core.c 227.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
67 68 69 70 71 72 73 74 75 76 77
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
98
task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 100
{
	struct remote_function_call data = {
101 102 103
		.p	= p,
		.func	= func,
		.info	= info,
104
		.ret	= -EAGAIN,
105
	};
106
	int ret;
107

108 109 110 111 112
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
113

114
	return ret;
115 116 117 118 119 120 121 122 123 124 125
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
126
static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 128
{
	struct remote_function_call data = {
129 130 131 132
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
133 134 135 136 137 138 139
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

140 141 142 143 144 145 146 147
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
148
{
149 150 151 152 153 154 155 156 157 158 159 160 161
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

162 163 164 165
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
166
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214
		if (ctx->task != current) {
215
			ret = -ESRCH;
216 217
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278
		return;
	}

279 280 281
	if (task == TASK_TOMBSTONE)
		return;

282
again:
283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
292 293 294
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
295
	}
296 297 298 299 300
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
301 302 303
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
319
	EVENT_TIME = 0x4,
320 321 322
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
323 324 325 326
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
327 328 329 330 331 332 333

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
334
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
336

337 338 339
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
340
static atomic_t nr_freq_events __read_mostly;
341
static atomic_t nr_switch_events __read_mostly;
342

P
Peter Zijlstra 已提交
343 344 345 346
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

347
/*
348
 * perf event paranoia level:
349 350
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
351
 *   1 - disallow cpu events for unpriv
352
 *   2 - disallow kernel profiling for unpriv
353
 */
354
int sysctl_perf_event_paranoid __read_mostly = 1;
355

356 357
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 359

/*
360
 * max perf event sample rate
361
 */
362 363 364 365 366 367 368 369 370
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
371 372
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373

374
static void update_perf_cpu_limits(void)
375 376 377 378
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
379 380 381 382 383
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384
}
P
Peter Zijlstra 已提交
385

386 387
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
388 389 390 391
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
392
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
393 394 395 396 397

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

415 416 417 418 419 420 421
	if (sysctl_perf_cpu_time_max_percent == 100) {
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
422 423 424

	return 0;
}
425

426 427 428 429 430 431 432
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
433
static DEFINE_PER_CPU(u64, running_sample_length);
434

435 436 437
static u64 __report_avg;
static u64 __report_allowed;

438
static void perf_duration_warn(struct irq_work *w)
439
{
440
	printk_ratelimited(KERN_WARNING
441 442 443 444
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
445 446 447 448 449 450
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
451 452 453 454
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
455

456
	if (max_len == 0)
457 458
		return;

459 460 461 462 463
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
464 465

	/*
466 467
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 469
	 * from having to maintain a count.
	 */
470 471
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
472 473
		return;

474 475
	__report_avg = avg_len;
	__report_allowed = max_len;
476

477 478 479 480 481 482 483 484 485
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
486

487 488 489 490 491
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492

493
	if (!irq_work_queue(&perf_duration_work)) {
494
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495
			     "kernel.perf_event_max_sample_rate to %d\n",
496
			     __report_avg, __report_allowed,
497 498
			     sysctl_perf_event_sample_rate);
	}
499 500
}

501
static atomic64_t perf_event_id;
502

503 504 505 506
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
507 508 509 510 511
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
512

513
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
514

515
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
516
{
517
	return "pmu";
T
Thomas Gleixner 已提交
518 519
}

520 521 522 523 524
static inline u64 perf_clock(void)
{
	return local_clock();
}

525 526 527 528 529
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
530 531 532 533 534 535 536 537
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
554 555 556 557
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
558
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
597 598
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
599
	/*
600 601
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
602
	 */
603
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
604 605
		return;

606
	cgrp = perf_cgroup_from_task(current, event->ctx);
607 608 609 610 611
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
612 613 614
}

static inline void
615 616
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
617 618 619 620
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

621 622 623 624 625 626
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
627 628
		return;

629
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
630
	info = this_cpu_ptr(cgrp->info);
631
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
632 633 634 635 636 637 638 639 640 641 642
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
643
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 664
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
665 666 667 668 669 670 671 672 673

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
674 675
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
676 677 678 679 680 681 682 683 684 685 686

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
687
				WARN_ON_ONCE(cpuctx->cgrp);
688 689 690 691
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
692 693
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
694
				 */
695
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
696 697
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
698 699
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
700 701 702 703 704 705
		}
	}

	local_irq_restore(flags);
}

706 707
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
708
{
709 710 711
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

712
	rcu_read_lock();
713 714
	/*
	 * we come here when we know perf_cgroup_events > 0
715 716
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
717
	 */
718
	cgrp1 = perf_cgroup_from_task(task, NULL);
719
	cgrp2 = perf_cgroup_from_task(next, NULL);
720 721 722 723 724 725 726 727

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728 729

	rcu_read_unlock();
S
Stephane Eranian 已提交
730 731
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734
{
735 736 737
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

738
	rcu_read_lock();
739 740
	/*
	 * we come here when we know perf_cgroup_events > 0
741 742
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
743
	 */
744 745
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
746 747 748 749 750 751 752 753

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754 755

	rcu_read_unlock();
S
Stephane Eranian 已提交
756 757 758 759 760 761 762 763
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
764 765
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
766

767
	if (!f.file)
S
Stephane Eranian 已提交
768 769
		return -EBADF;

A
Al Viro 已提交
770
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
771
					 &perf_event_cgrp_subsys);
772 773 774 775
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
789
out:
790
	fdput(f);
S
Stephane Eranian 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

864 865
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
866 867 868
{
}

869 870
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
871 872 873 874 875 876 877 878 879 880 881
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
882 883
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

914 915 916 917 918 919 920 921
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
922
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 924 925 926 927 928 929 930 931
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
932 933
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
934
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
935 936 937
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
938

P
Peter Zijlstra 已提交
939
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 941
}

942
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943
{
944
	struct hrtimer *timer = &cpuctx->hrtimer;
945
	struct pmu *pmu = cpuctx->ctx.pmu;
946
	u64 interval;
947 948 949 950 951

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

952 953 954 955
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
956 957 958
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959

960
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961

P
Peter Zijlstra 已提交
962 963
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964
	timer->function = perf_mux_hrtimer_handler;
965 966
}

967
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968
{
969
	struct hrtimer *timer = &cpuctx->hrtimer;
970
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
971
	unsigned long flags;
972 973 974

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
975
		return 0;
976

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984

985
	return 0;
986 987
}

P
Peter Zijlstra 已提交
988
void perf_pmu_disable(struct pmu *pmu)
989
{
P
Peter Zijlstra 已提交
990 991 992
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
993 994
}

P
Peter Zijlstra 已提交
995
void perf_pmu_enable(struct pmu *pmu)
996
{
P
Peter Zijlstra 已提交
997 998 999
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1000 1001
}

1002
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003 1004

/*
1005 1006 1007 1008
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1009
 */
1010
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011
{
1012
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013

1014
	WARN_ON(!irqs_disabled());
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1028 1029
}

1030
static void get_ctx(struct perf_event_context *ctx)
1031
{
1032
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1044
static void put_ctx(struct perf_event_context *ctx)
1045
{
1046 1047 1048
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1049
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050
			put_task_struct(ctx->task);
1051
		call_rcu(&ctx->rcu_head, free_ctx);
1052
	}
1053 1054
}

P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060 1061
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1062 1063 1064 1065
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1066 1067
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1111
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1112 1113 1114
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1115 1116
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1129
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1139 1140 1141 1142 1143 1144
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1152 1153 1154 1155 1156 1157 1158
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1159
{
1160 1161 1162 1163 1164
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1165
		ctx->parent_ctx = NULL;
1166
	ctx->generation++;
1167 1168

	return parent_ctx;
1169 1170
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1193
/*
1194
 * If we inherit events we want to return the parent event id
1195 1196
 * to userspace.
 */
1197
static u64 primary_event_id(struct perf_event *event)
1198
{
1199
	u64 id = event->id;
1200

1201 1202
	if (event->parent)
		id = event->parent->id;
1203 1204 1205 1206

	return id;
}

1207
/*
1208
 * Get the perf_event_context for a task and lock it.
1209
 *
1210 1211 1212
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1213
static struct perf_event_context *
P
Peter Zijlstra 已提交
1214
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215
{
1216
	struct perf_event_context *ctx;
1217

P
Peter Zijlstra 已提交
1218
retry:
1219 1220 1221
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222
	 * part of the read side critical section was irqs-enabled -- see
1223 1224 1225
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226
	 * side critical section has interrupts disabled.
1227
	 */
1228
	local_irq_save(*flags);
1229
	rcu_read_lock();
P
Peter Zijlstra 已提交
1230
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 1232 1233 1234
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1235
		 * perf_event_task_sched_out, though the
1236 1237 1238 1239 1240 1241
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1242
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1243
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244
			raw_spin_unlock(&ctx->lock);
1245
			rcu_read_unlock();
1246
			local_irq_restore(*flags);
1247 1248
			goto retry;
		}
1249

1250 1251
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1252
			raw_spin_unlock(&ctx->lock);
1253
			ctx = NULL;
P
Peter Zijlstra 已提交
1254 1255
		} else {
			WARN_ON_ONCE(ctx->task != task);
1256
		}
1257 1258
	}
	rcu_read_unlock();
1259 1260
	if (!ctx)
		local_irq_restore(*flags);
1261 1262 1263 1264 1265 1266 1267 1268
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1269 1270
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1271
{
1272
	struct perf_event_context *ctx;
1273 1274
	unsigned long flags;

P
Peter Zijlstra 已提交
1275
	ctx = perf_lock_task_context(task, ctxn, &flags);
1276 1277
	if (ctx) {
		++ctx->pin_count;
1278
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 1280 1281 1282
	}
	return ctx;
}

1283
static void perf_unpin_context(struct perf_event_context *ctx)
1284 1285 1286
{
	unsigned long flags;

1287
	raw_spin_lock_irqsave(&ctx->lock, flags);
1288
	--ctx->pin_count;
1289
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1303 1304 1305
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1306 1307 1308 1309

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1310 1311 1312
	return ctx ? ctx->time : 0;
}

1313 1314 1315 1316 1317 1318 1319 1320
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1321 1322
	lockdep_assert_held(&ctx->lock);

1323 1324 1325
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1326

S
Stephane Eranian 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1338
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1339 1340
	else if (ctx->is_active)
		run_end = ctx->time;
1341 1342 1343 1344
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1345 1346 1347 1348

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1349
		run_end = perf_event_time(event);
1350 1351

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1352

1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1376
/*
1377
 * Add a event from the lists for its context.
1378 1379
 * Must be called with ctx->mutex and ctx->lock held.
 */
1380
static void
1381
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382
{
P
Peter Zijlstra 已提交
1383 1384
	lockdep_assert_held(&ctx->lock);

1385 1386
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1387 1388

	/*
1389 1390 1391
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1392
	 */
1393
	if (event->group_leader == event) {
1394 1395
		struct list_head *list;

1396 1397 1398
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1399 1400
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1401
	}
P
Peter Zijlstra 已提交
1402

1403
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1404 1405
		ctx->nr_cgroups++;

1406 1407 1408
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1409
		ctx->nr_stat++;
1410 1411

	ctx->generation++;
1412 1413
}

J
Jiri Olsa 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1423
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1439
		nr += nr_siblings;
1440 1441 1442 1443 1444 1445 1446
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1447
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 1449 1450 1451 1452 1453 1454
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1455 1456 1457 1458 1459 1460
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1461 1462 1463
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1464 1465 1466
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1467 1468 1469
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1470 1471 1472
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1473 1474 1475
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1487 1488 1489 1490 1491 1492
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1493 1494 1495 1496 1497 1498
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1499 1500 1501
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1511
	event->id_header_size = size;
1512 1513
}

P
Peter Zijlstra 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1535 1536
static void perf_group_attach(struct perf_event *event)
{
1537
	struct perf_event *group_leader = event->group_leader, *pos;
1538

P
Peter Zijlstra 已提交
1539 1540 1541 1542 1543 1544
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1545 1546 1547 1548 1549
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1550 1551
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1552 1553 1554 1555 1556 1557
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1558 1559 1560 1561 1562

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1563 1564
}

1565
/*
1566
 * Remove a event from the lists for its context.
1567
 * Must be called with ctx->mutex and ctx->lock held.
1568
 */
1569
static void
1570
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571
{
1572
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1573 1574 1575 1576

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1577 1578 1579 1580
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581
		return;
1582 1583 1584

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1585
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1586
		ctx->nr_cgroups--;
1587 1588 1589 1590
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1591 1592
		cpuctx = __get_cpu_context(ctx);
		/*
1593 1594
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1595 1596 1597 1598
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1599

1600 1601
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1602
		ctx->nr_stat--;
1603

1604
	list_del_rcu(&event->event_entry);
1605

1606 1607
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1608

1609
	update_group_times(event);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1620 1621

	ctx->generation++;
1622 1623
}

1624
static void perf_group_detach(struct perf_event *event)
1625 1626
{
	struct perf_event *sibling, *tmp;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1643
		goto out;
1644 1645 1646 1647
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1648

1649
	/*
1650 1651
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1652
	 * to whatever list we are on.
1653
	 */
1654
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 1656
		if (list)
			list_move_tail(&sibling->group_entry, list);
1657
		sibling->group_leader = sibling;
1658 1659 1660

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1661 1662

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1663
	}
1664 1665 1666 1667 1668 1669

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1670 1671
}

1672 1673
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1674
	return event->state == PERF_EVENT_STATE_DEAD;
1675 1676
}

1677 1678 1679 1680 1681 1682
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1683 1684 1685
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1686
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1687
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1688 1689
}

1690 1691
static void
event_sched_out(struct perf_event *event,
1692
		  struct perf_cpu_context *cpuctx,
1693
		  struct perf_event_context *ctx)
1694
{
1695
	u64 tstamp = perf_event_time(event);
1696
	u64 delta;
P
Peter Zijlstra 已提交
1697 1698 1699 1700

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1709
		delta = tstamp - event->tstamp_stopped;
1710
		event->tstamp_running += delta;
1711
		event->tstamp_stopped = tstamp;
1712 1713
	}

1714
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1715
		return;
1716

1717 1718
	perf_pmu_disable(event->pmu);

1719 1720 1721
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1722 1723 1724 1725
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1726
	}
1727

1728
	if (!is_software_event(event))
1729
		cpuctx->active_oncpu--;
1730 1731
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1732 1733
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1734
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1735
		cpuctx->exclusive = 0;
1736 1737

	perf_pmu_enable(event->pmu);
1738 1739
}

1740
static void
1741
group_sched_out(struct perf_event *group_event,
1742
		struct perf_cpu_context *cpuctx,
1743
		struct perf_event_context *ctx)
1744
{
1745
	struct perf_event *event;
1746
	int state = group_event->state;
1747

1748
	event_sched_out(group_event, cpuctx, ctx);
1749 1750 1751 1752

	/*
	 * Schedule out siblings (if any):
	 */
1753 1754
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1755

1756
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 1758 1759
		cpuctx->exclusive = 0;
}

1760
#define DETACH_GROUP	0x01UL
1761

T
Thomas Gleixner 已提交
1762
/*
1763
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1764
 *
1765
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1766 1767
 * remove it from the context list.
 */
1768 1769 1770 1771 1772
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1773
{
1774
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1775

