volumes.c 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"

struct map_lookup {
	struct btrfs_device *dev;
	u64 physical;
};

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
				struct btrfs_device *device,
				struct btrfs_path *path,
				u64 num_bytes, u64 *start)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

134
	if (*start + num_bytes > search_end) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
			   struct btrfs_device *device,
			   u64 owner, u64 num_bytes, u64 *start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
162
	if (ret) {
163
		goto err;
164
	}
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
	btrfs_set_dev_extent_owner(leaf, extent, owner);
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

static int find_next_chunk(struct btrfs_root *root, u64 *objectid)
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

	key.objectid = (u64)-1;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
		*objectid = 0;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.objectid + found_key.offset;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
			   u64 *objectid)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
	u64 free_devid;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
281
				      sizeof(*dev_item));
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
int btrfs_update_device(struct btrfs_trans_handle *trans,
			struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
377
		      u64 *num_bytes, u64 type)
378 379 380 381 382 383
{
	u64 dev_offset;
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
384
	struct list_head private_devs;
385
	struct list_head *dev_list = &extent_root->fs_info->devices;
386
	struct list_head *cur;
387 388 389 390 391
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
392 393 394 395
	u64 avail;
	u64 max_avail = 0;
	int num_stripes = 1;
	int looped = 0;
396
	int ret;
397
	int index;
398 399
	struct btrfs_key key;

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	if (list_empty(dev_list))
		return -ENOSPC;
again:
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		avail = device->total_bytes - device->bytes_used;
		cur = cur->next;
		if (avail > max_avail)
			max_avail = avail;
		if (avail >= calc_size) {
			list_move_tail(&device->dev_list, &private_devs);
			index++;
		}
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
		return -ENOSPC;
	}
429 430 431 432 433 434 435 436 437 438 439 440

	ret = find_next_chunk(chunk_root, &key.objectid);
	if (ret)
		return ret;

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
	if (!chunk)
		return -ENOMEM;

	stripes = &chunk->stripe;

	*num_bytes = calc_size;
441
	index = 0;
442
	while(index < num_stripes) {
443 444 445 446
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
		device = list_entry(cur, struct btrfs_device, dev_list);
		list_move_tail(&device->dev_list, dev_list);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

		ret = btrfs_alloc_dev_extent(trans, device,
					     key.objectid,
					     calc_size, &dev_offset);
		BUG_ON(ret);

		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

		btrfs_set_stack_stripe_devid(stripes + index, device->devid);
		btrfs_set_stack_stripe_offset(stripes + index, dev_offset);
		physical = dev_offset;
		index++;
	}
462
	BUG_ON(!list_empty(&private_devs));
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

	/* key.objectid was set above */
	key.offset = *num_bytes;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
	btrfs_set_stack_chunk_stripe_len(chunk, 64 * 1024);
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, extent_root->sectorsize);
	btrfs_set_stack_chunk_io_width(chunk, extent_root->sectorsize);
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
	*start = key.objectid;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	map = kmalloc(sizeof(*map), GFP_NOFS);
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = key.objectid;
	em->len = key.offset;
	em->block_start = 0;

	map->physical = physical;
	map->dev = device;

	if (!map->dev) {
		kfree(map);
		free_extent_map(em);
		return -EIO;
	}
	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	BUG_ON(ret);
	spin_unlock(&em_tree->lock);
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

int btrfs_map_block(struct btrfs_mapping_tree *map_tree,
		    u64 logical, u64 *phys, u64 *length,
		    struct btrfs_device **dev)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;


	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
	*phys = map->physical + offset;
	*length = em->len - offset;
	*dev = map->dev;
	free_extent_map(em);
	spin_unlock(&em_tree->lock);
	return 0;
}

int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio)
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
	u64 logical = bio->bi_sector << 9;
	u64 physical;
	u64 length = 0;
	u64 map_length;
	struct bio_vec *bvec;
	int i;
	int ret;

	bio_for_each_segment(bvec, bio, i) {
		length += bvec->bv_len;
	}
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
	ret = btrfs_map_block(map_tree, logical, &physical, &map_length, &dev);
581 582 583 584 585
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu physical %Lu "
		       "len %Lu\n", logical, length, physical, map_length);
		BUG();
	}
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	BUG_ON(map_length < length);
	bio->bi_sector = physical >> 9;
	bio->bi_bdev = dev->bdev;
	submit_bio(rw, bio);
	return 0;
}

struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
{
	struct btrfs_device *dev;
	struct list_head *cur = root->fs_info->devices.next;
	struct list_head *head = &root->fs_info->devices;

	while(cur != head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
		if (dev->devid == devid)
			return dev;
		cur = cur->next;
	}
	return NULL;
}

static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	int ret;

	logical = key->objectid;
	length = key->offset;
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		spin_unlock(&map_tree->map_tree.lock);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}
	spin_unlock(&map_tree->map_tree.lock);

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	map = kmalloc(sizeof(*map), GFP_NOFS);
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

	map->physical = btrfs_stripe_offset_nr(leaf, chunk, 0);
	devid = btrfs_stripe_devid_nr(leaf, chunk, 0);
	map->dev = btrfs_find_device(root, devid);
	if (!map->dev) {
		kfree(map);
		free_extent_map(em);
		return -EIO;
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	BUG_ON(ret);
	spin_unlock(&map_tree->map_tree.lock);
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);

	return 0;
}

691
static int read_one_dev(struct btrfs_root *root,
692 693 694 695 696 697 698 699
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;

	devid = btrfs_device_id(leaf, dev_item);
700 701 702 703 704 705 706
	device = btrfs_find_device(root, devid);
	if (!device) {
		device = kmalloc(sizeof(*device), GFP_NOFS);
		if (!device)
			return -ENOMEM;
		list_add(&device->dev_list, &root->fs_info->devices);
	}
707 708 709 710 711 712 713 714 715 716 717 718 719 720

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
	device->bdev = root->fs_info->sb->s_bdev;
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

721 722 723 724 725 726 727 728 729
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct extent_buffer *sb = root->fs_info->sb_buffer;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u8 *ptr;
	unsigned long sb_ptr;
	u32 cur;
	int ret;

	array_size = btrfs_super_sys_array_size(super_copy);

	/*
	 * we do this loop twice, once for the device items and
	 * once for all of the chunks.  This way there are device
	 * structs filled in for every chunk
	 */
	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);
		ptr += len;
		sb_ptr += len;
		cur += len;

765
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
766
			chunk = (struct btrfs_chunk *)sb_ptr;
767 768
			ret = read_one_chunk(root, &key, sb, chunk);
			BUG_ON(ret);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
			BUG();
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
	return 0;
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
824
				ret = read_one_dev(root, leaf, dev_item);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}