c2.c 32.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Copyright (c) 2005 Ammasso, Inc. All rights reserved.
 * Copyright (c) 2005 Open Grid Computing, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/inetdevice.h>
39
#include <linux/interrupt.h>
40 41 42 43 44 45 46 47 48 49
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
50
#include <linux/slab.h>
51
#include <linux/prefetch.h>
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>

#include <rdma/ib_smi.h>
#include "c2.h"
#include "c2_provider.h"

MODULE_AUTHOR("Tom Tucker <tom@opengridcomputing.com>");
MODULE_DESCRIPTION("Ammasso AMSO1100 Low-level iWARP Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
    | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;

static int debug = -1;		/* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static int c2_up(struct net_device *netdev);
static int c2_down(struct net_device *netdev);
static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static void c2_tx_interrupt(struct net_device *netdev);
static void c2_rx_interrupt(struct net_device *netdev);
78
static irqreturn_t c2_interrupt(int irq, void *dev_id);
79 80 81 82 83 84 85 86 87 88 89 90 91
static void c2_tx_timeout(struct net_device *netdev);
static int c2_change_mtu(struct net_device *netdev, int new_mtu);
static void c2_reset(struct c2_port *c2_port);

static struct pci_device_id c2_pci_table[] = {
	{ PCI_DEVICE(0x18b8, 0xb001) },
	{ 0 }
};

MODULE_DEVICE_TABLE(pci, c2_pci_table);

static void c2_print_macaddr(struct net_device *netdev)
{
92
	pr_debug("%s: MAC %pM, IRQ %u\n", netdev->name, netdev->dev_addr, netdev->irq);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
}

static void c2_set_rxbufsize(struct c2_port *c2_port)
{
	struct net_device *netdev = c2_port->netdev;

	if (netdev->mtu > RX_BUF_SIZE)
		c2_port->rx_buf_size =
		    netdev->mtu + ETH_HLEN + sizeof(struct c2_rxp_hdr) +
		    NET_IP_ALIGN;
	else
		c2_port->rx_buf_size = sizeof(struct c2_rxp_hdr) + RX_BUF_SIZE;
}

/*
 * Allocate TX ring elements and chain them together.
 * One-to-one association of adapter descriptors with ring elements.
 */
static int c2_tx_ring_alloc(struct c2_ring *tx_ring, void *vaddr,
			    dma_addr_t base, void __iomem * mmio_txp_ring)
{
	struct c2_tx_desc *tx_desc;
	struct c2_txp_desc __iomem *txp_desc;
	struct c2_element *elem;
	int i;

	tx_ring->start = kmalloc(sizeof(*elem) * tx_ring->count, GFP_KERNEL);
	if (!tx_ring->start)
		return -ENOMEM;

	elem = tx_ring->start;
	tx_desc = vaddr;
	txp_desc = mmio_txp_ring;
	for (i = 0; i < tx_ring->count; i++, elem++, tx_desc++, txp_desc++) {
		tx_desc->len = 0;
		tx_desc->status = 0;

		/* Set TXP_HTXD_UNINIT */
131
		__raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL),
132 133
			     (void __iomem *) txp_desc + C2_TXP_ADDR);
		__raw_writew(0, (void __iomem *) txp_desc + C2_TXP_LEN);
134
		__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT),
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
			     (void __iomem *) txp_desc + C2_TXP_FLAGS);

		elem->skb = NULL;
		elem->ht_desc = tx_desc;
		elem->hw_desc = txp_desc;

		if (i == tx_ring->count - 1) {
			elem->next = tx_ring->start;
			tx_desc->next_offset = base;
		} else {
			elem->next = elem + 1;
			tx_desc->next_offset =
			    base + (i + 1) * sizeof(*tx_desc);
		}
	}

	tx_ring->to_use = tx_ring->to_clean = tx_ring->start;

	return 0;
}

/*
 * Allocate RX ring elements and chain them together.
 * One-to-one association of adapter descriptors with ring elements.
 */
static int c2_rx_ring_alloc(struct c2_ring *rx_ring, void *vaddr,
			    dma_addr_t base, void __iomem * mmio_rxp_ring)
{
	struct c2_rx_desc *rx_desc;
	struct c2_rxp_desc __iomem *rxp_desc;
	struct c2_element *elem;
	int i;

	rx_ring->start = kmalloc(sizeof(*elem) * rx_ring->count, GFP_KERNEL);
	if (!rx_ring->start)
		return -ENOMEM;

	elem = rx_ring->start;
	rx_desc = vaddr;
	rxp_desc = mmio_rxp_ring;
	for (i = 0; i < rx_ring->count; i++, elem++, rx_desc++, rxp_desc++) {
		rx_desc->len = 0;
		rx_desc->status = 0;