1776
	event_sched_out(event, cpuctx, ctx);
1777
	if (flags & DETACH_GROUP)
1778
		perf_group_detach(event);
1779
	list_del_event(event, ctx);
1780 1781

	if (!ctx->nr_events && ctx->is_active) {
1782
		ctx->is_active = 0;
1783 1784 1785 1786
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1787
	}
T
Thomas Gleixner 已提交
1788 1789 1790
}

/*
1791
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1792
 *
1793 1794
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1795 1796
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1797
 * When called from perf_event_exit_task, it's OK because the
1798
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1799
 */
1800
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1801
{
1802
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1803

1804
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1805 1806
}

1807
/*
1808
 * Cross CPU call to disable a performance event
1809
 */
1810 1811 1812 1813
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1814
{
1815 1816
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1817

1818 1819 1820 1821 1822 1823 1824 1825
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1826 1827
}

1828
/*
1829
 * Disable a event.
1830
 *
1831 1832
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1833
 * remains valid.  This condition is satisifed when called through
1834 1835
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1836 1837
 * goes to exit will block in perf_event_exit_event().
 *
1838
 * When called from perf_pending_event it's OK because event->ctx
1839
 * is the current context on this CPU and preemption is disabled,
1840
 * hence we can't get into perf_event_task_sched_out for this context.
1841
 */
P
Peter Zijlstra 已提交
1842
static void _perf_event_disable(struct perf_event *event)
1843
{
1844
	struct perf_event_context *ctx = event->ctx;
1845

1846
	raw_spin_lock_irq(&ctx->lock);
1847
	if (event->state <= PERF_EVENT_STATE_OFF) {
1848
		raw_spin_unlock_irq(&ctx->lock);
1849
		return;
1850
	}
1851
	raw_spin_unlock_irq(&ctx->lock);
1852

1853 1854 1855 1856 1857 1858
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1859
}
P
Peter Zijlstra 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1873
EXPORT_SYMBOL_GPL(perf_event_disable);
1874

S
Stephane Eranian 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1910 1911 1912
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1913
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1914

1915
static int
1916
event_sched_in(struct perf_event *event,
1917
		 struct perf_cpu_context *cpuctx,
1918
		 struct perf_event_context *ctx)
1919
{
1920
	u64 tstamp = perf_event_time(event);
1921
	int ret = 0;
1922

1923 1924
	lockdep_assert_held(&ctx->lock);

1925
	if (event->state <= PERF_EVENT_STATE_OFF)
1926 1927
		return 0;

1928 1929 1930 1931 1932 1933 1934
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1946 1947 1948 1949 1950
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1951 1952
	perf_pmu_disable(event->pmu);

1953 1954
	perf_set_shadow_time(event, ctx, tstamp);

1955 1956
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1957
	if (event->pmu->add(event, PERF_EF_START)) {
1958 1959
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1960 1961
		ret = -EAGAIN;
		goto out;
1962 1963
	}

1964 1965
	event->tstamp_running += tstamp - event->tstamp_stopped;

1966
	if (!is_software_event(event))
1967
		cpuctx->active_oncpu++;
1968 1969
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1970 1971
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1972

1973
	if (event->attr.exclusive)
1974 1975
		cpuctx->exclusive = 1;

1976 1977 1978 1979
out:
	perf_pmu_enable(event->pmu);

	return ret;
1980 1981
}

1982
static int
1983
group_sched_in(struct perf_event *group_event,
1984
	       struct perf_cpu_context *cpuctx,
1985
	       struct perf_event_context *ctx)
1986
{
1987
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1988
	struct pmu *pmu = ctx->pmu;
1989 1990
	u64 now = ctx->time;
	bool simulate = false;
1991

1992
	if (group_event->state == PERF_EVENT_STATE_OFF)
1993 1994
		return 0;

1995
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1996

1997
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1998
		pmu->cancel_txn(pmu);
1999
		perf_mux_hrtimer_restart(cpuctx);
2000
		return -EAGAIN;
2001
	}
2002 2003 2004 2005

	/*
	 * Schedule in siblings as one group (if any):
	 */
2006
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2007
		if (event_sched_in(event, cpuctx, ctx)) {
2008
			partial_group = event;
2009 2010 2011 2012
			goto group_error;
		}
	}

2013
	if (!pmu->commit_txn(pmu))
2014
		return 0;
2015

2016 2017 2018 2019
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2030
	 */
2031 2032
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2033 2034 2035 2036 2037 2038 2039 2040
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2041
	}
2042
	event_sched_out(group_event, cpuctx, ctx);
2043

P
Peter Zijlstra 已提交
2044
	pmu->cancel_txn(pmu);
2045

2046
	perf_mux_hrtimer_restart(cpuctx);
2047

2048 2049 2050
	return -EAGAIN;
}

2051
/*
2052
 * Work out whether we can put this event group on the CPU now.
2053
 */
2054
static int group_can_go_on(struct perf_event *event,
2055 2056 2057 2058
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2059
	 * Groups consisting entirely of software events can always go on.
2060
	 */
2061
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2062 2063 2064
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2065
	 * events can go on.
2066 2067 2068 2069 2070
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2071
	 * events on the CPU, it can't go on.
2072
	 */
2073
	if (event->attr.exclusive && cpuctx->active_oncpu)
2074 2075 2076 2077 2078 2079 2080 2081
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2082 2083
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2084
{
2085 2086
	u64 tstamp = perf_event_time(event);

2087
	list_add_event(event, ctx);
2088
	perf_group_attach(event);
2089 2090 2091
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2092 2093
}

2094 2095 2096
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2097 2098 2099 2100 2101
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2127 2128
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2129
{
2130 2131 2132 2133 2134 2135
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2136 2137
}

T
Thomas Gleixner 已提交
2138
/*
2139
 * Cross CPU call to install and enable a performance event
2140
 *
2141 2142
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2143
 */
2144
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2145
{
2146 2147
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2148
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2149
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2150 2151
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2152

2153
	raw_spin_lock(&cpuctx->ctx.lock);
2154
	if (ctx->task) {
2155 2156
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2157 2158 2159 2160

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2161
			goto unlock;
2162
		}
2163

2164
		/*
2165 2166 2167
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2168
		 */
2169 2170 2171 2172 2173
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2174 2175
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2176
	}
2177

2178 2179 2180 2181 2182 2183 2184 2185
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2186
unlock:
2187
	perf_ctx_unlock(cpuctx, task_ctx);
2188

2189
	return ret;
T
Thomas Gleixner 已提交
2190 2191 2192
}

/*
2193 2194 2195
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2196 2197
 */
static void
2198 2199
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2200 2201
			int cpu)
{
2202
	struct task_struct *task = READ_ONCE(ctx->task);
2203

2204 2205
	lockdep_assert_held(&ctx->mutex);

2206
	event->ctx = ctx;
2207 2208
	if (event->cpu != -1)
		event->cpu = cpu;
2209

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2221 2222 2223 2224
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2225
again:
2226
	/*
2227 2228
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2229
	 */
2230 2231 2232 2233 2234
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2235
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2236 2237 2238 2239 2240
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2241 2242 2243
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2244 2245
	raw_spin_unlock_irq(&ctx->lock);
	/*
2246 2247
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2248
	 */
2249
	goto again;
T
Thomas Gleixner 已提交
2250 2251
}

2252
/*
2253
 * Put a event into inactive state and update time fields.
2254 2255 2256 2257 2258 2259
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2260
static void __perf_event_mark_enabled(struct perf_event *event)
2261
{
2262
	struct perf_event *sub;
2263
	u64 tstamp = perf_event_time(event);
2264

2265
	event->state = PERF_EVENT_STATE_INACTIVE;
2266
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2267
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2268 2269
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2270
	}
2271 2272
}

2273
/*
2274
 * Cross CPU call to enable a performance event
2275
 */
2276 2277 2278 2279
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2280
{
2281
	struct perf_event *leader = event->group_leader;
2282
	struct perf_event_context *task_ctx;
2283

P
Peter Zijlstra 已提交
2284 2285
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2286
		return;
2287

2288 2289 2290
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2291
	__perf_event_mark_enabled(event);
2292

2293 2294 2295
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2296
	if (!event_filter_match(event)) {
2297
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2298
			perf_cgroup_defer_enabled(event);
2299
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2300
		return;
S
Stephane Eranian 已提交
2301
	}
2302

2303
	/*
2304
	 * If the event is in a group and isn't the group leader,
2305
	 * then don't put it on unless the group is on.
2306
	 */
2307 2308
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2309
		return;
2310
	}
2311

2312 2313 2314
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2315

2316
	ctx_resched(cpuctx, task_ctx);
2317 2318
}

2319
/*
2320
 * Enable a event.
2321
 *
2322 2323
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2324
 * remains valid.  This condition is satisfied when called through
2325 2326
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2327
 */
P
Peter Zijlstra 已提交
2328
static void _perf_event_enable(struct perf_event *event)
2329
{
2330
	struct perf_event_context *ctx = event->ctx;
2331

2332
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2333 2334
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2335
		raw_spin_unlock_irq(&ctx->lock);
2336 2337 2338 2339
		return;
	}

	/*
2340
	 * If the event is in error state, clear that first.
2341 2342 2343 2344
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2345
	 */
2346 2347
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2348
	raw_spin_unlock_irq(&ctx->lock);
2349

2350
	event_function_call(event, __perf_event_enable, NULL);
2351
}
P
Peter Zijlstra 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2364
EXPORT_SYMBOL_GPL(perf_event_enable);
2365

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
static int __perf_event_stop(void *info)
{
	struct perf_event *event = info;

	/* for AUX events, our job is done if the event is already inactive */
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

	return 0;
}

P
Peter Zijlstra 已提交
2389
static int _perf_event_refresh(struct perf_event *event, int refresh)
2390
{
2391
	/*
2392
	 * not supported on inherited events
2393
	 */
2394
	if (event->attr.inherit || !is_sampling_event(event))
2395 2396
		return -EINVAL;

2397
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2398
	_perf_event_enable(event);
2399 2400

	return 0;
2401
}
P
Peter Zijlstra 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2417
EXPORT_SYMBOL_GPL(perf_event_refresh);
2418

2419 2420 2421
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2422
{
2423
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2424
	struct perf_event *event;
2425

P
Peter Zijlstra 已提交
2426
	lockdep_assert_held(&ctx->lock);
2427

2428 2429 2430 2431 2432 2433 2434
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2435
		return;
2436 2437
	}

2438
	ctx->is_active &= ~event_type;
2439 2440 2441
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2442 2443 2444 2445 2446
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2447

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2458 2459 2460 2461 2462 2463
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2464 2465
	is_active ^= ctx->is_active; /* changed bits */

2466
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2467
		return;
2468

P
Peter Zijlstra 已提交
2469
	perf_pmu_disable(ctx->pmu);
2470
	if (is_active & EVENT_PINNED) {
2471 2472
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2473
	}
2474

2475
	if (is_active & EVENT_FLEXIBLE) {
2476
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2477
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2478
	}
P
Peter Zijlstra 已提交
2479
	perf_pmu_enable(ctx->pmu);
2480 2481
}

2482
/*
2483 2484 2485 2486 2487 2488
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2489
 */
2490 2491
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2492
{
2493 2494 2495
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2518 2519
}

2520 2521
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2522 2523 2524
{
	u64 value;

2525
	if (!event->attr.inherit_stat)
2526 2527 2528
		return;

	/*
2529
	 * Update the event value, we cannot use perf_event_read()
2530 2531
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2532
	 * we know the event must be on the current CPU, therefore we
2533 2534
	 * don't need to use it.
	 */
2535 2536
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2537 2538
		event->pmu->read(event);
		/* fall-through */
2539

2540 2541
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2542 2543 2544 2545 2546 2547 2548
		break;

	default:
		break;
	}

	/*
2549
	 * In order to keep per-task stats reliable we need to flip the event
2550 2551
	 * values when we flip the contexts.
	 */
2552 2553 2554
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2555

2556 2557
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2558

2559
	/*
2560
	 * Since we swizzled the values, update the user visible data too.
2561
	 */
2562 2563
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2564 2565
}

2566 2567
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2568
{
2569
	struct perf_event *event, *next_event;
2570 2571 2572 2573

	if (!ctx->nr_stat)
		return;

2574 2575
	update_context_time(ctx);

2576 2577
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2578

2579 2580
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2581

2582 2583
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2584

2585
		__perf_event_sync_stat(event, next_event);
2586

2587 2588
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2589 2590 2591
	}
}

2592 2593
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2594
{
P
Peter Zijlstra 已提交
2595
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2596
	struct perf_event_context *next_ctx;
2597
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2598
	struct perf_cpu_context *cpuctx;
2599
	int do_switch = 1;
T
Thomas Gleixner 已提交
2600

P
Peter Zijlstra 已提交
2601 2602
	if (likely(!ctx))
		return;
2603

P
Peter Zijlstra 已提交
2604 2605
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2606 2607
		return;

2608
	rcu_read_lock();
P
Peter Zijlstra 已提交
2609
	next_ctx = next->perf_event_ctxp[ctxn];
2610 2611 2612 2613 2614 2615 2616
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2617
	if (!parent && !next_parent)
2618 2619 2620
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2621 2622 2623 2624 2625 2626 2627 2628 2629
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2630 2631
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2632
		if (context_equiv(ctx, next_ctx)) {
2633 2634
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2635 2636 2637

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2648
			do_switch = 0;
2649

2650
			perf_event_sync_stat(ctx, next_ctx);
2651
		}
2652 2653
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2654
	}
2655
unlock:
2656
	rcu_read_unlock();
2657

2658
	if (do_switch) {
2659
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2660
		task_ctx_sched_out(cpuctx, ctx);
2661
		raw_spin_unlock(&ctx->lock);
2662
	}
T
Thomas Gleixner 已提交
2663 2664
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2715 2716 2717
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2732 2733
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2734 2735 2736
{
	int ctxn;

2737 2738 2739
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2740 2741 2742
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2743 2744
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2745 2746 2747 2748 2749 2750

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2751
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2752
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2753 2754
}

2755 2756 2757 2758 2759 2760 2761
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2762 2763
}

2764
static void
2765
ctx_pinned_sched_in(struct perf_event_context *ctx,
2766
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2767
{
2768
	struct perf_event *event;
T
Thomas Gleixner 已提交
2769

2770 2771
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2772
			continue;
2773
		if (!event_filter_match(event))
2774 2775
			continue;

S
Stephane Eranian 已提交
2776 2777 2778 2779
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2780
		if (group_can_go_on(event, cpuctx, 1))
2781
			group_sched_in(event, cpuctx, ctx);
2782 2783 2784 2785 2786

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2787 2788 2789
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2790
		}
2791
	}
2792 2793 2794 2795
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2796
		      struct perf_cpu_context *cpuctx)
2797 2798 2799
{
	struct perf_event *event;
	int can_add_hw = 1;
2800

2801 2802 2803
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2804
			continue;
2805 2806
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2807
		 * of events:
2808
		 */
2809
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2810 2811
			continue;

S
Stephane Eranian 已提交
2812 2813 2814 2815
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2816
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2817
			if (group_sched_in(event, cpuctx, ctx))
2818
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2819
		}
T
Thomas Gleixner 已提交
2820
	}
2821 2822 2823 2824 2825
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2826 2827
	     enum event_type_t event_type,
	     struct task_struct *task)
2828
{
2829
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2830 2831 2832
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2833

