numa.c 38.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <linux/stop_machine.h>
26
#include <asm/sparsemem.h>
27
#include <asm/prom.h>
P
Paul Mackerras 已提交
28
#include <asm/smp.h>
29 30
#include <asm/firmware.h>
#include <asm/paca.h>
31
#include <asm/hvcall.h>
32
#include <asm/setup.h>
33
#include <asm/vdso.h>
L
Linus Torvalds 已提交
34 35 36

static int numa_enabled = 1;

37 38
static char *cmdline __initdata;

L
Linus Torvalds 已提交
39 40 41
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

42
int numa_cpu_lookup_table[NR_CPUS];
43
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
44
struct pglist_data *node_data[MAX_NUMNODES];
45 46

EXPORT_SYMBOL(numa_cpu_lookup_table);
47
EXPORT_SYMBOL(node_to_cpumask_map);
48 49
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
50
static int min_common_depth;
51
static int n_mem_addr_cells, n_mem_size_cells;
52 53 54 55 56 57
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const unsigned int *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
58

59 60 61 62
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
63
 * Note: cpumask_of_node() is not valid until after this is done.
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 */
static void __init setup_node_to_cpumask_map(void)
{
	unsigned int node, num = 0;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES) {
		for_each_node_mask(node, node_possible_map)
			num = node;
		nr_node_ids = num + 1;
	}

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

84
static int __init fake_numa_create_new_node(unsigned long end_pfn,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

131
/*
132
 * get_node_active_region - Return active region containing pfn
133
 * Active range returned is empty if none found.
134 135
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
136
 */
137 138
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
139
{
140 141 142 143 144 145 146 147 148 149 150
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
151 152
}

153
static void map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
154 155
{
	numa_cpu_lookup_table[cpu] = node;
156

157 158
	dbg("adding cpu %d to node %d\n", cpu, node);

159 160
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
161 162
}

163
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
164 165 166 167 168 169
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

170
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
171
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
172 173 174 175 176
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
177
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
178 179

/* must hold reference to node during call */
180
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
181
{
182
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

200 201 202 203 204 205
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
206
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}

static void initialize_distance_lookup_table(int nid,
		const unsigned int *associativity)
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
		distance_lookup_table[nid][i] =
			associativity[distance_ref_points[i]];
	}
}

233 234 235
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
236
static int associativity_to_nid(const unsigned int *associativity)
L
Linus Torvalds 已提交
237
{
238
	int nid = -1;
L
Linus Torvalds 已提交
239 240

	if (min_common_depth == -1)
241
		goto out;
L
Linus Torvalds 已提交
242

243 244
	if (associativity[0] >= min_common_depth)
		nid = associativity[min_common_depth];
245 246

	/* POWER4 LPAR uses 0xffff as invalid node */
247 248
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
249

250 251
	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
		initialize_distance_lookup_table(nid, associativity);
252

253
out:
254
	return nid;
L
Linus Torvalds 已提交
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
	const unsigned int *tmp;

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
293 294
static int __init find_min_common_depth(void)
{
295
	int depth;
296
	struct device_node *root;
L
Linus Torvalds 已提交
297

298 299 300 301
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
302 303
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
304 305

	/*
306 307 308 309 310 311 312 313 314 315
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
316
	 */
317
	distance_ref_points = of_get_property(root,
318 319 320 321 322 323 324 325 326
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
327

328 329 330
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
331
		form1_affinity = 1;
332 333
	}

334 335
	if (form1_affinity) {
		depth = distance_ref_points[0];
L
Linus Torvalds 已提交
336
	} else {
337 338 339 340 341 342 343
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

		depth = distance_ref_points[1];
L
Linus Torvalds 已提交
344 345
	}

346 347 348 349 350 351 352 353 354 355
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

356
	of_node_put(root);
L
Linus Torvalds 已提交
357
	return depth;
358 359

err:
360
	of_node_put(root);
361
	return -1;
L
Linus Torvalds 已提交
362 363
}

364
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
365 366 367 368
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
369
	if (!memory)
370
		panic("numa.c: No memory nodes found!");
371

372
	*n_addr_cells = of_n_addr_cells(memory);
373
	*n_size_cells = of_n_size_cells(memory);
374
	of_node_put(memory);
L
Linus Torvalds 已提交
375 376
}

377
static unsigned long read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386 387
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

388
/*
Y
Yinghai Lu 已提交
389
 * Read the next memblock list entry from the ibm,dynamic-memory property
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
408
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
409
 *
Y
Yinghai Lu 已提交
410 411
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
412
 * contains information as laid out in the of_drconf_cell struct above.
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
436
 * Retrieve and validate the ibm,lmb-size property for drconf memory
437 438
 * from the device tree.
 */
439
static u64 of_get_lmb_size(struct device_node *memory)
440 441 442 443
{
	const u32 *prop;
	u32 len;