		/* Set RXP_HRXD_UNINIT */
180
		__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_OK),
181 182 183
		       (void __iomem *) rxp_desc + C2_RXP_STATUS);
		__raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_COUNT);
		__raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_LEN);
184
		__raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL),
185
			     (void __iomem *) rxp_desc + C2_RXP_ADDR);
186
		__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT),
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
			     (void __iomem *) rxp_desc + C2_RXP_FLAGS);

		elem->skb = NULL;
		elem->ht_desc = rx_desc;
		elem->hw_desc = rxp_desc;

		if (i == rx_ring->count - 1) {
			elem->next = rx_ring->start;
			rx_desc->next_offset = base;
		} else {
			elem->next = elem + 1;
			rx_desc->next_offset =
			    base + (i + 1) * sizeof(*rx_desc);
		}
	}

	rx_ring->to_use = rx_ring->to_clean = rx_ring->start;

	return 0;
}

/* Setup buffer for receiving */
static inline int c2_rx_alloc(struct c2_port *c2_port, struct c2_element *elem)
{
	struct c2_dev *c2dev = c2_port->c2dev;
	struct c2_rx_desc *rx_desc = elem->ht_desc;
	struct sk_buff *skb;
	dma_addr_t mapaddr;
	u32 maplen;
	struct c2_rxp_hdr *rxp_hdr;

	skb = dev_alloc_skb(c2_port->rx_buf_size);
	if (unlikely(!skb)) {
		pr_debug("%s: out of memory for receive\n",
			c2_port->netdev->name);
		return -ENOMEM;
	}

	/* Zero out the rxp hdr in the sk_buff */
	memset(skb->data, 0, sizeof(*rxp_hdr));

	skb->dev = c2_port->netdev;

	maplen = c2_port->rx_buf_size;
	mapaddr =
	    pci_map_single(c2dev->pcidev, skb->data, maplen,
			   PCI_DMA_FROMDEVICE);

	/* Set the sk_buff RXP_header to RXP_HRXD_READY */
	rxp_hdr = (struct c2_rxp_hdr *) skb->data;
	rxp_hdr->flags = RXP_HRXD_READY;

	__raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
240
	__raw_writew((__force u16) cpu_to_be16((u16) maplen - sizeof(*rxp_hdr)),
241
		     elem->hw_desc + C2_RXP_LEN);
242 243 244
	__raw_writeq((__force u64) cpu_to_be64(mapaddr), elem->hw_desc + C2_RXP_ADDR);
	__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
		     elem->hw_desc + C2_RXP_FLAGS);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

	elem->skb = skb;
	elem->mapaddr = mapaddr;
	elem->maplen = maplen;
	rx_desc->len = maplen;

	return 0;
}

/*
 * Allocate buffers for the Rx ring
 * For receive:  rx_ring.to_clean is next received frame
 */
static int c2_rx_fill(struct c2_port *c2_port)
{
	struct c2_ring *rx_ring = &c2_port->rx_ring;
	struct c2_element *elem;
	int ret = 0;

	elem = rx_ring->start;
	do {
		if (c2_rx_alloc(c2_port, elem)) {
			ret = 1;
			break;
		}
	} while ((elem = elem->next) != rx_ring->start);

	rx_ring->to_clean = rx_ring->start;
	return ret;
}

/* Free all buffers in RX ring, assumes receiver stopped */
static void c2_rx_clean(struct c2_port *c2_port)
{
	struct c2_dev *c2dev = c2_port->c2dev;
	struct c2_ring *rx_ring = &c2_port->rx_ring;
	struct c2_element *elem;
	struct c2_rx_desc *rx_desc;

	elem = rx_ring->start;
	do {
		rx_desc = elem->ht_desc;
		rx_desc->len = 0;

		__raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
		__raw_writew(0, elem->hw_desc + C2_RXP_COUNT);
		__raw_writew(0, elem->hw_desc + C2_RXP_LEN);
292
		__raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL),
293
			     elem->hw_desc + C2_RXP_ADDR);
294
		__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT),
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
			     elem->hw_desc + C2_RXP_FLAGS);

		if (elem->skb) {
			pci_unmap_single(c2dev->pcidev, elem->mapaddr,
					 elem->maplen, PCI_DMA_FROMDEVICE);
			dev_kfree_skb(elem->skb);
			elem->skb = NULL;
		}
	} while ((elem = elem->next) != rx_ring->start);
}

static inline int c2_tx_free(struct c2_dev *c2dev, struct c2_element *elem)
{
	struct c2_tx_desc *tx_desc = elem->ht_desc;

	tx_desc->len = 0;

	pci_unmap_single(c2dev->pcidev, elem->mapaddr, elem->maplen,
			 PCI_DMA_TODEVICE);

	if (elem->skb) {
		dev_kfree_skb_any(elem->skb);
		elem->skb = NULL;
	}

	return 0;
}

/* Free all buffers in TX ring, assumes transmitter stopped */
static void c2_tx_clean(struct c2_port *c2_port)
{
	struct c2_ring *tx_ring = &c2_port->tx_ring;
	struct c2_element *elem;
	struct c2_txp_desc txp_htxd;
	int retry;
	unsigned long flags;

	spin_lock_irqsave(&c2_port->tx_lock, flags);

	elem = tx_ring->start;

	do {
		retry = 0;
		do {
			txp_htxd.flags =
			    readw(elem->hw_desc + C2_TXP_FLAGS);

			if (txp_htxd.flags == TXP_HTXD_READY) {
				retry = 1;
				__raw_writew(0,
					     elem->hw_desc + C2_TXP_LEN);
				__raw_writeq(0,
					     elem->hw_desc + C2_TXP_ADDR);
348
				__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_DONE),
349
					     elem->hw_desc + C2_TXP_FLAGS);
350
				c2_port->netdev->stats.tx_dropped++;
351 352 353 354
				break;
			} else {
				__raw_writew(0,
					     elem->hw_desc + C2_TXP_LEN);
355
				__raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL),
356
					     elem->hw_desc + C2_TXP_ADDR);
357
				__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT),
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
					     elem->hw_desc + C2_TXP_FLAGS);
			}

			c2_tx_free(c2_port->c2dev, elem);