2834
	if (likely(!ctx->nr_events))
2835
		return;
2836

2837
	ctx->is_active |= (event_type | EVENT_TIME);
2838 2839 2840 2841 2842 2843 2844
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2845 2846 2847 2848 2849 2850 2851 2852 2853
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2854 2855 2856 2857
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2858
	if (is_active & EVENT_PINNED)
2859
		ctx_pinned_sched_in(ctx, cpuctx);
2860 2861

	/* Then walk through the lower prio flexible groups */
2862
	if (is_active & EVENT_FLEXIBLE)
2863
		ctx_flexible_sched_in(ctx, cpuctx);
2864 2865
}

2866
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2867 2868
			     enum event_type_t event_type,
			     struct task_struct *task)
2869 2870 2871
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2872
	ctx_sched_in(ctx, cpuctx, event_type, task);
2873 2874
}

S
Stephane Eranian 已提交
2875 2876
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2877
{
P
Peter Zijlstra 已提交
2878
	struct perf_cpu_context *cpuctx;
2879

P
Peter Zijlstra 已提交
2880
	cpuctx = __get_cpu_context(ctx);
2881 2882 2883
	if (cpuctx->task_ctx == ctx)
		return;

2884
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2885
	perf_pmu_disable(ctx->pmu);
2886 2887 2888 2889 2890 2891
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2892
	perf_event_sched_in(cpuctx, ctx, task);
2893 2894
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2895 2896
}

P
Peter Zijlstra 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2908 2909
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2910 2911 2912 2913
{
	struct perf_event_context *ctx;
	int ctxn;

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2924 2925 2926 2927 2928
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2929
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2930
	}
2931

2932 2933 2934
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2935 2936
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2966
#define REDUCE_FLS(a, b)		\
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3006 3007 3008
	if (!divisor)
		return dividend;

3009 3010 3011
	return div64_u64(dividend, divisor);
}

3012 3013 3014
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3015
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3016
{
3017
	struct hw_perf_event *hwc = &event->hw;
3018
	s64 period, sample_period;
3019 3020
	s64 delta;

3021
	period = perf_calculate_period(event, nsec, count);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3032

3033
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3034 3035 3036
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3037
		local64_set(&hwc->period_left, 0);
3038 3039 3040

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3041
	}
3042 3043
}

3044 3045 3046 3047 3048 3049 3050
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3051
{
3052 3053
	struct perf_event *event;
	struct hw_perf_event *hwc;
3054
	u64 now, period = TICK_NSEC;
3055
	s64 delta;
3056

3057 3058 3059 3060 3061 3062
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3063 3064
		return;

3065
	raw_spin_lock(&ctx->lock);
3066
	perf_pmu_disable(ctx->pmu);
3067

3068
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3069
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3070 3071
			continue;

3072
		if (!event_filter_match(event))
3073 3074
			continue;

3075 3076
		perf_pmu_disable(event->pmu);

3077
		hwc = &event->hw;
3078

3079
		if (hwc->interrupts == MAX_INTERRUPTS) {
3080
			hwc->interrupts = 0;
3081
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3082
			event->pmu->start(event, 0);
3083 3084
		}

3085
		if (!event->attr.freq || !event->attr.sample_freq)
3086
			goto next;
3087

3088 3089 3090 3091 3092
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3093
		now = local64_read(&event->count);
3094 3095
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3096

3097 3098 3099
		/*
		 * restart the event
		 * reload only if value has changed
3100 3101 3102
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3103
		 */
3104
		if (delta > 0)
3105
			perf_adjust_period(event, period, delta, false);
3106 3107

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3108 3109
	next:
		perf_pmu_enable(event->pmu);
3110
	}
3111

3112
	perf_pmu_enable(ctx->pmu);
3113
	raw_spin_unlock(&ctx->lock);
3114 3115
}

3116
/*
3117
 * Round-robin a context's events:
3118
 */
3119
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3120
{
3121 3122 3123 3124 3125 3126
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3127 3128
}

3129
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3130
{
P
Peter Zijlstra 已提交
3131
	struct perf_event_context *ctx = NULL;
3132
	int rotate = 0;
3133

3134 3135 3136 3137
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3138

P
Peter Zijlstra 已提交
3139
	ctx = cpuctx->task_ctx;
3140 3141 3142 3143
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3144

3145
	if (!rotate)
3146 3147
		goto done;

3148
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3149
	perf_pmu_disable(cpuctx->ctx.pmu);
3150

3151 3152 3153
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3154

3155 3156 3157
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3158

3159
	perf_event_sched_in(cpuctx, ctx, current);
3160

3161 3162
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3163
done:
3164 3165

	return rotate;
3166 3167 3168 3169
}

void perf_event_task_tick(void)
{
3170 3171
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3172
	int throttled;
3173

3174 3175
	WARN_ON(!irqs_disabled());

3176 3177
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3178
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3179

3180
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3181
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3182 3183
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3194
	__perf_event_mark_enabled(event);
3195 3196 3197 3198

	return 1;
}

3199
/*
3200
 * Enable all of a task's events that have been marked enable-on-exec.
3201 3202
 * This expects task == current.
 */
3203
static void perf_event_enable_on_exec(int ctxn)
3204
{
3205
	struct perf_event_context *ctx, *clone_ctx = NULL;
3206
	struct perf_cpu_context *cpuctx;
3207
	struct perf_event *event;
3208 3209 3210 3211
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3212
	ctx = current->perf_event_ctxp[ctxn];
3213
	if (!ctx || !ctx->nr_events)
3214 3215
		goto out;

3216 3217
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3218
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3219 3220
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3221 3222

	/*
3223
	 * Unclone and reschedule this context if we enabled any event.
3224
	 */
3225
	if (enabled) {
3226
		clone_ctx = unclone_ctx(ctx);
3227 3228 3229
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3230

P
Peter Zijlstra 已提交
3231
out:
3232
	local_irq_restore(flags);
3233 3234 3235

	if (clone_ctx)
		put_ctx(clone_ctx);
3236 3237
}

3238 3239 3240 3241 3242
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3243 3244
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3245 3246 3247
	rcu_read_unlock();
}

3248 3249 3250
struct perf_read_data {
	struct perf_event *event;
	bool group;
3251
	int ret;
3252 3253
};

T
Thomas Gleixner 已提交
3254
/*
3255
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3256
 */
3257
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3258
{
3259 3260
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3261
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3262
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3263
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3264

3265 3266 3267 3268
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3269 3270
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3271 3272 3273 3274
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3275
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3276
	if (ctx->is_active) {
3277
		update_context_time(ctx);
S
Stephane Eranian 已提交
3278 3279
		update_cgrp_time_from_event(event);
	}
3280

3281
	update_event_times(event);
3282 3283
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3284

3285 3286 3287
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3288
		goto unlock;
3289 3290 3291 3292 3293
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3294 3295 3296

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3297 3298 3299 3300 3301
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3302
			sub->pmu->read(sub);
3303
		}
3304
	}
3305 3306

	data->ret = pmu->commit_txn(pmu);
3307 3308

unlock:
3309
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3310 3311
}

P
Peter Zijlstra 已提交
3312 3313
static inline u64 perf_event_count(struct perf_event *event)
{
3314 3315 3316 3317
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3318 3319
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3373
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3374
{
3375 3376
	int ret = 0;

T
Thomas Gleixner 已提交
3377
	/*
3378 3379
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3380
	 */
3381
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3382 3383 3384
		struct perf_read_data data = {
			.event = event,
			.group = group,
3385
			.ret = 0,
3386
		};
3387
		smp_call_function_single(event->oncpu,
3388
					 __perf_event_read, &data, 1);
3389
		ret = data.ret;
3390
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3391 3392 3393
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3394
		raw_spin_lock_irqsave(&ctx->lock, flags);
3395 3396 3397 3398 3399
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3400
		if (ctx->is_active) {
3401
			update_context_time(ctx);
S
Stephane Eranian 已提交
3402 3403
			update_cgrp_time_from_event(event);
		}
3404 3405 3406 3407
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3408
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3409
	}
3410 3411

	return ret;
T
Thomas Gleixner 已提交
3412 3413
}

3414
/*
3415
 * Initialize the perf_event context in a task_struct:
3416
 */
3417
static void __perf_event_init_context(struct perf_event_context *ctx)
3418
{
3419
	raw_spin_lock_init(&ctx->lock);
3420
	mutex_init(&ctx->mutex);
3421
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3422 3423
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3424 3425
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3441
	}
3442 3443 3444
	ctx->pmu = pmu;

	return ctx;
3445 3446
}

3447 3448 3449 3450 3451
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3452 3453

	rcu_read_lock();
3454
	if (!vpid)
T
Thomas Gleixner 已提交
3455 3456
		task = current;
	else
3457
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3458 3459 3460 3461 3462 3463 3464 3465
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3466
	err = -EACCES;
3467
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3468 3469
		goto errout;

3470 3471 3472 3473 3474 3475 3476
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3477 3478 3479
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3480
static struct perf_event_context *
3481 3482
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3483
{
3484
	struct perf_event_context *ctx, *clone_ctx = NULL;
3485
	struct perf_cpu_context *cpuctx;
3486
	void *task_ctx_data = NULL;
3487
	unsigned long flags;
P
Peter Zijlstra 已提交
3488
	int ctxn, err;
3489
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3490

3491
	if (!task) {
3492
		/* Must be root to operate on a CPU event: */
3493
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3494 3495 3496
			return ERR_PTR(-EACCES);

		/*
3497
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3498 3499 3500
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3501
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3502 3503
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3504
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3505
		ctx = &cpuctx->ctx;
3506
		get_ctx(ctx);
3507
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3508 3509 3510 3511

		return ctx;
	}

P
Peter Zijlstra 已提交
3512 3513 3514 3515 3516
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3517 3518 3519 3520 3521 3522 3523 3524
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3525
retry:
P
Peter Zijlstra 已提交
3526
	ctx = perf_lock_task_context(task, ctxn, &flags);
3527
	if (ctx) {
3528
		clone_ctx = unclone_ctx(ctx);
3529
		++ctx->pin_count;
3530 3531 3532 3533 3534

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3535
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3536 3537 3538

		if (clone_ctx)
			put_ctx(clone_ctx);
3539
	} else {
3540
		ctx = alloc_perf_context(pmu, task);
3541 3542 3543
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3544

3545 3546 3547 3548 3549
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3560
		else {
3561
			get_ctx(ctx);
3562
			++ctx->pin_count;
3563
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3564
		}
3565 3566 3567
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3568
			put_ctx(ctx);
3569 3570 3571 3572

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3573 3574 3575
		}
	}

3576
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3577
	return ctx;
3578

P
Peter Zijlstra 已提交
3579
errout:
3580
	kfree(task_ctx_data);
3581
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3582 3583
}

L
Li Zefan 已提交
3584
static void perf_event_free_filter(struct perf_event *event);
3585
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3586

3587
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3588
{
3589
	struct perf_event *event;
P
Peter Zijlstra 已提交
3590

3591 3592 3593
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3594
	perf_event_free_filter(event);
3595
	kfree(event);
P
Peter Zijlstra 已提交
3596 3597
}

3598 3599
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3600

3601
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3602
{
3603 3604 3605 3606 3607 3608
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3609

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3632 3633
static void unaccount_event(struct perf_event *event)
{
3634 3635
	bool dec = false;

3636 3637 3638 3639
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3640
		dec = true;
3641 3642 3643 3644 3645 3646
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3647
	if (event->attr.freq)
3648
		unaccount_freq_event();
3649
	if (event->attr.context_switch) {
3650
		dec = true;
3651 3652
		atomic_dec(&nr_switch_events);
	}
3653
	if (is_cgroup_event(event))
3654
		dec = true;
3655
	if (has_branch_stack(event))
3656 3657
		dec = true;

3658 3659 3660 3661
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3662 3663 3664

	unaccount_event_cpu(event, event->cpu);
}
3665

3666 3667 3668 3669 3670 3671 3672 3673
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3684
 * _free_event()), the latter -- before the first perf_install_in_context().
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3759
static void _free_event(struct perf_event *event)
3760
{
3761
	irq_work_sync(&event->pending);
3762

3763
	unaccount_event(event);
3764

3765
	if (event->rb) {
3766 3767 3768 3769 3770 3771 3772
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3773
		ring_buffer_attach(event, NULL);
3774
		mutex_unlock(&event->mmap_mutex);
3775 3776
	}

S
Stephane Eranian 已提交
3777 3778 3779
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3799 3800
}

P
Peter Zijlstra 已提交
3801 3802 3803 3804 3805
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3806
{
P
Peter Zijlstra 已提交
3807 3808 3809 3810 3811 3812
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3813

P
Peter Zijlstra 已提交
3814
	_free_event(event);
T
Thomas Gleixner 已提交
3815 3816
}

3817
/*
3818
 * Remove user event from the owner task.
3819
 */
3820
static void perf_remove_from_owner(struct perf_event *event)
3821
{
P
Peter Zijlstra 已提交
3822
	struct task_struct *owner;
3823

P
Peter Zijlstra 已提交
3824 3825
	rcu_read_lock();
	/*
3826 3827 3828
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3829 3830
	 * owner->perf_event_mutex.
	 */
3831
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3853 3854 3855 3856 3857 3858
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3859
		if (event->owner) {
P
Peter Zijlstra 已提交
3860
			list_del_init(&event->owner_entry);
3861 3862
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3863 3864 3865
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3866 3867 3868 3869 3870 3871 3872
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3883
	struct perf_event_context *ctx = event->ctx;
3884 3885
	struct perf_event *child, *tmp;

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3896 3897
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3898

3899
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3900
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3901
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3902

P
Peter Zijlstra 已提交
3903
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3904
	/*
P
Peter Zijlstra 已提交
3905 3906
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3907
	 *
P
Peter Zijlstra 已提交
3908 3909 3910
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3911
	 *
3912 3913
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3914
	 */
P
Peter Zijlstra 已提交
3915 3916 3917 3918
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3919

3920 3921 3922
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3973 3974
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3975 3976 3977 3978
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3979 3980 3981
/*
 * Called when the last reference to the file is gone.
 */
3982 3983
static int perf_release(struct inode *inode, struct file *file)
{
3984
	perf_event_release_kernel(file->private_data);
3985
	return 0;
3986 3987
}

3988
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3989
{
3990
	struct perf_event *child;
3991 3992
	u64 total = 0;

3993 3994 3995
	*enabled = 0;
	*running = 0;

3996
	mutex_lock(&event->child_mutex);
3997

3998
	(void)perf_event_read(event, false);
3999 4000
	total += perf_event_count(event);

4001 4002 4003 4004 4005 4006
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4007
		(void)perf_event_read(child, false);
4008
		total += perf_event_count(child);
4009 4010 4011
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4012
	mutex_unlock(&event->child_mutex);
4013 4014 4015

	return total;
}
4016
EXPORT_SYMBOL_GPL(perf_event_read_value);
4017

4018
static int __perf_read_group_add(struct perf_event *leader,
4019
					u64 read_format, u64 *values)
4020
{
4021 4022
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4023
	int ret;
P
Peter Zijlstra 已提交
4024

4025 4026 4027
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4028

4029 4030 4031 4032 4033 4034 4035 4036 4037
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4048 4049
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4050