444
	prop = of_get_property(memory, "ibm,lmb-size", &len);
445 446 447 448 449 450 451 452 453 454 455 456 457
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
L
Lucas De Marchi 已提交
458
 * Retrieve and validate the list of associativity arrays for drconf
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

480
	/* Now that we know the number of arrays and size of each array,
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
514 515 516 517
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
518
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
519
{
520
	int nid = 0;
521
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
522 523 524 525 526 527

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

528
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
529

530
	if (nid < 0 || !node_online(nid))
531
		nid = first_online_node;
L
Linus Torvalds 已提交
532
out:
533
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
534 535 536

	of_node_put(cpu);

537
	return nid;
L
Linus Torvalds 已提交
538 539
}

540
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
549
	case CPU_UP_PREPARE_FROZEN:
550
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
551 552 553 554
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
555
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
556
	case CPU_UP_CANCELED:
557
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
572
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
573
 */
574 575
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
576 577
{
	/*
Y
Yinghai Lu 已提交
578
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
579
	 * we've already adjusted it for the limit and it takes care of
580 581
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
582 583
	 */

Y
Yinghai Lu 已提交
584
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
585 586
		return size;

Y
Yinghai Lu 已提交
587
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
588 589
		return 0;

Y
Yinghai Lu 已提交
590
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
591 592
}

593 594 595 596 597 598 599
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
600
	 * For each lmb in ibm,dynamic-memory a corresponding
601 602 603 604 605 606 607
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

608 609 610 611 612 613
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
614
	const u32 *uninitialized_var(dm), *usm;
615
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
616
	unsigned long lmb_size, base, size, sz;
617
	int nid;
618
	struct assoc_arrays aa = { .arrays = NULL };
619 620 621

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
622 623
		return;

624 625
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
626 627 628 629
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
630 631
		return;

632 633 634 635 636
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

637
	for (; n != 0; --n) {
638 639 640 641 642 643 644 645
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
646
			continue;
647

648
		base = drmem.base_addr;
649
		size = lmb_size;
650
		ranges = 1;
651

652 653 654 655 656 657 658 659 660 661 662 663 664
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
665
					   &nid);
666 667 668
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
T
Tejun Heo 已提交
669
				memblock_set_node(base, sz, nid);
670
		} while (--ranges);
671 672 673
	}
}

L
Linus Torvalds 已提交
674 675
static int __init parse_numa_properties(void)
{
676
	struct device_node *memory;
677
	int default_nid = 0;
L
Linus Torvalds 已提交
678 679 680 681 682 683 684 685 686 687 688 689
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

690 691
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
692
	/*
693 694 695
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
696
	 */
697
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
698
		struct device_node *cpu;
699
		int nid;
L
Linus Torvalds 已提交
700

701
		cpu = of_get_cpu_node(i, NULL);
702
		BUG_ON(!cpu);
703
		nid = of_node_to_nid_single(cpu);
704
		of_node_put(cpu);
L
Linus Torvalds 已提交
705

706 707 708 709 710 711 712 713
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
714 715
	}

716
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
717 718

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
719 720
		unsigned long start;
		unsigned long size;
721
		int nid;
L
Linus Torvalds 已提交
722
		int ranges;
723
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
724 725
		unsigned int len;

726
		memcell_buf = of_get_property(memory,
727 728
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
729
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
730 731 732
		if (!memcell_buf || len <= 0)
			continue;

733 734
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
735 736
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
737 738
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
739

740 741 742 743 744
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
745
		nid = of_node_to_nid_single(memory);
746 747
		if (nid < 0)
			nid = default_nid;
748 749

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
750
		node_set_online(nid);
L
Linus Torvalds 已提交
751

752
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
753 754 755 756 757 758
			if (--ranges)
				goto new_range;
			else
				continue;
		}

T
Tejun Heo 已提交
759
		memblock_set_node(start, size, nid);
L
Linus Torvalds 已提交
760 761 762 763 764

		if (--ranges)
			goto new_range;
	}

765
	/*
A
Anton Blanchard 已提交
766 767 768
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
769 770 771 772 773
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
774 775 776 777 778
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
779 780
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
781
	unsigned long start_pfn, end_pfn;
782 783
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
784

785
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
786
	       top_of_ram, total_ram);
787
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
788 789
	       (top_of_ram - total_ram) >> 20);

790
	for_each_memblock(memory, reg) {
791 792
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
793 794

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
795 796
		memblock_set_node(PFN_PHYS(start_pfn),
				  PFN_PHYS(end_pfn - start_pfn), nid);
797
		node_set_online(nid);
798
	}
L
Linus Torvalds 已提交
799 800
}

801 802 803 804 805 806 807 808 809
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
810
		printk(KERN_DEBUG "Node %d CPUs:", node);
811 812 813 814 815 816