		} while ((elem = elem->next) != tx_ring->start);
	} while (retry);

	c2_port->tx_avail = c2_port->tx_ring.count - 1;
	c2_port->c2dev->cur_tx = tx_ring->to_use - tx_ring->start;

	if (c2_port->tx_avail > MAX_SKB_FRAGS + 1)
		netif_wake_queue(c2_port->netdev);

	spin_unlock_irqrestore(&c2_port->tx_lock, flags);
}

/*
 * Process transmit descriptors marked 'DONE' by the firmware,
 * freeing up their unneeded sk_buffs.
 */
static void c2_tx_interrupt(struct net_device *netdev)
{
	struct c2_port *c2_port = netdev_priv(netdev);
	struct c2_dev *c2dev = c2_port->c2dev;
	struct c2_ring *tx_ring = &c2_port->tx_ring;
	struct c2_element *elem;
	struct c2_txp_desc txp_htxd;

	spin_lock(&c2_port->tx_lock);

	for (elem = tx_ring->to_clean; elem != tx_ring->to_use;
	     elem = elem->next) {
		txp_htxd.flags =
392
		    be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_FLAGS));
393 394 395 396 397 398 399

		if (txp_htxd.flags != TXP_HTXD_DONE)
			break;

		if (netif_msg_tx_done(c2_port)) {
			/* PCI reads are expensive in fast path */
			txp_htxd.len =
400
			    be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_LEN));
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
			pr_debug("%s: tx done slot %3Zu status 0x%x len "
				"%5u bytes\n",
				netdev->name, elem - tx_ring->start,
				txp_htxd.flags, txp_htxd.len);
		}

		c2_tx_free(c2dev, elem);
		++(c2_port->tx_avail);
	}

	tx_ring->to_clean = elem;

	if (netif_queue_stopped(netdev)
	    && c2_port->tx_avail > MAX_SKB_FRAGS + 1)
		netif_wake_queue(netdev);

	spin_unlock(&c2_port->tx_lock);
}

static void c2_rx_error(struct c2_port *c2_port, struct c2_element *elem)
{
	struct c2_rx_desc *rx_desc = elem->ht_desc;
	struct c2_rxp_hdr *rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data;

	if (rxp_hdr->status != RXP_HRXD_OK ||
	    rxp_hdr->len > (rx_desc->len - sizeof(*rxp_hdr))) {
		pr_debug("BAD RXP_HRXD\n");
		pr_debug("  rx_desc : %p\n", rx_desc);
		pr_debug("    index : %Zu\n",
			elem - c2_port->rx_ring.start);
		pr_debug("    len   : %u\n", rx_desc->len);
		pr_debug("  rxp_hdr : %p [PA %p]\n", rxp_hdr,
			(void *) __pa((unsigned long) rxp_hdr));
		pr_debug("    flags : 0x%x\n", rxp_hdr->flags);
		pr_debug("    status: 0x%x\n", rxp_hdr->status);
		pr_debug("    len   : %u\n", rxp_hdr->len);
		pr_debug("    rsvd  : 0x%x\n", rxp_hdr->rsvd);
	}

	/* Setup the skb for reuse since we're dropping this pkt */
441 442
	elem->skb->data = elem->skb->head;
	skb_reset_tail_pointer(elem->skb);
443 444 445 446 447 448 449

	/* Zero out the rxp hdr in the sk_buff */
	memset(elem->skb->data, 0, sizeof(*rxp_hdr));

	/* Write the descriptor to the adapter's rx ring */
	__raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
	__raw_writew(0, elem->hw_desc + C2_RXP_COUNT);
450
	__raw_writew((__force u16) cpu_to_be16((u16) elem->maplen - sizeof(*rxp_hdr)),
451
		     elem->hw_desc + C2_RXP_LEN);
452 453 454 455
	__raw_writeq((__force u64) cpu_to_be64(elem->mapaddr),
		     elem->hw_desc + C2_RXP_ADDR);
	__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
		     elem->hw_desc + C2_RXP_FLAGS);
456 457

	pr_debug("packet dropped\n");
458
	c2_port->netdev->stats.rx_dropped++;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static void c2_rx_interrupt(struct net_device *netdev)
{
	struct c2_port *c2_port = netdev_priv(netdev);
	struct c2_dev *c2dev = c2_port->c2dev;
	struct c2_ring *rx_ring = &c2_port->rx_ring;
	struct c2_element *elem;
	struct c2_rx_desc *rx_desc;
	struct c2_rxp_hdr *rxp_hdr;
	struct sk_buff *skb;
	dma_addr_t mapaddr;
	u32 maplen, buflen;
	unsigned long flags;

	spin_lock_irqsave(&c2dev->lock, flags);