4051 4052 4053 4054 4055
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4056 4057

	return 0;
4058
}
4059

4060 4061 4062 4063 4064
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4065
	int ret;
4066
	u64 *values;
4067

4068
	lockdep_assert_held(&ctx->mutex);
4069

4070 4071 4072
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4073

4074 4075 4076 4077 4078 4079 4080
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4081

4082 4083 4084 4085 4086 4087 4088 4089 4090
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4091

4092
	mutex_unlock(&leader->child_mutex);
4093

4094
	ret = event->read_size;
4095 4096
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4097
	goto out;
4098

4099 4100 4101
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4102
	kfree(values);
4103
	return ret;
4104 4105
}

4106
static int perf_read_one(struct perf_event *event,
4107 4108
				 u64 read_format, char __user *buf)
{
4109
	u64 enabled, running;
4110 4111 4112
	u64 values[4];
	int n = 0;

4113 4114 4115 4116 4117
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4118
	if (read_format & PERF_FORMAT_ID)
4119
		values[n++] = primary_event_id(event);
4120 4121 4122 4123 4124 4125 4126

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4127 4128 4129 4130
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4131
	if (event->state > PERF_EVENT_STATE_EXIT)
4132 4133 4134 4135 4136 4137 4138 4139
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4140
/*
4141
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4142 4143
 */
static ssize_t
4144
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4145
{
4146
	u64 read_format = event->attr.read_format;
4147
	int ret;
T
Thomas Gleixner 已提交
4148

4149
	/*
4150
	 * Return end-of-file for a read on a event that is in
4151 4152 4153
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4154
	if (event->state == PERF_EVENT_STATE_ERROR)
4155 4156
		return 0;

4157
	if (count < event->read_size)
4158 4159
		return -ENOSPC;

4160
	WARN_ON_ONCE(event->ctx->parent_ctx);
4161
	if (read_format & PERF_FORMAT_GROUP)
4162
		ret = perf_read_group(event, read_format, buf);
4163
	else
4164
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4165

4166
	return ret;
T
Thomas Gleixner 已提交
4167 4168 4169 4170 4171
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4172
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4173 4174
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4175

P
Peter Zijlstra 已提交
4176
	ctx = perf_event_ctx_lock(event);
4177
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4178 4179 4180
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4181 4182 4183 4184
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4185
	struct perf_event *event = file->private_data;
4186
	struct ring_buffer *rb;
4187
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4188

4189
	poll_wait(file, &event->waitq, wait);
4190

4191
	if (is_event_hup(event))
4192
		return events;
P
Peter Zijlstra 已提交
4193

4194
	/*
4195 4196
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4197 4198
	 */
	mutex_lock(&event->mmap_mutex);
4199 4200
	rb = event->rb;
	if (rb)
4201
		events = atomic_xchg(&rb->poll, 0);
4202
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4203 4204 4205
	return events;
}

P
Peter Zijlstra 已提交
4206
static void _perf_event_reset(struct perf_event *event)
4207
{
4208
	(void)perf_event_read(event, false);
4209
	local64_set(&event->count, 0);
4210
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4211 4212
}

4213
/*
4214 4215
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4216
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4217
 * task existence requirements of perf_event_enable/disable.
4218
 */
4219 4220
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4221
{
4222
	struct perf_event *child;
P
Peter Zijlstra 已提交
4223

4224
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4225

4226 4227 4228
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4229
		func(child);
4230
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4231 4232
}

4233 4234
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4235
{
4236 4237
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4238

P
Peter Zijlstra 已提交
4239 4240
	lockdep_assert_held(&ctx->mutex);

4241
	event = event->group_leader;
4242

4243 4244
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4245
		perf_event_for_each_child(sibling, func);
4246 4247
}

4248 4249 4250 4251
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4252
{
4253
	u64 value = *((u64 *)info);
4254
	bool active;
4255

4256 4257
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4258
	} else {
4259 4260
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4261
	}
4262 4263 4264 4265

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4266 4267 4268 4269 4270 4271 4272 4273
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4274 4275 4276 4277 4278 4279 4280 4281 4282
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4301
	event_function_call(event, __perf_event_period, &value);
4302

4303
	return 0;
4304 4305
}

4306 4307
static const struct file_operations perf_fops;

4308
static inline int perf_fget_light(int fd, struct fd *p)
4309
{
4310 4311 4312
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4313

4314 4315 4316
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4317
	}
4318 4319
	*p = f;
	return 0;
4320 4321 4322 4323
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4324
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4325
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4326

P
Peter Zijlstra 已提交
4327
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4328
{
4329
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4330
	u32 flags = arg;
4331 4332

	switch (cmd) {
4333
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4334
		func = _perf_event_enable;
4335
		break;
4336
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4337
		func = _perf_event_disable;
4338
		break;
4339
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4340
		func = _perf_event_reset;
4341
		break;
P
Peter Zijlstra 已提交
4342

4343
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4344
		return _perf_event_refresh(event, arg);
4345

4346 4347
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4348

4349 4350 4351 4352 4353 4354 4355 4356 4357
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4358
	case PERF_EVENT_IOC_SET_OUTPUT:
4359 4360 4361
	{
		int ret;
		if (arg != -1) {
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4372 4373 4374
		}
		return ret;
	}
4375

L
Li Zefan 已提交
4376 4377 4378
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4379 4380 4381
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4395
	default:
P
Peter Zijlstra 已提交
4396
		return -ENOTTY;
4397
	}
P
Peter Zijlstra 已提交
4398 4399

	if (flags & PERF_IOC_FLAG_GROUP)
4400
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4401
	else
4402
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4403 4404

	return 0;
4405 4406
}

P
Peter Zijlstra 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4440
int perf_event_task_enable(void)
4441
{
P
Peter Zijlstra 已提交
4442
	struct perf_event_context *ctx;
4443
	struct perf_event *event;
4444

4445
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4446 4447 4448 4449 4450
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4451
	mutex_unlock(&current->perf_event_mutex);
4452 4453 4454 4455

	return 0;
}

4456
int perf_event_task_disable(void)
4457
{
P
Peter Zijlstra 已提交
4458
	struct perf_event_context *ctx;
4459
	struct perf_event *event;
4460

4461
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4462 4463 4464 4465 4466
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4467
	mutex_unlock(&current->perf_event_mutex);
4468 4469 4470 4471

	return 0;
}

4472
static int perf_event_index(struct perf_event *event)
4473
{
P
Peter Zijlstra 已提交
4474 4475 4476
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4477
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4478 4479
		return 0;

4480
	return event->pmu->event_idx(event);
4481 4482
}

4483
static void calc_timer_values(struct perf_event *event,
4484
				u64 *now,
4485 4486
				u64 *enabled,
				u64 *running)
4487
{
4488
	u64 ctx_time;
4489

4490 4491
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4492 4493 4494 4495
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4511 4512
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4513 4514 4515 4516 4517

unlock:
	rcu_read_unlock();
}

4518 4519
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4520 4521 4522
{
}

4523 4524 4525 4526 4527
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4528
void perf_event_update_userpage(struct perf_event *event)
4529
{
4530
	struct perf_event_mmap_page *userpg;
4531
	struct ring_buffer *rb;
4532
	u64 enabled, running, now;
4533 4534

	rcu_read_lock();
4535 4536 4537 4538
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4539 4540 4541 4542 4543 4544 4545 4546 4547
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4548
	calc_timer_values(event, &now, &enabled, &running);
4549

4550
	userpg = rb->user_page;
4551 4552 4553 4554 4555
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4556
	++userpg->lock;
4557
	barrier();
4558
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4559
	userpg->offset = perf_event_count(event);
4560
	if (userpg->index)
4561
		userpg->offset -= local64_read(&event->hw.prev_count);
4562

4563
	userpg->time_enabled = enabled +
4564
			atomic64_read(&event->child_total_time_enabled);
4565

4566
	userpg->time_running = running +
4567
			atomic64_read(&event->child_total_time_running);
4568

4569
	arch_perf_update_userpage(event, userpg, now);
4570

4571
	barrier();
4572
	++userpg->lock;
4573
	preempt_enable();
4574
unlock:
4575
	rcu_read_unlock();
4576 4577
}

4578 4579 4580
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4581
	struct ring_buffer *rb;
4582 4583 4584 4585 4586 4587 4588 4589 4590
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4591 4592
	rb = rcu_dereference(event->rb);
	if (!rb)
4593 4594 4595 4596 4597
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4598
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4613 4614 4615
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4616
	struct ring_buffer *old_rb = NULL;
4617 4618
	unsigned long flags;

4619 4620 4621 4622 4623 4624
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4625

4626 4627 4628 4629
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4630

4631 4632
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4633
	}
4634

4635
	if (rb) {
4636 4637 4638 4639 4640
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4657 4658 4659 4660 4661 4662 4663 4664
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4665 4666 4667 4668
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4669 4670 4671
	rcu_read_unlock();
}

4672
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4673
{
4674
	struct ring_buffer *rb;
4675

4676
	rcu_read_lock();
4677 4678 4679 4680
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4681 4682 4683
	}
	rcu_read_unlock();

4684
	return rb;
4685 4686
}

4687
void ring_buffer_put(struct ring_buffer *rb)
4688
{
4689
	if (!atomic_dec_and_test(&rb->refcount))
4690
		return;
4691

4692
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4693

4694
	call_rcu(&rb->rcu_head, rb_free_rcu);
4695 4696 4697 4698
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4699
	struct perf_event *event = vma->vm_file->private_data;
4700

4701
	atomic_inc(&event->mmap_count);
4702
	atomic_inc(&event->rb->mmap_count);
4703

4704 4705 4706
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4707 4708
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4709 4710
}

4711 4712
static void perf_pmu_output_stop(struct perf_event *event);

4713 4714 4715 4716 4717 4718 4719 4720
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4721 4722
static void perf_mmap_close(struct vm_area_struct *vma)
{
4723
	struct perf_event *event = vma->vm_file->private_data;
4724

4725
	struct ring_buffer *rb = ring_buffer_get(event);
4726 4727 4728
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4729

4730 4731 4732
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4733 4734 4735 4736 4737 4738 4739
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4740 4741 4742 4743 4744 4745 4746 4747 4748
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
4749 4750 4751
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

4752
		/* this has to be the last one */
4753
		rb_free_aux(rb);
4754 4755
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

4756 4757 4758
		mutex_unlock(&event->mmap_mutex);
	}

4759 4760 4761
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4762
		goto out_put;
4763

4764
	ring_buffer_attach(event, NULL);
4765 4766 4767
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4768 4769
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4770

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4787

4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4799 4800 4801
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4802
		mutex_unlock(&event->mmap_mutex);
4803
		put_event(event);
4804

4805 4806 4807 4808 4809
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4810
	}
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4826
out_put:
4827
	ring_buffer_put(rb); /* could be last */
4828 4829
}

4830
static const struct vm_operations_struct perf_mmap_vmops = {
4831
	.open		= perf_mmap_open,
4832
	.close		= perf_mmap_close, /* non mergable */
4833 4834
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4835 4836 4837 4838
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4839
	struct perf_event *event = file->private_data;
4840
	unsigned long user_locked, user_lock_limit;
4841
	struct user_struct *user = current_user();
4842
	unsigned long locked, lock_limit;
4843
	struct ring_buffer *rb = NULL;
4844 4845
	unsigned long vma_size;
	unsigned long nr_pages;
4846
	long user_extra = 0, extra = 0;
4847
	int ret = 0, flags = 0;
4848

4849 4850 4851
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4852
	 * same rb.
4853 4854 4855 4856
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4857
	if (!(vma->vm_flags & VM_SHARED))
4858
		return -EINVAL;
4859 4860

	vma_size = vma->vm_end - vma->vm_start;
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4921

4922
	/*
4923
	 * If we have rb pages ensure they're a power-of-two number, so we
4924 4925
	 * can do bitmasks instead of modulo.
	 */
4926
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4927 4928
		return -EINVAL;

4929
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4930 4931
		return -EINVAL;

4932
	WARN_ON_ONCE(event->ctx->parent_ctx);
4933
again:
4934
	mutex_lock(&event->mmap_mutex);
4935
	if (event->rb) {
4936
		if (event->rb->nr_pages != nr_pages) {
4937
			ret = -EINVAL;
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4951 4952 4953
		goto unlock;
	}

4954
	user_extra = nr_pages + 1;
4955 4956

accounting:
4957
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4958 4959 4960 4961 4962 4963

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4964
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4965

4966 4967
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4968

4969
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4970
	lock_limit >>= PAGE_SHIFT;
4971
	locked = vma->vm_mm->pinned_vm + extra;
4972

4973 4974
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4975 4976 4977
		ret = -EPERM;
		goto unlock;
	}
4978

4979
	WARN_ON(!rb && event->rb);
4980

4981
	if (vma->vm_flags & VM_WRITE)
4982
		flags |= RING_BUFFER_WRITABLE;
4983

4984
	if (!rb) {
4985 4986 4987
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4988

4989 4990 4991 4992
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4993

4994 4995 4996
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4997

4998
		ring_buffer_attach(event, rb);
4999

5000 5001 5002
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5003 5004
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5005 5006 5007
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5008

5009
unlock:
5010 5011 5012 5013
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5014
		atomic_inc(&event->mmap_count);
5015 5016 5017 5018
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5019
	mutex_unlock(&event->mmap_mutex);
5020

5021 5022 5023 5024
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5025
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5026
	vma->vm_ops = &perf_mmap_vmops;
5027

5028 5029 5030
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5031
	return ret;
5032 5033
}

P
Peter Zijlstra 已提交
5034 5035
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5036
	struct inode *inode = file_inode(filp);
5037
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5038 5039
	int retval;

A
Al Viro 已提交
5040
	inode_lock(inode);
5041
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5042
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5043 5044 5045 5046 5047 5048 5049

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5050
static const struct file_operations perf_fops = {
5051
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5052 5053 5054
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5055
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5056
	.compat_ioctl		= perf_compat_ioctl,
5057
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5058
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5059 5060
};

5061
/*
5062
 * Perf event wakeup
5063 5064 5065 5066 5067
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5068 5069 5070 5071 5072 5073 5074 5075
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5076
void perf_event_wakeup(struct perf_event *event)
5077
{
5078
	ring_buffer_wakeup(event);
5079

5080
	if (event->pending_kill) {
5081
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5082
		event->pending_kill = 0;
5083
	}
5084 5085
}

5086
static void perf_pending_event(struct irq_work *entry)
5087
{
5088 5089
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5090 5091 5092 5093 5094 5095 5096
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5097

5098 5099
	if (event->pending_disable) {
		event->pending_disable = 0;
5100
		perf_event_disable_local(event);
5101 5102
	}

5103 5104 5105
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5106
	}
5107 5108 5109

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5110 5111
}

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5148
static void perf_sample_regs_user(struct perf_regs *regs_user,
5149 5150
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5151
{
5152 5153
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5154
		regs_user->regs = regs;
5155 5156
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5157 5158 5159
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5160 5161 5162
	}
}

5163 5164 5165 5166 5167 5168 5169 5170
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5266 5267 5268
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5282
		data->time = perf_event_clock(event);
5283

5284
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5296 5297 5298
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5323 5324 5325