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
817 818 819
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
820 821 822 823 824 825 826 827 828 829 830
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
831
			printk("-%u", nr_cpu_ids - 1);
832 833 834 835 836
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
837 838 839 840 841 842 843 844 845 846
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

847
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
848 849 850

		count = 0;

Y
Yinghai Lu 已提交
851
		for (i = 0; i < memblock_end_of_DRAM();
852 853
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
871
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
872 873 874
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
875
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
876
 */
877
static void __init *careful_zallocation(int nid, unsigned long size,
878 879
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
880
{
881
	void *ret;
882
	int new_nid;
883 884
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
885
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
886 887

	/* retry over all memory */
888
	if (!ret_paddr)
Y
Yinghai Lu 已提交
889
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
890

891
	if (!ret_paddr)
892
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
893 894
		      size, nid);

895 896
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
897
	/*
898
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
899
	 * and hand over control from the MEMBLOCK allocator to the
900 901
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
902
	 * bootmem allocator instead of the MEMBLOCK allocator.
903 904 905
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
906
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
907
	 * since it would be useless.
L
Linus Torvalds 已提交
908
	 */
909
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
910
	if (new_nid < nid) {
911
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
912 913
				size, align, 0);

914
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
915 916
	}

917
	memset(ret, 0, size);
918
	return ret;
L
Linus Torvalds 已提交
919 920
}

921 922 923 924 925
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

926
static void __init mark_reserved_regions_for_nid(int nid)
927 928
{
	struct pglist_data *node = NODE_DATA(nid);
929
	struct memblock_region *reg;
930

931 932 933
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
934
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
935
		unsigned long end_pfn = PFN_UP(physbase + size);
936 937 938 939 940
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
Y
Yinghai Lu 已提交
941
		 * Check to make sure that this memblock.reserved area is
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
961
					- physbase;
962 963 964 965 966 967 968 969 970 971 972
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
994 995 996 997 998
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
999
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1000 1001 1002 1003 1004
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1005
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1006 1007

	for_each_online_node(nid) {
1008
		unsigned long start_pfn, end_pfn;
1009
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1010 1011
		unsigned long bootmap_pages;

1012
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1013

1014 1015 1016 1017 1018 1019 1020
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1021
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1022
					sizeof(struct pglist_data),
1023
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1024 1025 1026 1027

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1028
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1029 1030
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1031 1032 1033 1034

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1035 1036
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1037

1038
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1039
		bootmem_vaddr = careful_zallocation(nid,
1040 1041
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1042

1043
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1044

1045 1046
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1047
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1048

1049
		free_bootmem_with_active_regions(nid, end_pfn);
1050 1051
		/*
		 * Be very careful about moving this around.  Future
1052
		 * calls to careful_zallocation() depend on this getting
1053 1054 1055
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1056
		sparse_memory_present_with_active_regions(nid);
1057
	}
1058 1059

	init_bootmem_done = 1;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1070 1071 1072 1073
}

void __init paging_init(void)
{
1074 1075
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1076
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1077
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1091 1092 1093 1094
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1095 1096 1097
	return 0;
}
early_param("numa", early_numa);
1098 1099

#ifdef CONFIG_MEMORY_HOTPLUG
1100
/*
1101 1102 1103
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1104 1105 1106 1107 1108
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
1109
	unsigned int drconf_cell_cnt, rc;
1110
	unsigned long lmb_size;
1111
	struct assoc_arrays aa;
1112
	int nid = -1;
1113

1114 1115 1116
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1117

1118 1119
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1120
		return -1;
1121 1122 1123

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1124
		return -1;
1125

1126
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1137
		if ((scn_addr < drmem.base_addr)
1138
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1139 1140
			continue;

1141
		nid = of_drconf_to_nid_single(&drmem, &aa);
1142 1143 1144 1145 1146 1147 1148 1149 1150
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1151
 * each memblock.
1152 1153 1154
 */
int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
1155
	struct device_node *memory;
1156 1157
	int nid = -1;

1158
	for_each_node_by_type(memory, "memory") {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		unsigned long start, size;
		int ranges;
		const unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1181

1182 1183
		if (nid >= 0)
			break;
1184 1185
	}

1186 1187
	of_node_put(memory);

1188
	return nid;
1189 1190
}

1191 1192
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1193 1194
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1195 1196 1197 1198
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1199
	int nid, found = 0;
1200 1201

	if (!numa_enabled || (min_common_depth < 0))
1202
		return first_online_node;
1203 1204 1205 1206 1207

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1208 1209
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1210
	}
1211

1212
	if (nid < 0 || !node_online(nid))
1213
		nid = first_online_node;
1214

1215 1216
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1217

1218 1219 1220 1221
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1222 1223
		}
	}
1224 1225 1226