	/* Begin where we left off */
	rx_ring->to_clean = rx_ring->start + c2dev->cur_rx;

	for (elem = rx_ring->to_clean; elem->next != rx_ring->to_clean;
	     elem = elem->next) {
		rx_desc = elem->ht_desc;
		mapaddr = elem->mapaddr;
		maplen = elem->maplen;
		skb = elem->skb;
		rxp_hdr = (struct c2_rxp_hdr *) skb->data;

		if (rxp_hdr->flags != RXP_HRXD_DONE)
			break;
		buflen = rxp_hdr->len;

		/* Sanity check the RXP header */
		if (rxp_hdr->status != RXP_HRXD_OK ||
		    buflen > (rx_desc->len - sizeof(*rxp_hdr))) {
			c2_rx_error(c2_port, elem);
			continue;
		}

		/*
		 * Allocate and map a new skb for replenishing the host
		 * RX desc
		 */
		if (c2_rx_alloc(c2_port, elem)) {
			c2_rx_error(c2_port, elem);
			continue;
		}

		/* Unmap the old skb */
		pci_unmap_single(c2dev->pcidev, mapaddr, maplen,
				 PCI_DMA_FROMDEVICE);

		prefetch(skb->data);

		/*
		 * Skip past the leading 8 bytes comprising of the
		 * "struct c2_rxp_hdr", prepended by the adapter
		 * to the usual Ethernet header ("struct ethhdr"),
		 * to the start of the raw Ethernet packet.
		 *
		 * Fix up the various fields in the sk_buff before
		 * passing it up to netif_rx(). The transfer size
		 * (in bytes) specified by the adapter len field of
		 * the "struct rxp_hdr_t" does NOT include the
		 * "sizeof(struct c2_rxp_hdr)".
		 */
		skb->data += sizeof(*rxp_hdr);
526
		skb_set_tail_pointer(skb, buflen);
527 528 529 530 531
		skb->len = buflen;
		skb->protocol = eth_type_trans(skb, netdev);

		netif_rx(skb);

532 533
		netdev->stats.rx_packets++;
		netdev->stats.rx_bytes += buflen;
534 535 536 537 538 539 540 541 542 543 544 545 546
	}

	/* Save where we left off */
	rx_ring->to_clean = elem;
	c2dev->cur_rx = elem - rx_ring->start;
	C2_SET_CUR_RX(c2dev, c2dev->cur_rx);

	spin_unlock_irqrestore(&c2dev->lock, flags);
}

/*
 * Handle netisr0 TX & RX interrupts.
 */
547
static irqreturn_t c2_interrupt(int irq, void *dev_id)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	unsigned int netisr0, dmaisr;
	int handled = 0;
	struct c2_dev *c2dev = (struct c2_dev *) dev_id;

	/* Process CCILNET interrupts */
	netisr0 = readl(c2dev->regs + C2_NISR0);
	if (netisr0) {

		/*
		 * There is an issue with the firmware that always
		 * provides the status of RX for both TX & RX
		 * interrupts.  So process both queues here.
		 */
		c2_rx_interrupt(c2dev->netdev);
		c2_tx_interrupt(c2dev->netdev);

		/* Clear the interrupt */
		writel(netisr0, c2dev->regs + C2_NISR0);
		handled++;
	}

	/* Process RNIC interrupts */
	dmaisr = readl(c2dev->regs + C2_DISR);
	if (dmaisr) {
		writel(dmaisr, c2dev->regs + C2_DISR);
		c2_rnic_interrupt(c2dev);
		handled++;
	}

	if (handled) {
		return IRQ_HANDLED;
	} else {
		return IRQ_NONE;
	}
}

static int c2_up(struct net_device *netdev)
{
	struct c2_port *c2_port = netdev_priv(netdev);
	struct c2_dev *c2dev = c2_port->c2dev;
	struct c2_element *elem;
	struct c2_rxp_hdr *rxp_hdr;
	struct in_device *in_dev;
	size_t rx_size, tx_size;
	int ret, i;
	unsigned int netimr0;

	if (netif_msg_ifup(c2_port))
		pr_debug("%s: enabling interface\n", netdev->name);

	/* Set the Rx buffer size based on MTU */
	c2_set_rxbufsize(c2_port);

	/* Allocate DMA'able memory for Tx/Rx host descriptor rings */
	rx_size = c2_port->rx_ring.count * sizeof(struct c2_rx_desc);
	tx_size = c2_port->tx_ring.count * sizeof(struct c2_tx_desc);

	c2_port->mem_size = tx_size + rx_size;
607 608
	c2_port->mem = pci_zalloc_consistent(c2dev->pcidev, c2_port->mem_size,
					     &c2_port->dma);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	if (c2_port->mem == NULL) {
		pr_debug("Unable to allocate memory for "
			"host descriptor rings\n");
		return -ENOMEM;
	}

	/* Create the Rx host descriptor ring */
	if ((ret =
	     c2_rx_ring_alloc(&c2_port->rx_ring, c2_port->mem, c2_port->dma,
			      c2dev->mmio_rxp_ring))) {
		pr_debug("Unable to create RX ring\n");
		goto bail0;
	}

	/* Allocate Rx buffers for the host descriptor ring */
	if (c2_rx_fill(c2_port)) {
		pr_debug("Unable to fill RX ring\n");
		goto bail1;
	}

	/* Create the Tx host descriptor ring */
	if ((ret = c2_tx_ring_alloc(&c2_port->tx_ring, c2_port->mem + rx_size,
				    c2_port->dma + rx_size,
				    c2dev->mmio_txp_ring))) {
		pr_debug("Unable to create TX ring\n");
		goto bail1;
	}