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5326 5327
}

5328 5329 5330
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5331 5332 5333 5334 5335
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5336
static void perf_output_read_one(struct perf_output_handle *handle,
5337 5338
				 struct perf_event *event,
				 u64 enabled, u64 running)
5339
{
5340
	u64 read_format = event->attr.read_format;
5341 5342 5343
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5344
	values[n++] = perf_event_count(event);
5345
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5346
		values[n++] = enabled +
5347
			atomic64_read(&event->child_total_time_enabled);
5348 5349
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5350
		values[n++] = running +
5351
			atomic64_read(&event->child_total_time_running);
5352 5353
	}
	if (read_format & PERF_FORMAT_ID)
5354
		values[n++] = primary_event_id(event);
5355

5356
	__output_copy(handle, values, n * sizeof(u64));
5357 5358 5359
}

/*
5360
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5361 5362
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5363 5364
			    struct perf_event *event,
			    u64 enabled, u64 running)
5365
{
5366 5367
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5368 5369 5370 5371 5372 5373
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5374
		values[n++] = enabled;
5375 5376

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5377
		values[n++] = running;
5378

5379
	if (leader != event)
5380 5381
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5382
	values[n++] = perf_event_count(leader);
5383
	if (read_format & PERF_FORMAT_ID)
5384
		values[n++] = primary_event_id(leader);
5385

5386
	__output_copy(handle, values, n * sizeof(u64));
5387

5388
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5389 5390
		n = 0;

5391 5392
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5393 5394
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5395
		values[n++] = perf_event_count(sub);
5396
		if (read_format & PERF_FORMAT_ID)
5397
			values[n++] = primary_event_id(sub);
5398

5399
		__output_copy(handle, values, n * sizeof(u64));
5400 5401 5402
	}
}

5403 5404 5405
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5406
static void perf_output_read(struct perf_output_handle *handle,
5407
			     struct perf_event *event)
5408
{
5409
	u64 enabled = 0, running = 0, now;
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5421
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5422
		calc_timer_values(event, &now, &enabled, &running);
5423

5424
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5425
		perf_output_read_group(handle, event, enabled, running);
5426
	else
5427
		perf_output_read_one(handle, event, enabled, running);
5428 5429
}

5430 5431 5432
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5433
			struct perf_event *event)
5434 5435 5436 5437 5438
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5439 5440 5441
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5467
		perf_output_read(handle, event);
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5478
			__output_copy(handle, data->callchain, size);
5479 5480 5481 5482 5483 5484 5485 5486
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5487 5488 5489 5490 5491 5492 5493 5494 5495
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5507

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5542

5543
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5544 5545 5546
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5547
	}
A
Andi Kleen 已提交
5548 5549 5550

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5551 5552 5553

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5554

A
Andi Kleen 已提交
5555 5556 5557
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5588 5589 5590 5591
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5592
			 struct perf_event *event,
5593
			 struct pt_regs *regs)
5594
{
5595
	u64 sample_type = event->attr.sample_type;
5596

5597
	header->type = PERF_RECORD_SAMPLE;
5598
	header->size = sizeof(*header) + event->header_size;
5599 5600 5601

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5602

5603
	__perf_event_header__init_id(header, data, event);
5604

5605
	if (sample_type & PERF_SAMPLE_IP)
5606 5607
		data->ip = perf_instruction_pointer(regs);

5608
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5609
		int size = 1;
5610

5611
		data->callchain = perf_callchain(event, regs);
5612 5613 5614 5615 5616

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5617 5618
	}

5619
	if (sample_type & PERF_SAMPLE_RAW) {
5620 5621 5622 5623 5624 5625 5626
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5627
		header->size += round_up(size, sizeof(u64));
5628
	}
5629 5630 5631 5632 5633 5634 5635 5636 5637

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5638

5639
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5640 5641
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5642

5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5666
						     data->regs_user.regs);
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5694
}
5695

5696 5697 5698
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5699 5700 5701
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5702

5703 5704 5705
	/* protect the callchain buffers */
	rcu_read_lock();

5706
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5707

5708
	if (perf_output_begin(&handle, event, header.size))
5709
		goto exit;
5710

5711
	perf_output_sample(&handle, &header, data, event);
5712

5713
	perf_output_end(&handle);
5714 5715 5716

exit:
	rcu_read_unlock();
5717 5718
}

5719
/*
5720
 * read event_id
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5731
perf_event_read_event(struct perf_event *event,
5732 5733 5734
			struct task_struct *task)
{
	struct perf_output_handle handle;
5735
	struct perf_sample_data sample;
5736
	struct perf_read_event read_event = {
5737
		.header = {
5738
			.type = PERF_RECORD_READ,
5739
			.misc = 0,
5740
			.size = sizeof(read_event) + event->read_size,
5741
		},
5742 5743
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5744
	};
5745
	int ret;
5746

5747
	perf_event_header__init_id(&read_event.header, &sample, event);
5748
	ret = perf_output_begin(&handle, event, read_event.header.size);
5749 5750 5751
	if (ret)
		return;

5752
	perf_output_put(&handle, read_event);
5753
	perf_output_read(&handle, event);
5754
	perf_event__output_id_sample(event, &handle, &sample);
5755

5756 5757 5758
	perf_output_end(&handle);
}

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5773
		output(event, data);
5774 5775 5776
	}
}

J
Jiri Olsa 已提交
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5788
static void
5789
perf_event_aux(perf_event_aux_output_cb output, void *data,
5790 5791 5792 5793 5794 5795 5796
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5808 5809 5810 5811 5812
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5813
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5814 5815 5816 5817 5818
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5819
			perf_event_aux_ctx(ctx, output, data);
5820 5821 5822 5823
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
}

struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
	 * ring-buffer, but it will be the child that's actually using it:
	 */
	if (rcu_dereference(parent->rb) == rb)
		ro->err = __perf_event_stop(event);
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
	perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro);
	if (cpuctx->task_ctx)
		perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
				   &ro);
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
5898 5899
}

P
Peter Zijlstra 已提交
5900
/*
P
Peter Zijlstra 已提交
5901 5902
 * task tracking -- fork/exit
 *
5903
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5904 5905
 */

P
Peter Zijlstra 已提交
5906
struct perf_task_event {
5907
	struct task_struct		*task;
5908
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5909 5910 5911 5912 5913 5914

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5915 5916
		u32				tid;
		u32				ptid;
5917
		u64				time;
5918
	} event_id;
P
Peter Zijlstra 已提交
5919 5920
};

5921 5922
static int perf_event_task_match(struct perf_event *event)
{
5923 5924 5925
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5926 5927
}

5928
static void perf_event_task_output(struct perf_event *event,
5929
				   void *data)
P
Peter Zijlstra 已提交
5930
{
5931
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5932
	struct perf_output_handle handle;
5933
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5934
	struct task_struct *task = task_event->task;
5935
	int ret, size = task_event->event_id.header.size;
5936

5937 5938 5939
	if (!perf_event_task_match(event))
		return;

5940
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5941

5942
	ret = perf_output_begin(&handle, event,
5943
				task_event->event_id.header.size);
5944
	if (ret)
5945
		goto out;
P
Peter Zijlstra 已提交
5946

5947 5948
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5949

5950 5951
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5952

5953 5954
	task_event->event_id.time = perf_event_clock(event);

5955
	perf_output_put(&handle, task_event->event_id);
5956

5957 5958
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5959
	perf_output_end(&handle);
5960 5961
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5962 5963
}

5964 5965
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5966
			      int new)
P
Peter Zijlstra 已提交
5967
{
P
Peter Zijlstra 已提交
5968
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5969

5970 5971 5972
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5973 5974
		return;

P
Peter Zijlstra 已提交
5975
	task_event = (struct perf_task_event){
5976 5977
		.task	  = task,
		.task_ctx = task_ctx,
5978
		.event_id    = {
P
Peter Zijlstra 已提交
5979
			.header = {
5980
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5981
				.misc = 0,
5982
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5983
			},
5984 5985
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5986 5987
			/* .tid  */
			/* .ptid */
5988
			/* .time */
P
Peter Zijlstra 已提交
5989 5990 5991
		},
	};

5992
	perf_event_aux(perf_event_task_output,
5993 5994
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5995 5996
}

5997
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5998
{
5999
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6000 6001
}

6002 6003 6004 6005 6006
/*
 * comm tracking
 */

struct perf_comm_event {
6007 6008
	struct task_struct	*task;
	char			*comm;
6009 6010 6011 6012 6013 6014 6015
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6016
	} event_id;
6017 6018
};

6019 6020 6021 6022 6023
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6024
static void perf_event_comm_output(struct perf_event *event,
6025
				   void *data)
6026
{
6027
	struct perf_comm_event *comm_event = data;
6028
	struct perf_output_handle handle;
6029
	struct perf_sample_data sample;
6030
	int size = comm_event->event_id.header.size;
6031 6032
	int ret;

6033 6034 6035
	if (!perf_event_comm_match(event))
		return;

6036 6037
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6038
				comm_event->event_id.header.size);
6039 6040

	if (ret)
6041
		goto out;
6042

6043 6044
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6045

6046
	perf_output_put(&handle, comm_event->event_id);
6047
	__output_copy(&handle, comm_event->comm,
6048
				   comm_event->comm_size);
6049 6050 6051

	perf_event__output_id_sample(event, &handle, &sample);

6052
	perf_output_end(&handle);
6053 6054
out:
	comm_event->event_id.header.size = size;
6055 6056
}

6057
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6058
{
6059
	char comm[TASK_COMM_LEN];
6060 6061
	unsigned int size;

6062
	memset(comm, 0, sizeof(comm));
6063
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6064
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6065 6066 6067 6068

	comm_event->comm = comm;
	comm_event->comm_size = size;

6069
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6070

6071
	perf_event_aux(perf_event_comm_output,
6072 6073
		       comm_event,
		       NULL);
6074 6075
}

6076
void perf_event_comm(struct task_struct *task, bool exec)
6077
{
6078 6079
	struct perf_comm_event comm_event;

6080
	if (!atomic_read(&nr_comm_events))
6081
		return;
6082

6083
	comm_event = (struct perf_comm_event){
6084
		.task	= task,
6085 6086
		/* .comm      */
		/* .comm_size */
6087
		.event_id  = {
6088
			.header = {
6089
				.type = PERF_RECORD_COMM,
6090
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6091 6092 6093 6094
				/* .size */
			},
			/* .pid */
			/* .tid */
6095 6096 6097
		},
	};

6098
	perf_event_comm_event(&comm_event);
6099 6100
}

6101 6102 6103 6104 6105
/*
 * mmap tracking
 */

struct perf_mmap_event {
6106 6107 6108 6109
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6110 6111 6112
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6113
	u32			prot, flags;
6114 6115 6116 6117 6118 6119 6120 6121 6122

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6123
	} event_id;
6124 6125
};

6126 6127 6128 6129 6130 6131 6132 6133
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6134
	       (executable && (event->attr.mmap || event->attr.mmap2));
6135 6136
}

6137
static void perf_event_mmap_output(struct perf_event *event,
6138
				   void *data)
6139
{
6140
	struct perf_mmap_event *mmap_event = data;
6141
	struct perf_output_handle handle;
6142
	struct perf_sample_data sample;
6143
	int size = mmap_event->event_id.header.size;
6144
	int ret;
6145

6146 6147 6148
	if (!perf_event_mmap_match(event, data))
		return;

6149 6150 6151 6152 6153
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6154
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6155 6156
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6157 6158
	}

6159 6160
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6161
				mmap_event->event_id.header.size);
6162
	if (ret)
6163
		goto out;
6164

6165 6166
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6167

6168
	perf_output_put(&handle, mmap_event->event_id);
6169 6170 6171 6172 6173 6174

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6175 6176
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6177 6178
	}

6179
	__output_copy(&handle, mmap_event->file_name,
6180
				   mmap_event->file_size);
6181 6182 6183

	perf_event__output_id_sample(event, &handle, &sample);

6184
	perf_output_end(&handle);
6185 6186
out:
	mmap_event->event_id.header.size = size;
6187 6188
}

6189
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6190
{
6191 6192
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6193 6194
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6195
	u32 prot = 0, flags = 0;
6196 6197 6198
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6199
	char *name;
6200

6201
	if (file) {
6202 6203
		struct inode *inode;
		dev_t dev;
6204

6205
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6206
		if (!buf) {
6207 6208
			name = "//enomem";
			goto cpy_name;
6209
		}
6210
		/*
6211
		 * d_path() works from the end of the rb backwards, so we
6212 6213 6214
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6215
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6216
		if (IS_ERR(name)) {
6217 6218
			name = "//toolong";
			goto cpy_name;
6219
		}
6220 6221 6222 6223 6224 6225
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6248
		goto got_name;
6249
	} else {
6250 6251 6252 6253 6254 6255
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6256
		name = (char *)arch_vma_name(vma);
6257 6258
		if (name)
			goto cpy_name;
6259

6260
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6261
				vma->vm_end >= vma->vm_mm->brk) {
6262 6263
			name = "[heap]";
			goto cpy_name;
6264 6265
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6266
				vma->vm_end >= vma->vm_mm->start_stack) {
6267 6268
			name = "[stack]";
			goto cpy_name;
6269 6270
		}

6271 6272
		name = "//anon";
		goto cpy_name;
6273 6274
	}

6275 6276 6277
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6278
got_name:
6279 6280 6281 6282 6283 6284 6285 6286
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6287 6288 6289

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6290 6291 6292 6293
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6294 6295
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6296

6297 6298 6299
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6300
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6301

6302
	perf_event_aux(perf_event_mmap_output,
6303 6304
		       mmap_event,
		       NULL);
6305

6306 6307 6308
	kfree(buf);
}

6309
void perf_event_mmap(struct vm_area_struct *vma)
6310
{
6311 6312
	struct perf_mmap_event mmap_event;

6313
	if (!atomic_read(&nr_mmap_events))
6314 6315 6316
		return;

	mmap_event = (struct perf_mmap_event){
6317
		.vma	= vma,
6318 6319
		/* .file_name */
		/* .file_size */
6320
		.event_id  = {
6321
			.header = {
6322
				.type = PERF_RECORD_MMAP,
6323
				.misc = PERF_RECORD_MISC_USER,
6324 6325 6326 6327
				/* .size */
			},
			/* .pid */
			/* .tid */
6328 6329
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6330
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6331
		},
6332 6333 6334 6335
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6336 6337
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6338 6339
	};

6340
	perf_event_mmap_event(&mmap_event);
6341 6342
}

A
Alexander Shishkin 已提交
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6495 6496 6497 6498
/*
 * IRQ throttle logging
 */

6499
static void perf_log_throttle(struct perf_event *event, int enable)
6500 6501
{
	struct perf_output_handle handle;
6502
	struct perf_sample_data sample;
6503 6504 6505 6506 6507
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6508
		u64				id;
6509
		u64				stream_id;
6510 6511
	} throttle_event = {
		.header = {
6512
			.type = PERF_RECORD_THROTTLE,
6513 6514 6515
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6516
		.time		= perf_event_clock(event),
6517 6518
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6519 6520
	};

6521
	if (enable)
6522
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6523

6524 6525 6526
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6527
				throttle_event.header.size);
6528 6529 6530 6531
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6532
	perf_event__output_id_sample(event, &handle, &sample);
6533 6534 6535
	perf_output_end(&handle);
}

