5502 5503 5504 5505 5506 5507
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5508
				   const struct kvm_memory_slot *memslot)
5509
{
5510
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5511
	spin_lock(&kvm->mmu_lock);
5512 5513
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5514 5515 5516
	spin_unlock(&kvm->mmu_lock);
}

5517 5518 5519 5520
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5521 5522 5523 5524 5525
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5526 5527
	 */
	lockdep_assert_held(&kvm->slots_lock);
5528 5529
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5530 5531
}

5532 5533 5534
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5535
	bool flush;
5536 5537

	spin_lock(&kvm->mmu_lock);
5538
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5539 5540 5541 5542 5543 5544 5545 5546 5547
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5548
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5549 5550 5551 5552 5553 5554
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5555
	bool flush;
5556 5557

	spin_lock(&kvm->mmu_lock);
5558 5559
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5560 5561 5562
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5563
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5564 5565 5566 5567 5568 5569
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5570
	bool flush;
5571 5572

	spin_lock(&kvm->mmu_lock);
5573
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5574 5575 5576
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5577
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5578 5579 5580
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

5581
void kvm_mmu_zap_all(struct kvm *kvm)
5582 5583
{
	struct kvm_mmu_page *sp, *node;
5584
	LIST_HEAD(invalid_list);
5585
	int ign;
5586

5587
	spin_lock(&kvm->mmu_lock);
5588
restart:
5589
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5590
		if (WARN_ON(sp->role.invalid))
5591
			continue;
5592
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5593
			goto restart;
5594
		if (cond_resched_lock(&kvm->mmu_lock))
5595 5596 5597
			goto restart;
	}

5598
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5599 5600 5601
	spin_unlock(&kvm->mmu_lock);
}

5602
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5603
{
5604
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5605

5606
	gen &= MMIO_SPTE_GEN_MASK;
5607

5608
	/*
5609 5610 5611 5612 5613 5614 5615 5616
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5617
	/*
5618
	 * The very rare case: if the MMIO generation number has wrapped,
5619 5620
	 * zap all shadow pages.
	 */
5621
	if (unlikely(gen == 0)) {
5622
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5623
		kvm_mmu_zap_all_fast(kvm);
5624
	}
5625 5626
}

5627 5628
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5629 5630
{
	struct kvm *kvm;
5631
	int nr_to_scan = sc->nr_to_scan;
5632
	unsigned long freed = 0;
5633

J
Junaid Shahid 已提交
5634
	mutex_lock(&kvm_lock);
5635 5636

	list_for_each_entry(kvm, &vm_list, vm_list) {
5637
		int idx;
5638
		LIST_HEAD(invalid_list);
5639

5640 5641 5642 5643 5644 5645 5646 5647
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5648 5649 5650 5651 5652 5653
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5654 5655
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5656 5657
			continue;

5658
		idx = srcu_read_lock(&kvm->srcu);
5659 5660
		spin_lock(&kvm->mmu_lock);

5661 5662 5663 5664 5665 5666
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5667
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5668

5669
unlock:
5670
		spin_unlock(&kvm->mmu_lock);
5671
		srcu_read_unlock(&kvm->srcu, idx);
5672

5673 5674 5675 5676 5677
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5678 5679
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5680 5681
	}

J
Junaid Shahid 已提交
5682
	mutex_unlock(&kvm_lock);
5683 5684 5685 5686 5687 5688
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5689
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5690 5691 5692
}

static struct shrinker mmu_shrinker = {
5693 5694
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5695 5696 5697
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5698
static void mmu_destroy_caches(void)
5699
{
5700 5701
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5702 5703
}

5704 5705 5706 5707 5708
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5709 5710 5711 5712 5713
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5714
	 */
5715 5716 5717 5718
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5719

P
Paolo Bonzini 已提交
5720
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5721 5722
}

P
Paolo Bonzini 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5757
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5758
			kvm_mmu_zap_all_fast(kvm);
5759
			mutex_unlock(&kvm->slots_lock);
5760 5761

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5762 5763 5764 5765 5766 5767 5768
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5769 5770
int kvm_mmu_module_init(void)
{
5771 5772
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5773 5774 5775
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5786
	kvm_mmu_reset_all_pte_masks();
5787

5788 5789
	kvm_set_mmio_spte_mask();

5790 5791
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5792
					    0, SLAB_ACCOUNT, NULL);
5793
	if (!pte_list_desc_cache)
5794
		goto out;
5795

5796 5797
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5798
						  0, SLAB_ACCOUNT, NULL);
5799
	if (!mmu_page_header_cache)
5800
		goto out;
5801

5802
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5803
		goto out;
5804

5805 5806 5807
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5808

5809 5810
	return 0;

5811
out:
5812
	mmu_destroy_caches();
5813
	return ret;
5814 5815
}

5816
/*
P
Peng Hao 已提交
5817
 * Calculate mmu pages needed for kvm.
5818
 */
5819
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5820
{
5821 5822
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5823
	struct kvm_memslots *slots;
5824
	struct kvm_memory_slot *memslot;
5825
	int i;
5826

5827 5828
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5829

5830 5831 5832
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5833 5834

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5835
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5836 5837 5838 5839

	return nr_mmu_pages;
}

5840 5841
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5842
	kvm_mmu_unload(vcpu);
5843 5844
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5845
	mmu_free_memory_caches(vcpu);
5846 5847 5848 5849 5850 5851 5852
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5853 5854
	mmu_audit_disable();
}
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5894 5895 5896 5897
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

5910
		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5911
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5912
			cond_resched_lock(&kvm->mmu_lock);
5913 5914
		}
	}
5915
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}