	/* Set the TX pointer to where we left off */
	c2_port->tx_avail = c2_port->tx_ring.count - 1;
	c2_port->tx_ring.to_use = c2_port->tx_ring.to_clean =
	    c2_port->tx_ring.start + c2dev->cur_tx;

	/* missing: Initialize MAC */

	BUG_ON(c2_port->tx_ring.to_use != c2_port->tx_ring.to_clean);

	/* Reset the adapter, ensures the driver is in sync with the RXP */
	c2_reset(c2_port);

	/* Reset the READY bit in the sk_buff RXP headers & adapter HRXDQ */
	for (i = 0, elem = c2_port->rx_ring.start; i < c2_port->rx_ring.count;
	     i++, elem++) {
		rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data;
		rxp_hdr->flags = 0;
654
		__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
			     elem->hw_desc + C2_RXP_FLAGS);
	}

	/* Enable network packets */
	netif_start_queue(netdev);

	/* Enable IRQ */
	writel(0, c2dev->regs + C2_IDIS);
	netimr0 = readl(c2dev->regs + C2_NIMR0);
	netimr0 &= ~(C2_PCI_HTX_INT | C2_PCI_HRX_INT);
	writel(netimr0, c2dev->regs + C2_NIMR0);

	/* Tell the stack to ignore arp requests for ipaddrs bound to
	 * other interfaces.  This is needed to prevent the host stack
	 * from responding to arp requests to the ipaddr bound on the
	 * rdma interface.
	 */
	in_dev = in_dev_get(netdev);
673
	IN_DEV_CONF_SET(in_dev, ARP_IGNORE, 1);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	in_dev_put(in_dev);

	return 0;

      bail1:
	c2_rx_clean(c2_port);
	kfree(c2_port->rx_ring.start);

      bail0:
	pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem,
			    c2_port->dma);

	return ret;
}

static int c2_down(struct net_device *netdev)
{
	struct c2_port *c2_port = netdev_priv(netdev);
	struct c2_dev *c2dev = c2_port->c2dev;

	if (netif_msg_ifdown(c2_port))
		pr_debug("%s: disabling interface\n",
			netdev->name);

	/* Wait for all the queued packets to get sent */
	c2_tx_interrupt(netdev);

	/* Disable network packets */
	netif_stop_queue(netdev);

	/* Disable IRQs by clearing the interrupt mask */
	writel(1, c2dev->regs + C2_IDIS);
	writel(0, c2dev->regs + C2_NIMR0);

	/* missing: Stop transmitter */

	/* missing: Stop receiver */

	/* Reset the adapter, ensures the driver is in sync with the RXP */
	c2_reset(c2_port);

	/* missing: Turn off LEDs here */

	/* Free all buffers in the host descriptor rings */
	c2_tx_clean(c2_port);
	c2_rx_clean(c2_port);

	/* Free the host descriptor rings */
	kfree(c2_port->rx_ring.start);
	kfree(c2_port->tx_ring.start);
	pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem,
			    c2_port->dma);

	return 0;
}

static void c2_reset(struct c2_port *c2_port)
{
	struct c2_dev *c2dev = c2_port->c2dev;
	unsigned int cur_rx = c2dev->cur_rx;

	/* Tell the hardware to quiesce */
	C2_SET_CUR_RX(c2dev, cur_rx | C2_PCI_HRX_QUI);

	/*
	 * The hardware will reset the C2_PCI_HRX_QUI bit once
	 * the RXP is quiesced.  Wait 2 seconds for this.
	 */
	ssleep(2);

	cur_rx = C2_GET_CUR_RX(c2dev);

	if (cur_rx & C2_PCI_HRX_QUI)
		pr_debug("c2_reset: failed to quiesce the hardware!\n");

	cur_rx &= ~C2_PCI_HRX_QUI;

	c2dev->cur_rx = cur_rx;

	pr_debug("Current RX: %u\n", c2dev->cur_rx);
}

static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct c2_port *c2_port = netdev_priv(netdev);
	struct c2_dev *c2dev = c2_port->c2dev;
	struct c2_ring *tx_ring = &c2_port->tx_ring;
	struct c2_element *elem;
	dma_addr_t mapaddr;
	u32 maplen;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&c2_port->tx_lock, flags);

	if (unlikely(c2_port->tx_avail < (skb_shinfo(skb)->nr_frags + 1))) {
		netif_stop_queue(netdev);
		spin_unlock_irqrestore(&c2_port->tx_lock, flags);

		pr_debug("%s: Tx ring full when queue awake!\n",
			netdev->name);
		return NETDEV_TX_BUSY;
	}

	maplen = skb_headlen(skb);
	mapaddr =
	    pci_map_single(c2dev->pcidev, skb->data, maplen, PCI_DMA_TODEVICE);

	elem = tx_ring->to_use;
	elem->skb = skb;
	elem->mapaddr = mapaddr;
	elem->maplen = maplen;

	/* Tell HW to xmit */
788 789 790 791 792 793
	__raw_writeq((__force u64) cpu_to_be64(mapaddr),
		     elem->hw_desc + C2_TXP_ADDR);
	__raw_writew((__force u16) cpu_to_be16(maplen),
		     elem->hw_desc + C2_TXP_LEN);
	__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY),
		     elem->hw_desc + C2_TXP_FLAGS);
794