6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6572
/*
6573
 * Generic event overflow handling, sampling.
6574 6575
 */

6576
static int __perf_event_overflow(struct perf_event *event,
6577 6578
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6579
{
6580 6581
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6582
	u64 seq;
6583 6584
	int ret = 0;

6585 6586 6587 6588 6589 6590 6591
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6592 6593 6594 6595 6596 6597 6598 6599 6600
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
6601
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
6602 6603
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6604 6605
			ret = 1;
		}
6606
	}
6607

6608
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6609
		u64 now = perf_clock();
6610
		s64 delta = now - hwc->freq_time_stamp;
6611

6612
		hwc->freq_time_stamp = now;
6613

6614
		if (delta > 0 && delta < 2*TICK_NSEC)
6615
			perf_adjust_period(event, delta, hwc->last_period, true);
6616 6617
	}

6618 6619
	/*
	 * XXX event_limit might not quite work as expected on inherited
6620
	 * events
6621 6622
	 */

6623 6624
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6625
		ret = 1;
6626
		event->pending_kill = POLL_HUP;
6627 6628
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6629 6630
	}

6631
	event->overflow_handler(event, data, regs);
6632

6633
	if (*perf_event_fasync(event) && event->pending_kill) {
6634 6635
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6636 6637
	}

6638
	return ret;
6639 6640
}

6641
int perf_event_overflow(struct perf_event *event,
6642 6643
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6644
{
6645
	return __perf_event_overflow(event, 1, data, regs);
6646 6647
}

6648
/*
6649
 * Generic software event infrastructure
6650 6651
 */

6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6663
/*
6664 6665
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6666 6667 6668 6669
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6670
u64 perf_swevent_set_period(struct perf_event *event)
6671
{
6672
	struct hw_perf_event *hwc = &event->hw;
6673 6674 6675 6676 6677
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6678 6679

again:
6680
	old = val = local64_read(&hwc->period_left);
6681 6682
	if (val < 0)
		return 0;
6683

6684 6685 6686
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6687
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6688
		goto again;
6689

6690
	return nr;
6691 6692
}

6693
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6694
				    struct perf_sample_data *data,
6695
				    struct pt_regs *regs)
6696
{
6697
	struct hw_perf_event *hwc = &event->hw;
6698
	int throttle = 0;
6699

6700 6701
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6702

6703 6704
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6705

6706
	for (; overflow; overflow--) {
6707
		if (__perf_event_overflow(event, throttle,
6708
					    data, regs)) {
6709 6710 6711 6712 6713 6714
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6715
		throttle = 1;
6716
	}
6717 6718
}

P
Peter Zijlstra 已提交
6719
static void perf_swevent_event(struct perf_event *event, u64 nr,
6720
			       struct perf_sample_data *data,
6721
			       struct pt_regs *regs)
6722
{
6723
	struct hw_perf_event *hwc = &event->hw;
6724

6725
	local64_add(nr, &event->count);
6726

6727 6728 6729
	if (!regs)
		return;

6730
	if (!is_sampling_event(event))
6731
		return;
6732

6733 6734 6735 6736 6737 6738
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6739
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6740
		return perf_swevent_overflow(event, 1, data, regs);
6741

6742
	if (local64_add_negative(nr, &hwc->period_left))
6743
		return;
6744

6745
	perf_swevent_overflow(event, 0, data, regs);
6746 6747
}

6748 6749 6750
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6751
	if (event->hw.state & PERF_HES_STOPPED)
6752
		return 1;
P
Peter Zijlstra 已提交
6753

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6765
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6766
				enum perf_type_id type,
L
Li Zefan 已提交
6767 6768 6769
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6770
{
6771
	if (event->attr.type != type)
6772
		return 0;
6773

6774
	if (event->attr.config != event_id)
6775 6776
		return 0;

6777 6778
	if (perf_exclude_event(event, regs))
		return 0;
6779 6780 6781 6782

	return 1;
}

6783 6784 6785 6786 6787 6788 6789
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6790 6791
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6792
{
6793 6794 6795 6796
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6797

6798 6799
/* For the read side: events when they trigger */
static inline struct hlist_head *
6800
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6801 6802
{
	struct swevent_hlist *hlist;
6803

6804
	hlist = rcu_dereference(swhash->swevent_hlist);
6805 6806 6807
	if (!hlist)
		return NULL;

6808 6809 6810 6811 6812
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6813
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6824
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6825 6826 6827 6828 6829
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6830 6831 6832
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6833
				    u64 nr,
6834 6835
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6836
{
6837
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6838
	struct perf_event *event;
6839
	struct hlist_head *head;
6840

6841
	rcu_read_lock();
6842
	head = find_swevent_head_rcu(swhash, type, event_id);
6843 6844 6845
	if (!head)
		goto end;

6846
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6847
		if (perf_swevent_match(event, type, event_id, data, regs))
6848
			perf_swevent_event(event, nr, data, regs);
6849
	}
6850 6851
end:
	rcu_read_unlock();
6852 6853
}

6854 6855
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6856
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6857
{
6858
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6859

6860
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6861
}
I
Ingo Molnar 已提交
6862
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6863

6864
inline void perf_swevent_put_recursion_context(int rctx)
6865
{
6866
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6867

6868
	put_recursion_context(swhash->recursion, rctx);
6869
}
6870

6871
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6872
{
6873
	struct perf_sample_data data;
6874

6875
	if (WARN_ON_ONCE(!regs))
6876
		return;
6877

6878
	perf_sample_data_init(&data, addr, 0);
6879
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6892 6893

	perf_swevent_put_recursion_context(rctx);
6894
fail:
6895
	preempt_enable_notrace();
6896 6897
}

6898
static void perf_swevent_read(struct perf_event *event)
6899 6900 6901
{
}

P
Peter Zijlstra 已提交
6902
static int perf_swevent_add(struct perf_event *event, int flags)
6903
{
6904
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6905
	struct hw_perf_event *hwc = &event->hw;
6906 6907
	struct hlist_head *head;

6908
	if (is_sampling_event(event)) {
6909
		hwc->last_period = hwc->sample_period;
6910
		perf_swevent_set_period(event);
6911
	}
6912

P
Peter Zijlstra 已提交
6913 6914
	hwc->state = !(flags & PERF_EF_START);

6915
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6916
	if (WARN_ON_ONCE(!head))
6917 6918 6919
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6920
	perf_event_update_userpage(event);
6921

6922 6923 6924
	return 0;
}

P
Peter Zijlstra 已提交
6925
static void perf_swevent_del(struct perf_event *event, int flags)
6926
{
6927
	hlist_del_rcu(&event->hlist_entry);
6928 6929
}

P
Peter Zijlstra 已提交
6930
static void perf_swevent_start(struct perf_event *event, int flags)
6931
{
P
Peter Zijlstra 已提交
6932
	event->hw.state = 0;
6933
}
I
Ingo Molnar 已提交
6934

P
Peter Zijlstra 已提交
6935
static void perf_swevent_stop(struct perf_event *event, int flags)
6936
{
P
Peter Zijlstra 已提交
6937
	event->hw.state = PERF_HES_STOPPED;
6938 6939
}

6940 6941
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6942
swevent_hlist_deref(struct swevent_htable *swhash)
6943
{
6944 6945
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6946 6947
}

6948
static void swevent_hlist_release(struct swevent_htable *swhash)
6949
{
6950
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6951

6952
	if (!hlist)
6953 6954
		return;

6955
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6956
	kfree_rcu(hlist, rcu_head);
6957 6958
}

6959
static void swevent_hlist_put_cpu(int cpu)
6960
{
6961
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6962

6963
	mutex_lock(&swhash->hlist_mutex);
6964

6965 6966
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6967

6968
	mutex_unlock(&swhash->hlist_mutex);
6969 6970
}

6971
static void swevent_hlist_put(void)
6972 6973 6974 6975
{
	int cpu;

	for_each_possible_cpu(cpu)
6976
		swevent_hlist_put_cpu(cpu);
6977 6978
}

6979
static int swevent_hlist_get_cpu(int cpu)
6980
{
6981
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6982 6983
	int err = 0;

6984 6985
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6986 6987 6988 6989 6990 6991 6992
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6993
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6994
	}
6995
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6996
exit:
6997
	mutex_unlock(&swhash->hlist_mutex);
6998 6999 7000 7001

	return err;
}

7002
static int swevent_hlist_get(void)
7003
{
7004
	int err, cpu, failed_cpu;
7005 7006 7007

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7008
		err = swevent_hlist_get_cpu(cpu);
7009 7010 7011 7012 7013 7014 7015 7016
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7017
fail:
7018 7019 7020
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7021
		swevent_hlist_put_cpu(cpu);
7022 7023 7024 7025 7026 7027
	}

	put_online_cpus();
	return err;
}

7028
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7029

7030 7031 7032
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7033

7034 7035
	WARN_ON(event->parent);

7036
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7037
	swevent_hlist_put();
7038 7039 7040 7041
}

static int perf_swevent_init(struct perf_event *event)
{
7042
	u64 event_id = event->attr.config;
7043 7044 7045 7046

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7047 7048 7049 7050 7051 7052
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7053 7054 7055 7056 7057 7058 7059 7060 7061
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7062
	if (event_id >= PERF_COUNT_SW_MAX)
7063 7064 7065 7066 7067
		return -ENOENT;

	if (!event->parent) {
		int err;

7068
		err = swevent_hlist_get();
7069 7070 7071
		if (err)
			return err;

7072
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7073 7074 7075 7076 7077 7078 7079
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7080
	.task_ctx_nr	= perf_sw_context,
7081

7082 7083
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7084
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7085 7086 7087 7088
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7089 7090 7091
	.read		= perf_swevent_read,
};

7092 7093
#ifdef CONFIG_EVENT_TRACING

7094 7095 7096 7097 7098
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

7099 7100 7101 7102
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7103 7104 7105 7106 7107 7108 7109 7110 7111
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7112 7113
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7114 7115 7116 7117
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7118 7119 7120 7121 7122 7123 7124 7125 7126
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7127 7128
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7129 7130
{
	struct perf_sample_data data;
7131 7132
	struct perf_event *event;

7133 7134 7135 7136 7137
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

7138
	perf_sample_data_init(&data, addr, 0);
7139 7140
	data.raw = &raw;

7141
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7142
		if (perf_tp_event_match(event, &data, regs))
7143
			perf_swevent_event(event, count, &data, regs);
7144
	}
7145

7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7171
	perf_swevent_put_recursion_context(rctx);
7172 7173 7174
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7175
static void tp_perf_event_destroy(struct perf_event *event)
7176
{
7177
	perf_trace_destroy(event);
7178 7179
}

7180
static int perf_tp_event_init(struct perf_event *event)
7181
{
7182 7183
	int err;

7184 7185 7186
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7187 7188 7189 7190 7191 7192
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7193 7194
	err = perf_trace_init(event);
	if (err)
7195
		return err;
7196

7197
	event->destroy = tp_perf_event_destroy;
7198

7199 7200 7201 7202
	return 0;
}

static struct pmu perf_tracepoint = {
7203 7204
	.task_ctx_nr	= perf_sw_context,

7205
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7206 7207 7208 7209
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7210 7211 7212 7213 7214
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7215
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7216
}
L
Li Zefan 已提交
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7251 7252
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7253 7254 7255 7256 7257 7258
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7259
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7284
#else
L
Li Zefan 已提交
7285

7286
static inline void perf_tp_register(void)
7287 7288
{
}
L
Li Zefan 已提交
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7299 7300 7301 7302 7303 7304 7305 7306
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7307
#endif /* CONFIG_EVENT_TRACING */
7308

7309
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7310
void perf_bp_event(struct perf_event *bp, void *data)
7311
{
7312 7313 7314
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7315
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7316

P
Peter Zijlstra 已提交
7317
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7318
		perf_swevent_event(bp, 1, &sample, regs);
7319 7320 7321
}
#endif

7322 7323 7324
/*
 * hrtimer based swevent callback
 */
7325

7326
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7327
{
7328 7329 7330 7331 7332
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7333

7334
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7335 7336 7337 7338

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7339
	event->pmu->read(event);
7340

7341
	perf_sample_data_init(&data, 0, event->hw.last_period);
7342 7343 7344
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7345
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7346
			if (__perf_event_overflow(event, 1, &data, regs))
7347 7348
				ret = HRTIMER_NORESTART;
	}
7349

7350 7351
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7352

7353
	return ret;
7354 7355
}

7356
static void perf_swevent_start_hrtimer(struct perf_event *event)
7357
{
7358
	struct hw_perf_event *hwc = &event->hw;
7359 7360 7361 7362
	s64 period;

	if (!is_sampling_event(event))
		return;
7363

7364 7365 7366 7367
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7368

7369 7370 7371 7372
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7373 7374
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7375
}
7376 7377

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7378
{
7379 7380
	struct hw_perf_event *hwc = &event->hw;

7381
	if (is_sampling_event(event)) {
7382
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7383
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7384 7385 7386

		hrtimer_cancel(&hwc->hrtimer);
	}
7387 7388
}

P
Peter Zijlstra 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7409
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7410 7411 7412 7413
		event->attr.freq = 0;
	}
}

7414 7415 7416 7417 7418
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7419
{
7420 7421 7422
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7423
	now = local_clock();
7424 7425
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7426 7427
}

P
Peter Zijlstra 已提交
7428
static void cpu_clock_event_start(struct perf_event *event, int flags)
7429
{
P
Peter Zijlstra 已提交
7430
	local64_set(&event->hw.prev_count, local_clock());
7431 7432 7433
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7434
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7435
{
7436 7437 7438
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7439

P
Peter Zijlstra 已提交
7440 7441 7442 7443
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7444
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7445 7446 7447 7448 7449 7450 7451 7452 7453

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7454 7455 7456 7457
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7458

7459 7460 7461 7462 7463 7464 7465 7466
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7467 7468 7469 7470 7471 7472
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7473 7474
	perf_swevent_init_hrtimer(event);

7475
	return 0;
7476 7477
}

7478
static struct pmu perf_cpu_clock = {
7479 7480
	.task_ctx_nr	= perf_sw_context,

7481 7482
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7483
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7484 7485 7486 7487
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7488 7489 7490 7491 7492 7493 7494 7495
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7496
{
7497 7498
	u64 prev;
	s64 delta;
7499

7500 7501 7502 7503
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7504

P
Peter Zijlstra 已提交
7505
static void task_clock_event_start(struct perf_event *event, int flags)
7506
{
P
Peter Zijlstra 已提交
7507
	local64_set(&event->hw.prev_count, event->ctx->time);
7508 7509 7510
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7511
static void task_clock_event_stop(struct perf_event *event, int flags)
7512 7513 7514
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7515 7516 7517 7518 7519 7520
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7521
	perf_event_update_userpage(event);
7522

P
Peter Zijlstra 已提交
7523 7524 7525 7526 7527 7528
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7529 7530 7531 7532
}

static void task_clock_event_read(struct perf_event *event)
{
7533 7534 7535
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7536 7537 7538 7539 7540

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7541
{
7542 7543 7544 7545 7546 7547
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7548 7549 7550 7551 7552 7553
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7554 7555
	perf_swevent_init_hrtimer(event);

7556
	return 0;
L
Li Zefan 已提交
7557 7558
}

7559
static struct pmu perf_task_clock = {
7560 7561
	.task_ctx_nr	= perf_sw_context,

