book3s_hv.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
46
#include <asm/cputhreads.h>
47
#include <asm/page.h>
48
#include <asm/hvcall.h>
49
#include <asm/switch_to.h>
50
#include <asm/smp.h>
51 52 53
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
54
#include <linux/hugetlb.h>
55 56 57 58 59

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

60 61 62
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

63
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
64
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
65

66 67
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
68 69 70 71
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->stolen_tb += mftb() - vc->preempt_tb;
72 73 74 75
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
76 77 78 79
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
80 81 82 83 84
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
85
	kvmppc_end_cede(vcpu);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
122
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
123 124 125
	       vcpu->arch.last_inst);
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

180 181 182 183 184
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
185
	unsigned long len, nb;
186 187
	void *va;
	struct kvm_vcpu *tvcpu;
188 189 190
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
191 192 193 194 195

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

196 197 198 199 200
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
201
			return H_PARAMETER;
202 203

		/* convert logical addr to kernel addr and read length */
204 205
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
206
			return H_PARAMETER;
207 208
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
209
		else
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
			len = ((struct reg_vpa *)va)->length.word;
		kvmppc_unpin_guest_page(kvm, va);

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
228
			break;
229 230 231 232 233 234
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
235
			break;
236 237 238 239 240
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
241
			break;
242 243 244 245 246 247 248 249 250

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
251
			break;
252 253 254 255 256 257 258 259 260 261

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
262
			break;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
283
	}
284

285 286
	spin_unlock(&tvcpu->arch.vpa_update_lock);

287
	return err;
288 289
}

290
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
291
{
292
	struct kvm *kvm = vcpu->kvm;
293 294
	void *va;
	unsigned long nb;
295
	unsigned long gpa;
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
317
			kvmppc_unpin_guest_page(kvm, va);
318 319 320 321 322 323 324 325 326 327 328
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
		kvmppc_unpin_guest_page(kvm, va);
		va = NULL;
329 330 331 332 333 334 335 336 337 338
	}
	if (vpap->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
	vpap->pinned_addr = va;
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
339 340 341 342 343
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

344 345
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
346
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
347 348
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
349 350
	}
	if (vcpu->arch.dtl.update_pending) {
351
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
352 353 354 355
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
356
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
357 358 359
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
	unsigned long old_stolen;

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
	old_stolen = vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = vc->stolen_tb;
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
	dt->timebase = mftb();
	dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
}

389 390 391 392 393
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
394
	int idx;
395 396

	switch (req) {
397
	case H_ENTER:
398
		idx = srcu_read_lock(&vcpu->kvm->srcu);
399 400 401 402
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
403
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
404
		break;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
494 495 496 497 498
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
499 500
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
501
		r = RESUME_PAGE_FAULT;
502 503
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
504 505 506
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

566
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
567
{
568 569
	int r = 0;
	long int i;
570

571
	switch (id) {
572
	case KVM_REG_PPC_HIOR:
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
600
		break;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			val->vsxval[0] = vcpu->arch.vsr[2 * i];
			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
639
	default:
640
		r = -EINVAL;
641 642 643 644 645 646
		break;
	}

	return r;
}

647
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
648
{
649 650
	int r = 0;
	long int i;
651
	unsigned long addr, len;
652

653
	switch (id) {
654 655
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
656
		if (set_reg_val(id, *val))
657 658
			r = -EINVAL;
		break;
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			vcpu->arch.vsr[2 * i] = val->vsxval[0];
			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (len < sizeof(struct dtl_entry))
			break;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
733
	default:
734
		r = -EINVAL;
735 736 737 738 739 740
		break;
	}

	return r;
}

741 742
int kvmppc_core_check_processor_compat(void)
{
743
	if (cpu_has_feature(CPU_FTR_HVMODE))
744 745 746 747 748 749 750
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
751 752 753
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
754

755 756 757 758 759
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
760
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
761 762 763 764 765 766 767 768 769 770 771 772 773 774
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
775
	spin_lock_init(&vcpu->arch.vpa_update_lock);
776 777 778

	kvmppc_mmu_book3s_hv_init(vcpu);

779
	/*
780
	 * We consider the vcpu stopped until we see the first run ioctl for it.
781
	 */
782
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
783 784 785 786 787 788 789 790 791 792

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
793
			init_waitqueue_head(&vcore->wq);
794
			vcore->preempt_tb = mftb();
795 796 797 798 799 800 801 802 803 804 805 806
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
807
	vcpu->arch.stolen_logged = vcore->stolen_tb;
808