795 796
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += maplen;
797 798 799 800

	/* Loop thru additional data fragments and queue them */
	if (skb_shinfo(skb)->nr_frags) {
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
E
Eric Dumazet 已提交
801 802
			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
			maplen = skb_frag_size(frag);
803
			mapaddr = skb_frag_dma_map(&c2dev->pcidev->dev, frag,
804
						   0, maplen, DMA_TO_DEVICE);
805 806 807 808 809 810
			elem = elem->next;
			elem->skb = NULL;
			elem->mapaddr = mapaddr;
			elem->maplen = maplen;

			/* Tell HW to xmit */
811
			__raw_writeq((__force u64) cpu_to_be64(mapaddr),
812
				     elem->hw_desc + C2_TXP_ADDR);
813
			__raw_writew((__force u16) cpu_to_be16(maplen),
814
				     elem->hw_desc + C2_TXP_LEN);
815
			__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY),
816 817
				     elem->hw_desc + C2_TXP_FLAGS);

818 819
			netdev->stats.tx_packets++;
			netdev->stats.tx_bytes += maplen;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		}
	}

	tx_ring->to_use = elem->next;
	c2_port->tx_avail -= (skb_shinfo(skb)->nr_frags + 1);

	if (c2_port->tx_avail <= MAX_SKB_FRAGS + 1) {
		netif_stop_queue(netdev);
		if (netif_msg_tx_queued(c2_port))
			pr_debug("%s: transmit queue full\n",
				netdev->name);
	}

	spin_unlock_irqrestore(&c2_port->tx_lock, flags);

	netdev->trans_start = jiffies;

	return NETDEV_TX_OK;
}

static void c2_tx_timeout(struct net_device *netdev)
{
	struct c2_port *c2_port = netdev_priv(netdev);

	if (netif_msg_timer(c2_port))
		pr_debug("%s: tx timeout\n", netdev->name);

	c2_tx_clean(c2_port);
}

static int c2_change_mtu(struct net_device *netdev, int new_mtu)
{
	int ret = 0;

	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
		return -EINVAL;

	netdev->mtu = new_mtu;

	if (netif_running(netdev)) {
		c2_down(netdev);

		c2_up(netdev);
	}

	return ret;
}

868 869 870 871 872 873 874 875 876 877
static const struct net_device_ops c2_netdev = {
	.ndo_open 		= c2_up,
	.ndo_stop 		= c2_down,
	.ndo_start_xmit		= c2_xmit_frame,
	.ndo_tx_timeout		= c2_tx_timeout,
	.ndo_change_mtu		= c2_change_mtu,
	.ndo_set_mac_address 	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
};

878 879 880 881 882 883 884 885 886 887 888 889 890 891
/* Initialize network device */
static struct net_device *c2_devinit(struct c2_dev *c2dev,
				     void __iomem * mmio_addr)
{
	struct c2_port *c2_port = NULL;
	struct net_device *netdev = alloc_etherdev(sizeof(*c2_port));

	if (!netdev) {
		pr_debug("c2_port etherdev alloc failed");
		return NULL;
	}

	SET_NETDEV_DEV(netdev, &c2dev->pcidev->dev);

892
	netdev->netdev_ops = &c2_netdev;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	netdev->watchdog_timeo = C2_TX_TIMEOUT;
	netdev->irq = c2dev->pcidev->irq;

	c2_port = netdev_priv(netdev);
	c2_port->netdev = netdev;
	c2_port->c2dev = c2dev;
	c2_port->msg_enable = netif_msg_init(debug, default_msg);
	c2_port->tx_ring.count = C2_NUM_TX_DESC;
	c2_port->rx_ring.count = C2_NUM_RX_DESC;

	spin_lock_init(&c2_port->tx_lock);

	/* Copy our 48-bit ethernet hardware address */
	memcpy_fromio(netdev->dev_addr, mmio_addr + C2_REGS_ENADDR, 6);

	/* Validate the MAC address */
	if (!is_valid_ether_addr(netdev->dev_addr)) {
		pr_debug("Invalid MAC Address\n");
		c2_print_macaddr(netdev);
		free_netdev(netdev);
		return NULL;
	}

	c2dev->netdev = netdev;

	return netdev;
}

921
static int c2_probe(struct pci_dev *pcidev, const struct pci_device_id *ent)
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
	int ret = 0, i;
	unsigned long reg0_start, reg0_flags, reg0_len;
	unsigned long reg2_start, reg2_flags, reg2_len;
	unsigned long reg4_start, reg4_flags, reg4_len;
	unsigned kva_map_size;
	struct net_device *netdev = NULL;
	struct c2_dev *c2dev = NULL;
	void __iomem *mmio_regs = NULL;

	printk(KERN_INFO PFX "AMSO1100 Gigabit Ethernet driver v%s loaded\n",
		DRV_VERSION);