	BUG_ON(!found);
	return nid;
1227
}
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
        const u32 *dm = 0;

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1255
#endif /* CONFIG_MEMORY_HOTPLUG */
1256

1257
/* Virtual Processor Home Node (VPHN) support */
1258
#ifdef CONFIG_PPC_SPLPAR
1259 1260 1261 1262 1263 1264 1265
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1266
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1267 1268
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1269 1270
static int prrn_enabled;
static void reset_topology_timer(void);
1271 1272 1273 1274 1275 1276 1277

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1278
	int cpu;
1279

1280 1281 1282
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1283
	for_each_possible_cpu(cpu) {
1284
		int i;
1285 1286 1287
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1288
		for (i = 0; i < distance_ref_points_depth; i++)
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1306
	int cpu;
1307 1308 1309 1310 1311 1312 1313
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1314
		for (i = 0; i < distance_ref_points_depth; i++) {
1315
			if (hypervisor_counts[i] != counts[i]) {
1316 1317 1318 1319 1320 1321 1322 1323 1324
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
			cpumask_set_cpu(cpu, changes);
		}
	}

1325
	return cpumask_weight(changes);
1326 1327
}

1328 1329 1330 1331 1332
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1333 1334 1335 1336 1337 1338 1339

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
{
1340
	int i, nr_assoc_doms = 0;
1341 1342 1343 1344 1345 1346
	const u16 *field = (const u16*) packed;

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1347
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1348 1349 1350 1351 1352 1353 1354
		if (*field == VPHN_FIELD_UNUSED) {
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
1355
		} else if (*field & VPHN_FIELD_MSB) {
1356 1357 1358 1359
			/* Data is in the lower 15 bits of this field */
			unpacked[i] = *field & VPHN_FIELD_MASK;
			field++;
			nr_assoc_doms++;
1360
		} else {
1361 1362 1363 1364 1365 1366 1367 1368 1369
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
			nr_assoc_doms++;
		}
	}

1370 1371 1372
	/* The first cell contains the length of the property */
	unpacked[0] = nr_assoc_doms;

1373 1374 1375 1376 1377 1378 1379 1380 1381
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
{
1382
	long rc;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
					unsigned int *associativity)
{
1396
	long rc;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

	cpu = get_cpu();

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unregister_cpu_under_node(update->cpu, update->old_nid);
		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1438
		vdso_getcpu_init();
1439 1440 1441 1442 1443 1444
		register_cpu_under_node(update->cpu, update->new_nid);
	}

	return 0;
}

1445 1446
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1447
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1448 1449 1450
 */
int arch_update_cpu_topology(void)
{
1451 1452
	unsigned int cpu, changed = 0;
	struct topology_update_data *updates, *ud;
1453
	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1454
	cpumask_t updated_cpus;
1455
	struct device *dev;
1456 1457 1458 1459 1460 1461 1462 1463 1464
	int weight, i = 0;

	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1465

1466 1467
	cpumask_clear(&updated_cpus);

1468
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1469 1470
		ud = &updates[i++];
		ud->cpu = cpu;
1471
		vphn_get_associativity(cpu, associativity);
1472
		ud->new_nid = associativity_to_nid(associativity);
1473

1474 1475
		if (ud->new_nid < 0 || !node_online(ud->new_nid))
			ud->new_nid = first_online_node;
1476

1477
		ud->old_nid = numa_cpu_lookup_table[cpu];
1478
		cpumask_set_cpu(cpu, &updated_cpus);
1479

1480 1481 1482 1483
		if (i < weight)
			ud->next = &updates[i];
	}

1484
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1485 1486 1487

	for (ud = &updates[0]; ud; ud = ud->next) {
		dev = get_cpu_device(ud->cpu);
1488 1489
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1490
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1491
		changed = 1;
1492 1493
	}

1494
	kfree(updates);
1495
	return changed;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

void topology_schedule_update(void)
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1511
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1512
		topology_schedule_update();
1513 1514 1515 1516 1517
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1518 1519 1520 1521
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1522
static void reset_topology_timer(void)
1523 1524 1525
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	mod_timer(&topology_timer, topology_timer.expires);
}

static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1545 1546
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1547 1548 1549 1550 1551 1552 1553 1554 1555
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1556 1557
}

1558 1559 1560 1561
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1562
/*
1563
 * Start polling for associativity changes.
1564 1565 1566 1567 1568
 */
int start_topology_update(void)
{
	int rc = 0;

1569 1570 1571 1572 1573 1574
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
			rc = of_reconfig_notifier_register(&dt_update_nb);
		}
1575
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1576 1577 1578 1579 1580 1581 1582 1583
		   get_lppaca()->shared_proc) {
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	}

	return rc;
}
__initcall(start_topology_update);

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1606
}
1607
#endif /* CONFIG_PPC_SPLPAR */