809 810 811
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

812 813 814
	return vcpu;

free_vcpu:
815
	kmem_cache_free(kvm_vcpu_cache, vcpu);
816 817 818 819 820 821
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
822 823 824 825 826 827 828 829
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.dtl.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
	if (vcpu->arch.slb_shadow.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
	if (vcpu->arch.vpa.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
	spin_unlock(&vcpu->arch.vpa_update_lock);
830
	kvm_vcpu_uninit(vcpu);
831
	kmem_cache_free(kvm_vcpu_cache, vcpu);
832 833
}

834
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
835
{
836
	unsigned long dec_nsec, now;
837

838 839 840 841
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
842
		kvmppc_core_prepare_to_enter(vcpu);
843
		return;
844
	}
845 846 847 848 849
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
850 851
}

852
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
853
{
854 855 856 857 858
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
859 860
}

861
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
862
extern void xics_wake_cpu(int cpu);
863

864 865
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
866
{
867 868 869 870
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
871
	++vc->n_busy;
872 873 874
	list_del(&vcpu->arch.run_list);
}

875 876 877 878 879 880 881 882 883
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
884
	tpaca->kvm_hstate.kvm_vcpu = NULL;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

915 916 917 918 919 920
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

921 922 923 924
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
925 926 927 928
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
929 930
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
931
	smp_wmb();
932
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
933 934 935
	if (vcpu->arch.ptid) {
		xics_wake_cpu(cpu);
		++vc->n_woken;
936
	}
937 938
#endif
}
939

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
959 960
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
961 962 963 964 965 966 967 968 969 970 971
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
972 973 974 975 976 977 978 979 980 981 982

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
983 984 985 986 987 988 989
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
990
static void kvmppc_run_core(struct kvmppc_vcore *vc)
991
{
992
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
993 994
	long ret;
	u64 now;
995
	int ptid, i, need_vpa_update;
996
	int srcu_idx;
997
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
998 999

	/* don't start if any threads have a signal pending */
1000 1001
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1002
		if (signal_pending(vcpu->arch.run_task))
1003 1004 1005 1006 1007
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1008 1009 1010 1011 1012 1013 1014 1015 1016
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1017
	vc->vcore_state = VCORE_STARTING;
1018 1019 1020 1021 1022 1023 1024 1025 1026
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1027 1028
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1029 1030
		spin_lock(&vc->lock);
	}
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
1045 1046 1047 1048
	if (!vcpu0) {
		vc->vcore_state = VCORE_INACTIVE;
		return;		/* nothing to run; should never happen */
	}
1049 1050 1051 1052
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1063
	vc->stolen_tb += mftb() - vc->preempt_tb;
1064
	vc->pcpu = smp_processor_id();
1065
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1066
		kvmppc_start_thread(vcpu);
1067
		kvmppc_create_dtl_entry(vcpu, vc);
1068
	}
1069

1070
	vc->vcore_state = VCORE_RUNNING;
1071
	preempt_disable();
1072
	spin_unlock(&vc->lock);
1073

1074
	kvm_guest_enter();
1075 1076 1077

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

1078
	__kvmppc_vcore_entry(NULL, vcpu0);
1079

1080
	spin_lock(&vc->lock);
1081 1082 1083 1084
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1085 1086
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1087 1088
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1089
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1090
	vc->vcore_state = VCORE_EXITING;
1091 1092
	spin_unlock(&vc->lock);

1093 1094
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

1095 1096
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1097 1098 1099 1100 1101
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

1102
	spin_lock(&vc->lock);
1103
	now = get_tb();
1104 1105 1106 1107 1108
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1109 1110 1111 1112 1113 1114

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

1115 1116
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1117 1118 1119 1120 1121 1122 1123

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1124
	}
1125 1126

 out:
1127
	vc->vcore_state = VCORE_INACTIVE;
1128
	vc->preempt_tb = mftb();
1129 1130 1131 1132 1133 1134 1135 1136 1137
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1138 1139 1140 1141 1142
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1143 1144 1145
{
	DEFINE_WAIT(wait);

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1163
	schedule();
1164 1165 1166 1167
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1168

1169 1170 1171 1172 1173 1174
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1175

1176 1177 1178
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1179
	kvmppc_update_vpas(vcpu);
1180 1181 1182 1183 1184 1185

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1186
	vcpu->arch.ceded = 0;
1187 1188
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1189 1190
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1191 1192 1193
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1194 1195 1196 1197 1198 1199 1200 1201 1202
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
1203
			kvmppc_create_dtl_entry(vcpu, vc);
1204
			kvmppc_start_thread(vcpu);
1205 1206
		}

1207 1208
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
1209

1210 1211 1212 1213 1214 1215 1216 1217
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
1218
		vc->runner = vcpu;
1219 1220
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1221 1222
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1223 1224 1225 1226 1227 1228 1229
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1230
			kvmppc_core_prepare_to_enter(v);
1231 1232 1233 1234 1235 1236 1237 1238
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1239
		vc->runner = NULL;
1240
	}
1241