	/* Enable PCI device */
	ret = pci_enable_device(pcidev);
	if (ret) {
		printk(KERN_ERR PFX "%s: Unable to enable PCI device\n",
			pci_name(pcidev));
		goto bail0;
	}

	reg0_start = pci_resource_start(pcidev, BAR_0);
	reg0_len = pci_resource_len(pcidev, BAR_0);
	reg0_flags = pci_resource_flags(pcidev, BAR_0);

	reg2_start = pci_resource_start(pcidev, BAR_2);
	reg2_len = pci_resource_len(pcidev, BAR_2);
	reg2_flags = pci_resource_flags(pcidev, BAR_2);

	reg4_start = pci_resource_start(pcidev, BAR_4);
	reg4_len = pci_resource_len(pcidev, BAR_4);
	reg4_flags = pci_resource_flags(pcidev, BAR_4);

	pr_debug("BAR0 size = 0x%lX bytes\n", reg0_len);
	pr_debug("BAR2 size = 0x%lX bytes\n", reg2_len);
	pr_debug("BAR4 size = 0x%lX bytes\n", reg4_len);

	/* Make sure PCI base addr are MMIO */
	if (!(reg0_flags & IORESOURCE_MEM) ||
	    !(reg2_flags & IORESOURCE_MEM) || !(reg4_flags & IORESOURCE_MEM)) {
		printk(KERN_ERR PFX "PCI regions not an MMIO resource\n");
		ret = -ENODEV;
		goto bail1;
	}

	/* Check for weird/broken PCI region reporting */
	if ((reg0_len < C2_REG0_SIZE) ||
	    (reg2_len < C2_REG2_SIZE) || (reg4_len < C2_REG4_SIZE)) {
		printk(KERN_ERR PFX "Invalid PCI region sizes\n");
		ret = -ENODEV;
		goto bail1;
	}

	/* Reserve PCI I/O and memory resources */
	ret = pci_request_regions(pcidev, DRV_NAME);
	if (ret) {
		printk(KERN_ERR PFX "%s: Unable to request regions\n",
			pci_name(pcidev));
		goto bail1;
	}

	if ((sizeof(dma_addr_t) > 4)) {
984
		ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(64));
985 986 987 988 989
		if (ret < 0) {
			printk(KERN_ERR PFX "64b DMA configuration failed\n");
			goto bail2;
		}
	} else {
990
		ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32));
991 992 993 994 995 996 997 998 999 1000 1001 1002
		if (ret < 0) {
			printk(KERN_ERR PFX "32b DMA configuration failed\n");
			goto bail2;
		}
	}

	/* Enables bus-mastering on the device */
	pci_set_master(pcidev);

	/* Remap the adapter PCI registers in BAR4 */
	mmio_regs = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET,
				    sizeof(struct c2_adapter_pci_regs));
1003
	if (!mmio_regs) {
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		printk(KERN_ERR PFX
			"Unable to remap adapter PCI registers in BAR4\n");
		ret = -EIO;
		goto bail2;
	}

	/* Validate PCI regs magic */
	for (i = 0; i < sizeof(c2_magic); i++) {
		if (c2_magic[i] != readb(mmio_regs + C2_REGS_MAGIC + i)) {
			printk(KERN_ERR PFX "Downlevel Firmware boot loader "
				"[%d/%Zd: got 0x%x, exp 0x%x]. Use the cc_flash "
			       "utility to update your boot loader\n",
				i + 1, sizeof(c2_magic),
				readb(mmio_regs + C2_REGS_MAGIC + i),
				c2_magic[i]);
			printk(KERN_ERR PFX "Adapter not claimed\n");
			iounmap(mmio_regs);
			ret = -EIO;
			goto bail2;
		}
	}

	/* Validate the adapter version */
1027
	if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)) != C2_VERSION) {
1028 1029
		printk(KERN_ERR PFX "Version mismatch "
			"[fw=%u, c2=%u], Adapter not claimed\n",
1030
			be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)),
1031 1032 1033 1034 1035 1036 1037
			C2_VERSION);
		ret = -EINVAL;
		iounmap(mmio_regs);
		goto bail2;
	}

	/* Validate the adapter IVN */
1038
	if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)) != C2_IVN) {
1039 1040 1041
		printk(KERN_ERR PFX "Downlevel FIrmware level. You should be using "
		       "the OpenIB device support kit. "
		       "[fw=0x%x, c2=0x%x], Adapter not claimed\n",
1042 1043
		       be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)),
		       C2_IVN);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		ret = -EINVAL;
		iounmap(mmio_regs);
		goto bail2;
	}

	/* Allocate hardware structure */
	c2dev = (struct c2_dev *) ib_alloc_device(sizeof(*c2dev));
	if (!c2dev) {
		printk(KERN_ERR PFX "%s: Unable to alloc hardware struct\n",
			pci_name(pcidev));
		ret = -ENOMEM;
		iounmap(mmio_regs);
		goto bail2;
	}

	memset(c2dev, 0, sizeof(*c2dev));
	spin_lock_init(&c2dev->lock);
	c2dev->pcidev = pcidev;
	c2dev->cur_tx = 0;

	/* Get the last RX index */
	c2dev->cur_rx =
1066
	    (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_HRX_CUR)) -
1067 1068 1069
	     0xffffc000) / sizeof(struct c2_rxp_desc);

	/* Request an interrupt line for the driver */
1070
	ret = request_irq(pcidev->irq, c2_interrupt, IRQF_SHARED, DRV_NAME, c2dev);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	if (ret) {
		printk(KERN_ERR PFX "%s: requested IRQ %u is busy\n",
			pci_name(pcidev), pcidev->irq);
		iounmap(mmio_regs);
		goto bail3;
	}