7562 7563
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7564
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7565 7566 7567 7568
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7569 7570
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7571

P
Peter Zijlstra 已提交
7572
static void perf_pmu_nop_void(struct pmu *pmu)
7573 7574
{
}
L
Li Zefan 已提交
7575

7576 7577 7578 7579
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7580
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7581
{
P
Peter Zijlstra 已提交
7582
	return 0;
L
Li Zefan 已提交
7583 7584
}

7585
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7586 7587

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7588
{
7589 7590 7591 7592 7593
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7594
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7595 7596
}

P
Peter Zijlstra 已提交
7597 7598
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7599 7600 7601 7602 7603 7604 7605
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7606 7607 7608
	perf_pmu_enable(pmu);
	return 0;
}
7609

P
Peter Zijlstra 已提交
7610
static void perf_pmu_cancel_txn(struct pmu *pmu)
7611
{
7612 7613 7614 7615 7616 7617 7618
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7619
	perf_pmu_enable(pmu);
7620 7621
}

7622 7623
static int perf_event_idx_default(struct perf_event *event)
{
7624
	return 0;
7625 7626
}

P
Peter Zijlstra 已提交
7627 7628 7629 7630
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7631
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7632
{
P
Peter Zijlstra 已提交
7633
	struct pmu *pmu;
7634

P
Peter Zijlstra 已提交
7635 7636
	if (ctxn < 0)
		return NULL;
7637

P
Peter Zijlstra 已提交
7638 7639 7640 7641
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7642

P
Peter Zijlstra 已提交
7643
	return NULL;
7644 7645
}

7646
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7647
{
7648 7649 7650 7651 7652 7653 7654
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7655 7656
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7657 7658 7659 7660 7661 7662
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7663

P
Peter Zijlstra 已提交
7664
	mutex_lock(&pmus_lock);
7665
	/*
P
Peter Zijlstra 已提交
7666
	 * Like a real lame refcount.
7667
	 */
7668 7669 7670
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7671
			goto out;
7672
		}
P
Peter Zijlstra 已提交
7673
	}
7674

7675
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7676 7677
out:
	mutex_unlock(&pmus_lock);
7678
}
P
Peter Zijlstra 已提交
7679
static struct idr pmu_idr;
7680

P
Peter Zijlstra 已提交
7681 7682 7683 7684 7685 7686 7687
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7688
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7689

7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7700 7701
static DEFINE_MUTEX(mux_interval_mutex);

7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7721
	mutex_lock(&mux_interval_mutex);
7722 7723 7724
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7725 7726
	get_online_cpus();
	for_each_online_cpu(cpu) {
7727 7728 7729 7730
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7731 7732
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7733
	}
7734 7735
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7736 7737 7738

	return count;
}
7739
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7740

7741 7742 7743 7744
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7745
};
7746
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7747 7748 7749 7750

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7751
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7767
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7788
static struct lock_class_key cpuctx_mutex;
7789
static struct lock_class_key cpuctx_lock;
7790

7791
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7792
{
P
Peter Zijlstra 已提交
7793
	int cpu, ret;
7794

7795
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7796 7797 7798 7799
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7800

P
Peter Zijlstra 已提交
7801 7802 7803 7804 7805 7806
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7807 7808 7809
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7810 7811 7812 7813 7814
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7815 7816 7817 7818 7819 7820
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7821
skip_type:
7822 7823 7824 7825 7826 7827 7828 7829 7830
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

		if (WARN_ON_ONCE(hw_context_taken))
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
7831 7832 7833
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7834

W
Wei Yongjun 已提交
7835
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7836 7837
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7838
		goto free_dev;
7839

P
Peter Zijlstra 已提交
7840 7841 7842 7843
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7844
		__perf_event_init_context(&cpuctx->ctx);
7845
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7846
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7847
		cpuctx->ctx.pmu = pmu;
7848

7849
		__perf_mux_hrtimer_init(cpuctx, cpu);
7850

7851
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7852
	}
7853

P
Peter Zijlstra 已提交
7854
got_cpu_context:
P
Peter Zijlstra 已提交
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7866
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7867 7868
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7869
		}
7870
	}
7871

P
Peter Zijlstra 已提交
7872 7873 7874 7875 7876
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7877 7878 7879
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7880
	list_add_rcu(&pmu->entry, &pmus);
7881
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7882 7883
	ret = 0;
unlock:
7884 7885
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7886
	return ret;
P
Peter Zijlstra 已提交
7887

P
Peter Zijlstra 已提交
7888 7889 7890 7891
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7892 7893 7894 7895
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7896 7897 7898
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7899
}
7900
EXPORT_SYMBOL_GPL(perf_pmu_register);
7901

7902
void perf_pmu_unregister(struct pmu *pmu)
7903
{
7904 7905 7906
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7907

7908
	/*
P
Peter Zijlstra 已提交
7909 7910
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7911
	 */
7912
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7913
	synchronize_rcu();
7914

P
Peter Zijlstra 已提交
7915
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7916 7917
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7918 7919
	device_del(pmu->dev);
	put_device(pmu->dev);
7920
	free_pmu_context(pmu);
7921
}
7922
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7923

7924 7925
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7926
	struct perf_event_context *ctx = NULL;
7927 7928 7929 7930
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7931 7932

	if (event->group_leader != event) {
7933 7934 7935 7936 7937 7938
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7939 7940 7941
		BUG_ON(!ctx);
	}

7942 7943
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7944 7945 7946 7947

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7948 7949 7950 7951 7952 7953
	if (ret)
		module_put(pmu->module);

	return ret;
}

7954
static struct pmu *perf_init_event(struct perf_event *event)
7955 7956 7957
{
	struct pmu *pmu = NULL;
	int idx;
7958
	int ret;
7959 7960

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7961 7962 7963 7964

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7965
	if (pmu) {
7966
		ret = perf_try_init_event(pmu, event);
7967 7968
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7969
		goto unlock;
7970
	}
P
Peter Zijlstra 已提交
7971

7972
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7973
		ret = perf_try_init_event(pmu, event);
7974
		if (!ret)
P
Peter Zijlstra 已提交
7975
			goto unlock;
7976

7977 7978
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7979
			goto unlock;
7980
		}
7981
	}
P
Peter Zijlstra 已提交
7982 7983
	pmu = ERR_PTR(-ENOENT);
unlock:
7984
	srcu_read_unlock(&pmus_srcu, idx);
7985

7986
	return pmu;
7987 7988
}

7989 7990 7991 7992 7993 7994 7995 7996 7997
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


8019 8020
static void account_event(struct perf_event *event)
{
8021 8022
	bool inc = false;

8023 8024 8025
	if (event->parent)
		return;

8026
	if (event->attach_state & PERF_ATTACH_TASK)
8027
		inc = true;
8028 8029 8030 8031 8032 8033
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
8034 8035
	if (event->attr.freq)
		account_freq_event();
8036 8037
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
8038
		inc = true;
8039
	}
8040
	if (has_branch_stack(event))
8041
		inc = true;
8042
	if (is_cgroup_event(event))
8043 8044
		inc = true;

8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
8067 8068

	account_event_cpu(event, event->cpu);
8069 8070
}

T
Thomas Gleixner 已提交
8071
/*
8072
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
8073
 */
8074
static struct perf_event *
8075
perf_event_alloc(struct perf_event_attr *attr, int cpu,
8076 8077 8078
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
8079
		 perf_overflow_handler_t overflow_handler,
8080
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
8081
{
P
Peter Zijlstra 已提交
8082
	struct pmu *pmu;
8083 8084
	struct perf_event *event;
	struct hw_perf_event *hwc;
8085
	long err = -EINVAL;
T
Thomas Gleixner 已提交
8086

8087 8088 8089 8090 8091
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

8092
	event = kzalloc(sizeof(*event), GFP_KERNEL);
8093
	if (!event)
8094
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
8095

8096
	/*
8097
	 * Single events are their own group leaders, with an
8098 8099 8100
	 * empty sibling list:
	 */
	if (!group_leader)
8101
		group_leader = event;
8102

8103 8104
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
8105

8106 8107 8108
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
8109
	INIT_LIST_HEAD(&event->rb_entry);
8110
	INIT_LIST_HEAD(&event->active_entry);
8111 8112
	INIT_HLIST_NODE(&event->hlist_entry);

8113

8114
	init_waitqueue_head(&event->waitq);
8115
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
8116

8117
	mutex_init(&event->mmap_mutex);
8118

8119
	atomic_long_set(&event->refcount, 1);
8120 8121 8122 8123 8124
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
8125

8126
	event->parent		= parent_event;
8127

8128
	event->ns		= get_pid_ns(task_active_pid_ns(current));
8129
	event->id		= atomic64_inc_return(&perf_event_id);
8130

8131
	event->state		= PERF_EVENT_STATE_INACTIVE;
8132

8133 8134 8135
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
8136 8137 8138
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
8139
		 */
8140
		event->hw.target = task;
8141 8142
	}

8143 8144 8145 8146
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

8147
	if (!overflow_handler && parent_event) {
8148
		overflow_handler = parent_event->overflow_handler;
8149 8150
		context = parent_event->overflow_handler_context;
	}
8151

8152 8153 8154 8155 8156 8157 8158
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
	} else {
		event->overflow_handler = perf_event_output;
		event->overflow_handler_context = NULL;
	}
8159

J
Jiri Olsa 已提交
8160
	perf_event__state_init(event);
8161

8162
	pmu = NULL;
8163

8164
	hwc = &event->hw;
8165
	hwc->sample_period = attr->sample_period;
8166
	if (attr->freq && attr->sample_freq)
8167
		hwc->sample_period = 1;
8168
	hwc->last_period = hwc->sample_period;
8169

8170
	local64_set(&hwc->period_left, hwc->sample_period);
8171

8172
	/*
8173
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8174
	 */
8175
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8176
		goto err_ns;
8177 8178 8179

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
8180

8181 8182 8183 8184 8185 8186
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

8187
	pmu = perf_init_event(event);
8188
	if (!pmu)
8189 8190
		goto err_ns;
	else if (IS_ERR(pmu)) {
8191
		err = PTR_ERR(pmu);
8192
		goto err_ns;
I
Ingo Molnar 已提交
8193
	}
8194

8195 8196 8197 8198
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

8199
	if (!event->parent) {
8200 8201
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
8202
			if (err)
8203
				goto err_per_task;
8204
		}
8205
	}
8206

8207 8208 8209
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

8210
	return event;
8211

8212 8213 8214
err_per_task:
	exclusive_event_destroy(event);

8215 8216 8217
err_pmu:
	if (event->destroy)
		event->destroy(event);
8218
	module_put(pmu->module);
8219
err_ns:
8220 8221
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8222 8223 8224 8225 8226
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8227 8228
}

8229 8230
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8231 8232
{
	u32 size;
8233
	int ret;
8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8258 8259 8260
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8261 8262
	 */
	if (size > sizeof(*attr)) {
8263 8264 8265
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8266

8267 8268
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8269

8270
		for (; addr < end; addr++) {
8271 8272 8273 8274 8275 8276
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8277
		size = sizeof(*attr);
8278 8279 8280 8281 8282 8283
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8284
	if (attr->__reserved_1)
8285 8286 8287 8288 8289 8290 8291 8292
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8321 8322
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8323 8324
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8325
	}
8326

8327
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8328
		ret = perf_reg_validate(attr->sample_regs_user);
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8347

8348 8349
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8350 8351 8352 8353 8354 8355 8356 8357 8358
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8359 8360
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8361
{
8362
	struct ring_buffer *rb = NULL;
8363 8364
	int ret = -EINVAL;

8365
	if (!output_event)
8366 8367
		goto set;

8368 8369
	/* don't allow circular references */
	if (event == output_event)
8370 8371
		goto out;

8372 8373 8374 8375 8376 8377 8378
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8379
	 * If its not a per-cpu rb, it must be the same task.
8380 8381 8382 8383
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8384 8385 8386 8387 8388 8389
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8390 8391 8392 8393 8394 8395 8396
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8397
set:
8398
	mutex_lock(&event->mmap_mutex);
8399 8400 8401
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8402

8403
	if (output_event) {
8404 8405 8406
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8407
			goto unlock;
8408 8409
	}

8410
	ring_buffer_attach(event, rb);
8411

8412
	ret = 0;
8413 8414 8415
unlock:
	mutex_unlock(&event->mmap_mutex);

8416 8417 8418 8419
out:
	return ret;
}

P
Peter Zijlstra 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8466
/**
8467
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8468
 *
8469
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8470
 * @pid:		target pid
I
Ingo Molnar 已提交
8471
 * @cpu:		target cpu
8472
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8473
 */
8474 8475
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8476
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8477
{
8478 8479
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8480
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8481
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8482
	struct file *event_file = NULL;
8483
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8484
	struct task_struct *task = NULL;
8485
	struct pmu *pmu;
8486
	int event_fd;
8487
	int move_group = 0;
8488
	int err;
8489
	int f_flags = O_RDWR;
8490
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8491

8492
	/* for future expandability... */
S
Stephane Eranian 已提交
8493
	if (flags & ~PERF_FLAG_ALL)
8494 8495
		return -EINVAL;

8496 8497 8498
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8499

8500 8501 8502 8503 8504
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8505
	if (attr.freq) {
8506
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8507
			return -EINVAL;
8508 8509 8510
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8511 8512
	}

S
Stephane Eranian 已提交
8513 8514 8515 8516 8517 8518 8519 8520 8521
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8522 8523 8524 8525
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8526 8527 8528
	if (event_fd < 0)
		return event_fd;

8529
	if (group_fd != -1) {
8530 8531
		err = perf_fget_light(group_fd, &group);
		if (err)
8532
			goto err_fd;
8533
		group_leader = group.file->private_data;
8534 8535 8536 8537 8538 8539
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8540
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8541 8542 8543 8544 8545 8546 8547
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8548 8549 8550 8551 8552 8553
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8554 8555
	get_online_cpus();

8556 8557 8558
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8559
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8560
				 NULL, NULL, cgroup_fd);
8561 8562
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8563
		goto err_cpus;
8564 8565
	}

8566 8567 8568 8569 8570 8571 8572
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8573 8574 8575 8576 8577
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8578

8579 8580 8581 8582 8583 8584
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8607 8608 8609 8610

	/*
	 * Get the target context (task or percpu):
	 */
8611
	ctx = find_get_context(pmu, task, event);
8612 8613
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8614
		goto err_alloc;
8615 8616
	}

8617 8618 8619 8620 8621
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8622 8623 8624 8625 8626
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8627
	/*
8628
	 * Look up the group leader (we will attach this event to it):
8629
	 */
8630
	if (group_leader) {
8631
		err = -EINVAL;
8632 8633

		/*
I
Ingo Molnar 已提交
8634 8635 8636 8637
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8638
			goto err_context;
8639 8640 8641 8642 8643

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8644 8645 8646
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8647
		 */
8648
		if (move_group) {
8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8662 8663 8664 8665 8666 8667
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8668 8669 8670
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8671
		if (attr.exclusive || attr.pinned)
8672
			goto err_context;
8673 8674 8675 8676 8677
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8678
			goto err_context;
8679
	}
T
Thomas Gleixner 已提交
8680

8681 8682
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8683 8684
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8685
		event_file = NULL;
8686
		goto err_context;
8687
	}
8688