1242
	if (signal_pending(current)) {
1243 1244 1245
		while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
		       (vc->vcore_state == VCORE_RUNNING ||
			vc->vcore_state == VCORE_EXITING)) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
1256 1257 1258 1259
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1260 1261
}

1262 1263 1264
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;
1265
	int srcu_idx;
1266

1267 1268 1269 1270 1271
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1272 1273
	kvmppc_core_prepare_to_enter(vcpu);

1274 1275 1276 1277 1278 1279
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1280 1281 1282 1283 1284
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1285
	if (!vcpu->kvm->arch.rma_setup_done) {
1286
		r = kvmppc_hv_setup_htab_rma(vcpu);
1287
		if (r)
1288
			goto out;
1289
	}
1290 1291 1292 1293 1294

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1295
	vcpu->arch.pgdir = current->mm->pgd;
1296

1297 1298 1299 1300 1301 1302
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1303
			kvmppc_core_prepare_to_enter(vcpu);
1304 1305 1306 1307 1308
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1309 1310
		}
	} while (r == RESUME_GUEST);
1311 1312 1313

 out:
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1314 1315 1316
	return r;
}

1317

1318
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1319
   Assumes POWER7 or PPC970. */
1320 1321 1322 1323
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1324 1325 1326
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1346
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1371
	struct kvmppc_linear_info *ri = filp->private_data;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1384
	struct kvmppc_linear_info *ri;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
	(*sps)->enc[0].pte_enc = def->penc;
	(*sps)++;
}

int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1454
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1480
static void unpin_slot(struct kvm_memory_slot *memslot)
1481
{
1482 1483 1484
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
			      struct kvm_memory_slot *dont)
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1506
	}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
			       unsigned long npages)
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1521

1522 1523
	return 0;
}
1524

1525 1526 1527
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      struct kvm_memory_slot *memslot,
				      struct kvm_userspace_memory_region *mem)
1528
{
1529
	unsigned long *phys;
1530

1531 1532 1533 1534 1535 1536 1537
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1538
	}
1539 1540

	return 0;
1541 1542 1543
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
1544 1545
				      struct kvm_userspace_memory_region *mem,
				      struct kvm_memory_slot old)
1546
{
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

	if (npages && old.npages) {
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1560 1561
}

1562
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1563 1564 1565
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1566
	struct kvmppc_linear_info *ri = NULL;
1567 1568 1569
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1570
	unsigned long lpcr, senc;
1571 1572 1573 1574
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1575
	unsigned long i, npages;
1576
	int srcu_idx;
1577 1578 1579 1580

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1591
	/* Look up the memslot for guest physical address 0 */
1592
	srcu_idx = srcu_read_lock(&kvm->srcu);
1593
	memslot = gfn_to_memslot(kvm, 0);
1594

1595 1596 1597
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1598
		goto out_srcu;
1599 1600 1601 1602 1603 1604 1605 1606 1607

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1608
	porder = __ilog2(psize);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1622
			goto out_srcu;
1623 1624
		}

1625 1626 1627 1628
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1629
			goto out_srcu;
1630

1631
		/* Update VRMASD field in the LPCR */
1632
		senc = slb_pgsize_encoding(psize);
1633 1634
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1635 1636
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1637 1638 1639
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1640
		kvmppc_map_vrma(vcpu, memslot, porder);
1641 1642 1643 1644 1645 1646 1647

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1648
		rmls = lpcr_rmls(rma_size);
1649
		err = -EINVAL;
1650
		if (rmls < 0) {
1651
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1652
			goto out_srcu;
1653 1654 1655
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1674
		kvm->arch.lpcr = lpcr;
1675
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1676 1677
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1678
		/* Initialize phys addrs of pages in RMO */
1679 1680
		npages = ri->npages;
		porder = __ilog2(npages);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1691 1692
	}

1693 1694 1695 1696
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1697 1698
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1699 1700 1701
 out:
	mutex_unlock(&kvm->lock);
	return err;
1702

1703 1704 1705
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1706 1707 1708 1709
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
1710
	unsigned long lpcr, lpid;
1711

1712 1713 1714 1715 1716 1717
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
	if (lpid < 0)
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1718

1719
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1720 1721 1722

	kvm->arch.rma = NULL;

1723
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1738 1739 1740
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1741 1742
	}
	kvm->arch.lpcr = lpcr;
1743

1744
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1745
	spin_lock_init(&kvm->arch.slot_phys_lock);
1746 1747 1748 1749 1750 1751 1752

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

1753
	return 0;
1754 1755 1756 1757
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1758 1759
	uninhibit_secondary_onlining();

1760 1761 1762 1763 1764
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1765
	kvmppc_free_hpt(kvm);
1766
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

1781
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1782 1783 1784 1785
{
	return EMULATE_FAIL;
}

1786
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);