	/* Set driver specific data */
	pci_set_drvdata(pcidev, c2dev);

	/* Initialize network device */
	if ((netdev = c2_devinit(c2dev, mmio_regs)) == NULL) {
1083
		ret = -ENOMEM;
1084 1085 1086 1087 1088
		iounmap(mmio_regs);
		goto bail4;
	}

	/* Save off the actual size prior to unmapping mmio_regs */
1089
	kva_map_size = be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_PCI_WINSIZE));
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	/* Unmap the adapter PCI registers in BAR4 */
	iounmap(mmio_regs);

	/* Register network device */
	ret = register_netdev(netdev);
	if (ret) {
		printk(KERN_ERR PFX "Unable to register netdev, ret = %d\n",
			ret);
		goto bail5;
	}

	/* Disable network packets */
	netif_stop_queue(netdev);

	/* Remap the adapter HRXDQ PA space to kernel VA space */
	c2dev->mmio_rxp_ring = ioremap_nocache(reg4_start + C2_RXP_HRXDQ_OFFSET,
					       C2_RXP_HRXDQ_SIZE);
1108
	if (!c2dev->mmio_rxp_ring) {
1109 1110 1111 1112 1113 1114 1115 1116
		printk(KERN_ERR PFX "Unable to remap MMIO HRXDQ region\n");
		ret = -EIO;
		goto bail6;
	}

	/* Remap the adapter HTXDQ PA space to kernel VA space */
	c2dev->mmio_txp_ring = ioremap_nocache(reg4_start + C2_TXP_HTXDQ_OFFSET,
					       C2_TXP_HTXDQ_SIZE);
1117
	if (!c2dev->mmio_txp_ring) {
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		printk(KERN_ERR PFX "Unable to remap MMIO HTXDQ region\n");
		ret = -EIO;
		goto bail7;
	}

	/* Save off the current RX index in the last 4 bytes of the TXP Ring */
	C2_SET_CUR_RX(c2dev, c2dev->cur_rx);

	/* Remap the PCI registers in adapter BAR0 to kernel VA space */
	c2dev->regs = ioremap_nocache(reg0_start, reg0_len);
1128
	if (!c2dev->regs) {
1129 1130 1131 1132 1133 1134 1135 1136 1137
		printk(KERN_ERR PFX "Unable to remap BAR0\n");
		ret = -EIO;
		goto bail8;
	}

	/* Remap the PCI registers in adapter BAR4 to kernel VA space */
	c2dev->pa = reg4_start + C2_PCI_REGS_OFFSET;
	c2dev->kva = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET,
				     kva_map_size);
1138
	if (!c2dev->kva) {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		printk(KERN_ERR PFX "Unable to remap BAR4\n");
		ret = -EIO;
		goto bail9;
	}

	/* Print out the MAC address */
	c2_print_macaddr(netdev);

	ret = c2_rnic_init(c2dev);
	if (ret) {
		printk(KERN_ERR PFX "c2_rnic_init failed: %d\n", ret);
		goto bail10;
	}

1153 1154
	ret = c2_register_device(c2dev);
	if (ret)
1155
		goto bail10;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	return 0;

 bail10:
	iounmap(c2dev->kva);

 bail9:
	iounmap(c2dev->regs);

 bail8:
	iounmap(c2dev->mmio_txp_ring);

 bail7:
	iounmap(c2dev->mmio_rxp_ring);

 bail6:
	unregister_netdev(netdev);

 bail5:
	free_netdev(netdev);

 bail4:
	free_irq(pcidev->irq, c2dev);

 bail3:
	ib_dealloc_device(&c2dev->ibdev);

 bail2:
	pci_release_regions(pcidev);

 bail1:
	pci_disable_device(pcidev);

 bail0:
	return ret;
}

1193
static void c2_remove(struct pci_dev *pcidev)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
{
	struct c2_dev *c2dev = pci_get_drvdata(pcidev);
	struct net_device *netdev = c2dev->netdev;

	/* Unregister with OpenIB */
	c2_unregister_device(c2dev);

	/* Clean up the RNIC resources */
	c2_rnic_term(c2dev);

	/* Remove network device from the kernel */
	unregister_netdev(netdev);

	/* Free network device */
	free_netdev(netdev);

	/* Free the interrupt line */
	free_irq(pcidev->irq, c2dev);

	/* missing: Turn LEDs off here */

	/* Unmap adapter PA space */
	iounmap(c2dev->kva);
	iounmap(c2dev->regs);
	iounmap(c2dev->mmio_txp_ring);
	iounmap(c2dev->mmio_rxp_ring);

	/* Free the hardware structure */
	ib_dealloc_device(&c2dev->ibdev);

	/* Release reserved PCI I/O and memory resources */
	pci_release_regions(pcidev);

	/* Disable PCI device */
	pci_disable_device(pcidev);

	/* Clear driver specific data */
	pci_set_drvdata(pcidev, NULL);
}

static struct pci_driver c2_pci_driver = {
	.name = DRV_NAME,
	.id_table = c2_pci_table,
	.probe = c2_probe,
1238
	.remove = c2_remove,
1239 1240
};

1241
module_pci_driver(c2_pci_driver);