8689
	if (move_group) {
P
Peter Zijlstra 已提交
8690
		gctx = group_leader->ctx;
8691
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8692 8693 8694 8695
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8696 8697 8698 8699
	} else {
		mutex_lock(&ctx->mutex);
	}

8700 8701 8702 8703 8704
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8705 8706 8707 8708 8709
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8710 8711 8712 8713 8714 8715 8716
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8717

8718 8719 8720
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8721

8722 8723 8724
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8725 8726 8727 8728
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8729
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8730

8731 8732
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8733
			perf_remove_from_context(sibling, 0);
8734 8735 8736
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8737 8738 8739 8740
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8741
		synchronize_rcu();
P
Peter Zijlstra 已提交
8742

8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8753 8754
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8755
			perf_event__state_init(sibling);
8756
			perf_install_in_context(ctx, sibling, sibling->cpu);
8757 8758
			get_ctx(ctx);
		}
8759 8760 8761 8762 8763 8764 8765 8766 8767

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8768

8769 8770 8771 8772 8773 8774
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8775 8776
	}

8777 8778 8779 8780 8781 8782 8783 8784 8785
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8786 8787
	event->owner = current;

8788
	perf_install_in_context(ctx, event, event->cpu);
8789
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8790

8791
	if (move_group)
P
Peter Zijlstra 已提交
8792
		mutex_unlock(&gctx->mutex);
8793
	mutex_unlock(&ctx->mutex);
8794

8795 8796
	put_online_cpus();

8797 8798 8799
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8800

8801 8802 8803 8804 8805 8806
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8807
	fdput(group);
8808 8809
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8810

8811 8812 8813 8814 8815 8816
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8817
err_context:
8818
	perf_unpin_context(ctx);
8819
	put_ctx(ctx);
8820
err_alloc:
P
Peter Zijlstra 已提交
8821 8822 8823 8824 8825 8826
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8827
err_cpus:
8828
	put_online_cpus();
8829
err_task:
P
Peter Zijlstra 已提交
8830 8831
	if (task)
		put_task_struct(task);
8832
err_group_fd:
8833
	fdput(group);
8834 8835
err_fd:
	put_unused_fd(event_fd);
8836
	return err;
T
Thomas Gleixner 已提交
8837 8838
}

8839 8840 8841 8842 8843
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8844
 * @task: task to profile (NULL for percpu)
8845 8846 8847
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8848
				 struct task_struct *task,
8849 8850
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8851 8852
{
	struct perf_event_context *ctx;
8853
	struct perf_event *event;
8854
	int err;
8855

8856 8857 8858
	/*
	 * Get the target context (task or percpu):
	 */
8859

8860
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8861
				 overflow_handler, context, -1);
8862 8863 8864 8865
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8866

8867
	/* Mark owner so we could distinguish it from user events. */
8868
	event->owner = TASK_TOMBSTONE;
8869

8870
	ctx = find_get_context(event->pmu, task, event);
8871 8872
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8873
		goto err_free;
8874
	}
8875 8876 8877

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8878 8879 8880 8881 8882
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8883 8884
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8885
		goto err_unlock;
8886 8887
	}

8888
	perf_install_in_context(ctx, event, cpu);
8889
	perf_unpin_context(ctx);
8890 8891 8892 8893
	mutex_unlock(&ctx->mutex);

	return event;

8894 8895 8896 8897
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8898 8899 8900
err_free:
	free_event(event);
err:
8901
	return ERR_PTR(err);
8902
}
8903
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8904

8905 8906 8907 8908 8909 8910 8911 8912 8913 8914
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8915 8916 8917 8918 8919
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8920 8921
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8922
		perf_remove_from_context(event, 0);
8923
		unaccount_event_cpu(event, src_cpu);
8924
		put_ctx(src_ctx);
8925
		list_add(&event->migrate_entry, &events);
8926 8927
	}

8928 8929 8930
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8931 8932
	synchronize_rcu();

8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8957 8958
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8959 8960
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8961
		account_event_cpu(event, dst_cpu);
8962 8963 8964 8965
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8966
	mutex_unlock(&src_ctx->mutex);
8967 8968 8969
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8970
static void sync_child_event(struct perf_event *child_event,
8971
			       struct task_struct *child)
8972
{
8973
	struct perf_event *parent_event = child_event->parent;
8974
	u64 child_val;
8975

8976 8977
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8978

P
Peter Zijlstra 已提交
8979
	child_val = perf_event_count(child_event);
8980 8981 8982 8983

	/*
	 * Add back the child's count to the parent's count:
	 */
8984
	atomic64_add(child_val, &parent_event->child_count);
8985 8986 8987 8988
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8989 8990
}

8991
static void
8992 8993 8994
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8995
{
8996 8997
	struct perf_event *parent_event = child_event->parent;

8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
9010 9011 9012
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

9013
	if (parent_event)
9014 9015
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
9016
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9017
	raw_spin_unlock_irq(&child_ctx->lock);
9018

9019
	/*
9020
	 * Parent events are governed by their filedesc, retain them.
9021
	 */
9022
	if (!parent_event) {
9023
		perf_event_wakeup(child_event);
9024
		return;
9025
	}
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
9046 9047
}

P
Peter Zijlstra 已提交
9048
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9049
{
9050
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9051 9052 9053
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
9054

9055
	child_ctx = perf_pin_task_context(child, ctxn);
9056
	if (!child_ctx)
9057 9058
		return;

9059
	/*
9060 9061 9062 9063 9064 9065 9066 9067
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
9068
	 */
9069
	mutex_lock(&child_ctx->mutex);
9070 9071

	/*
9072 9073 9074
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
9075
	 */
9076
	raw_spin_lock_irq(&child_ctx->lock);
9077
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9078

9079
	/*
9080 9081
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
9082
	 */
9083 9084 9085 9086
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
9087

9088
	clone_ctx = unclone_ctx(child_ctx);
9089
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
9090

9091 9092
	if (clone_ctx)
		put_ctx(clone_ctx);
9093

P
Peter Zijlstra 已提交
9094
	/*
9095 9096 9097
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
9098
	 */
9099
	perf_event_task(child, child_ctx, 0);
9100

9101
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9102
		perf_event_exit_event(child_event, child_ctx, child);
9103

9104 9105 9106
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
9107 9108
}

P
Peter Zijlstra 已提交
9109 9110 9111 9112 9113
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
9114
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9115 9116
	int ctxn;

P
Peter Zijlstra 已提交
9117 9118 9119 9120 9121 9122 9123 9124 9125 9126
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
9127
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
9128 9129 9130
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
9131 9132
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
9133 9134 9135 9136 9137 9138 9139 9140

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
9141 9142
}

9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

9155
	put_event(parent);
9156

P
Peter Zijlstra 已提交
9157
	raw_spin_lock_irq(&ctx->lock);
9158
	perf_group_detach(event);
9159
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
9160
	raw_spin_unlock_irq(&ctx->lock);
9161 9162 9163
	free_event(event);
}

9164
/*
P
Peter Zijlstra 已提交
9165
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
9166
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
9167 9168 9169
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
9170
 */
9171
void perf_event_free_task(struct task_struct *task)
9172
{
P
Peter Zijlstra 已提交
9173
	struct perf_event_context *ctx;
9174
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9175
	int ctxn;
9176

P
Peter Zijlstra 已提交
9177 9178 9179 9180
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
9181

P
Peter Zijlstra 已提交
9182
		mutex_lock(&ctx->mutex);
9183
again:
P
Peter Zijlstra 已提交
9184 9185 9186
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
9187

P
Peter Zijlstra 已提交
9188 9189 9190
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
9191

P
Peter Zijlstra 已提交
9192 9193 9194
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
9195

P
Peter Zijlstra 已提交
9196
		mutex_unlock(&ctx->mutex);
9197

P
Peter Zijlstra 已提交
9198 9199
		put_ctx(ctx);
	}
9200 9201
}

9202 9203 9204 9205 9206 9207 9208 9209
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

9210
struct file *perf_event_get(unsigned int fd)
9211
{
9212
	struct file *file;
9213

9214 9215 9216
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
9217

9218 9219 9220 9221
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
9222

9223
	return file;
9224 9225 9226 9227 9228 9229 9230 9231 9232 9233
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9245
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9246
	struct perf_event *child_event;
9247
	unsigned long flags;
P
Peter Zijlstra 已提交
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9260
					   child,
P
Peter Zijlstra 已提交
9261
					   group_leader, parent_event,
9262
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9263 9264
	if (IS_ERR(child_event))
		return child_event;
9265

9266 9267 9268 9269 9270 9271 9272
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9273 9274
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9275
		mutex_unlock(&parent_event->child_mutex);
9276 9277 9278 9279
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9280 9281 9282 9283 9284 9285 9286
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9287
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9304 9305
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9306

9307 9308 9309 9310
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9311
	perf_event__id_header_size(child_event);
9312

P
Peter Zijlstra 已提交
9313 9314 9315
	/*
	 * Link it up in the child's context:
	 */
9316
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9317
	add_event_to_ctx(child_event, child_ctx);
9318
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9350 9351 9352 9353 9354
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9355
		   struct task_struct *child, int ctxn,
9356 9357 9358
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9359
	struct perf_event_context *child_ctx;
9360 9361 9362 9363

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9364 9365
	}

9366
	child_ctx = child->perf_event_ctxp[ctxn];
9367 9368 9369 9370 9371 9372 9373
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9374

9375
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9376 9377
		if (!child_ctx)
			return -ENOMEM;
9378

P
Peter Zijlstra 已提交
9379
		child->perf_event_ctxp[ctxn] = child_ctx;
9380 9381 9382 9383 9384 9385 9386 9387 9388
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9389 9390
}

9391
/*
9392
 * Initialize the perf_event context in task_struct
9393
 */
9394
static int perf_event_init_context(struct task_struct *child, int ctxn)
9395
{
9396
	struct perf_event_context *child_ctx, *parent_ctx;
9397 9398
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9399
	struct task_struct *parent = current;
9400
	int inherited_all = 1;
9401
	unsigned long flags;
9402
	int ret = 0;
9403

P
Peter Zijlstra 已提交
9404
	if (likely(!parent->perf_event_ctxp[ctxn]))
9405 9406
		return 0;

9407
	/*
9408 9409
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9410
	 */
P
Peter Zijlstra 已提交
9411
	parent_ctx = perf_pin_task_context(parent, ctxn);
9412 9413
	if (!parent_ctx)
		return 0;
9414

9415 9416 9417 9418 9419 9420 9421
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9422 9423 9424 9425
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9426
	mutex_lock(&parent_ctx->mutex);
9427 9428 9429 9430 9431

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9432
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9433 9434
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9435 9436 9437
		if (ret)
			break;
	}
9438

9439 9440 9441 9442 9443 9444 9445 9446 9447
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9448
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9449 9450
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9451
		if (ret)
9452
			break;
9453 9454
	}

9455 9456 9457
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9458
	child_ctx = child->perf_event_ctxp[ctxn];
9459

9460
	if (child_ctx && inherited_all) {
9461 9462 9463
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9464 9465 9466
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9467
		 */
P
Peter Zijlstra 已提交
9468
		cloned_ctx = parent_ctx->parent_ctx;
9469 9470
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9471
			child_ctx->parent_gen = parent_ctx->parent_gen;
9472 9473 9474 9475 9476
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9477 9478
	}

P
Peter Zijlstra 已提交
9479
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9480
	mutex_unlock(&parent_ctx->mutex);
9481

9482
	perf_unpin_context(parent_ctx);
9483
	put_ctx(parent_ctx);
9484

9485
	return ret;
9486 9487
}

P
Peter Zijlstra 已提交
9488 9489 9490 9491 9492 9493 9494
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9495 9496 9497 9498
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9499 9500
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9501 9502
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9503
			return ret;
P
Peter Zijlstra 已提交
9504
		}
P
Peter Zijlstra 已提交
9505 9506 9507 9508 9509
	}

	return 0;
}

9510 9511
static void __init perf_event_init_all_cpus(void)
{
9512
	struct swevent_htable *swhash;
9513 9514 9515
	int cpu;

	for_each_possible_cpu(cpu) {
9516 9517
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9518
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9519 9520 9521
	}
}

9522
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9523
{
P
Peter Zijlstra 已提交
9524
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9525

9526
	mutex_lock(&swhash->hlist_mutex);
9527
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9528 9529
		struct swevent_hlist *hlist;

9530 9531 9532
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9533
	}
9534
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9535 9536
}

9537
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9538
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9539
{
P
Peter Zijlstra 已提交
9540
	struct perf_event_context *ctx = __info;
9541 9542
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9543

9544 9545
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9546
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9547
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9548
}
P
Peter Zijlstra 已提交
9549 9550 9551 9552 9553 9554 9555 9556 9557

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9558
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9559 9560 9561 9562 9563 9564 9565 9566

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9567
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9568
{
P
Peter Zijlstra 已提交
9569
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9570 9571
}
#else
9572
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9573 9574
#endif

P
Peter Zijlstra 已提交
9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9595
static int
T
Thomas Gleixner 已提交
9596 9597 9598 9599
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9600
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9601 9602

	case CPU_UP_PREPARE:
9603 9604 9605 9606 9607 9608 9609
		/*
		 * This must be done before the CPU comes alive, because the
		 * moment we can run tasks we can encounter (software) events.
		 *
		 * Specifically, someone can have inherited events on kthreadd
		 * or a pre-existing worker thread that gets re-bound.
		 */
9610
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9611 9612 9613
		break;

	case CPU_DOWN_PREPARE:
9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625
		/*
		 * This must be done before the CPU dies because after that an
		 * active event might want to IPI the CPU and that'll not work
		 * so great for dead CPUs.
		 *
		 * XXX smp_call_function_single() return -ENXIO without a warn
		 * so we could possibly deal with this.
		 *
		 * This is safe against new events arriving because
		 * sys_perf_event_open() serializes against hotplug using
		 * get_online_cpus().
		 */
9626
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9627 9628 9629 9630 9631 9632 9633 9634
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9635
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9636
{
9637 9638
	int ret;

P
Peter Zijlstra 已提交
9639 9640
	idr_init(&pmu_idr);

9641
	perf_event_init_all_cpus();
9642
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9643 9644 9645
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9646 9647
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9648
	register_reboot_notifier(&perf_reboot_notifier);
9649 9650 9651

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9652

9653 9654 9655 9656 9657 9658
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9659
}
P
Peter Zijlstra 已提交
9660

9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
9672
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9673

P
Peter Zijlstra 已提交
9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9701 9702

#ifdef CONFIG_CGROUP_PERF
9703 9704
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9705 9706 9707
{
	struct perf_cgroup *jc;

9708
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9721
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9722
{
9723 9724
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9725 9726 9727 9728 9729 9730 9731
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9732
	rcu_read_lock();
S
Stephane Eranian 已提交
9733
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9734
	rcu_read_unlock();
S
Stephane Eranian 已提交
9735 9736 9737
	return 0;
}

9738
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9739
{
9740
	struct task_struct *task;
9741
	struct cgroup_subsys_state *css;
9742

9743
	cgroup_taskset_for_each(task, css, tset)
9744
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9745 9746
}

9747
struct cgroup_subsys perf_event_cgrp_subsys = {
9748 9749
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9750
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9751 9752
};
#endif /* CONFIG_CGROUP_PERF */