hrtimer.c 35.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
62
EXPORT_SYMBOL_GPL(ktime_get);
63 64 65 66 67 68

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
69
ktime_t ktime_get_real(void)
70 71 72 73 74 75 76 77 78 79 80 81
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
82 83 84 85 86 87
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
88
 */
89
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90
{
91 92

	.clock_base =
93
	{
94 95 96
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
97
			.resolution = KTIME_LOW_RES,
98 99 100 101
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
102
			.resolution = KTIME_LOW_RES,
103 104
		},
	}
105 106 107 108 109 110 111 112
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
113
 * in normalized timespec format in the variable pointed to by @ts.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
130
EXPORT_SYMBOL_GPL(ktime_get_ts);
131

132 133 134 135
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
136
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 138
{
	ktime_t xtim, tomono;
139
	struct timespec xts, tom;
140 141 142 143
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
144
		xts = current_kernel_time();
145
		tom = wall_to_monotonic;
146 147
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
148
	xtim = timespec_to_ktime(xts);
149
	tomono = timespec_to_ktime(tom);
150 151 152
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
153 154
}

155 156 157 158 159 160 161 162 163
/*
 * Helper function to check, whether the timer is running the callback
 * function
 */
static inline int hrtimer_callback_running(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_CALLBACK;
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
182 183 184
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
185
{
186
	struct hrtimer_clock_base *base;
187 188 189 190

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
191
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 193 194
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
195
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
196 197 198 199 200 201 202 203
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
204 205
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
206
{
207 208
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
209

210 211
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
212 213 214 215 216 217 218 219 220 221 222

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
223
		if (unlikely(hrtimer_callback_running(timer)))
224 225 226 227
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
228 229
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
230 231 232 233 234 235 236
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

237
static inline struct hrtimer_clock_base *
238 239
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
240
	struct hrtimer_clock_base *base = timer->base;
241

242
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
243 244 245 246

	return base;
}

247
# define switch_hrtimer_base(t, b)	(b)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
278 279

EXPORT_SYMBOL_GPL(ktime_add_ns);
280 281 282 283 284
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
285
unsigned long ktime_divns(const ktime_t kt, s64 div)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

	return (unsigned long) dclc;
}
#endif /* BITS_PER_LONG >= 64 */

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
		expires = ktime_sub(timer->expires, base->offset);
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
	ktime_t expires = ktime_sub(timer->expires, base->offset);
	int res;

	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
	 * the callback is executed in the hrtimer_interupt context. The
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
}

460 461 462 463 464 465 466 467 468 469 470 471
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	WARN_ON_ONCE(num_online_cpus() > 1);

	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
	INIT_LIST_HEAD(&base->cb_pending);
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
	INIT_LIST_HEAD(&timer->cb_entry);
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
			 * takes care of this.
			 */
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			raise_softirq(HRTIMER_SOFTIRQ);
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
555
static int hrtimer_switch_to_hres(void)
556
{
I
Ingo Molnar 已提交
557 558
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
559 560 561
	unsigned long flags;

	if (base->hres_active)
562
		return 1;
563 564 565 566 567

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
568 569
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
570
		return 0;
571 572 573 574 575 576 577 578 579 580 581 582
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
	printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
	       smp_processor_id());
583
	return 1;
584 585 586 587 588 589
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
590
static inline int hrtimer_switch_to_hres(void) { return 0; }
591 592 593 594 595 596 597 598 599 600 601 602 603
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

604 605 606 607 608 609 610 611 612 613 614 615
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

616 617 618 619 620 621
/*
 * Counterpart to lock_timer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
622
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
623 624 625 626 627
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
628
 * @now:	forward past this time
629 630 631
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
632
 * Returns the number of overruns.
633 634
 */
unsigned long
635
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
636 637
{
	unsigned long orun = 1;
638
	ktime_t delta;
639 640 641 642 643 644

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

645 646 647
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

648
	if (unlikely(delta.tv64 >= interval.tv64)) {
649
		s64 incr = ktime_to_ns(interval);
650 651 652 653 654 655 656 657 658 659 660 661

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);
662 663 664 665 666 667
	/*
	 * Make sure, that the result did not wrap with a very large
	 * interval.
	 */
	if (timer->expires.tv64 < 0)
		timer->expires = ktime_set(KTIME_SEC_MAX, 0);
668 669 670

	return orun;
}
S
Stas Sergeev 已提交
671
EXPORT_SYMBOL_GPL(hrtimer_forward);
672 673 674 675 676 677 678

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
679
static void enqueue_hrtimer(struct hrtimer *timer,
680
			    struct hrtimer_clock_base *base, int reprogram)
681 682 683 684
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
685
	int leftmost = 1;
686 687 688 689 690 691 692 693 694 695 696

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
I
Ingo Molnar 已提交
697
		if (timer->expires.tv64 < entry->expires.tv64) {
698
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
699
		} else {
700
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
701 702
			leftmost = 0;
		}
703 704 705
	}

	/*
706 707
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
708
	 */
I
Ingo Molnar 已提交
709
	if (leftmost) {
710 711 712 713 714 715 716 717 718 719 720 721 722 723
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

724 725
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
726 727 728 729 730
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
731
}
732 733 734 735 736

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
737 738 739 740 741
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
742
 */
743
static void __remove_hrtimer(struct hrtimer *timer,
744
			     struct hrtimer_clock_base *base,
745
			     unsigned long newstate, int reprogram)
746
{
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
763
	timer->state = newstate;
764 765 766 767 768 769
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
770
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
771
{
772
	if (hrtimer_is_queued(timer)) {
773 774 775 776 777 778 779 780 781 782
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
783
		timer_stats_hrtimer_clear_start_info(timer);
784 785 786
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
805
	struct hrtimer_clock_base *base, *new_base;
806 807 808 809 810 811 812 813 814 815 816
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

817
	if (mode == HRTIMER_MODE_REL) {
818
		tim = ktime_add(tim, new_base->get_time());
819 820 821 822 823 824 825 826 827 828 829
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
	}
830 831
	timer->expires = tim;

832 833
	timer_stats_hrtimer_set_start_info(timer);

834 835 836 837 838 839
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
840 841 842 843 844

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
845
EXPORT_SYMBOL_GPL(hrtimer_start);
846 847 848 849 850 851 852 853 854

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
855
 *    cannot be stopped
856 857 858
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
859
	struct hrtimer_clock_base *base;
860 861 862 863 864
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

865
	if (!hrtimer_callback_running(timer))
866 867 868 869 870 871 872
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
873
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
890
		cpu_relax();
891 892
	}
}
893
EXPORT_SYMBOL_GPL(hrtimer_cancel);
894 895 896 897 898 899 900

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
901
	struct hrtimer_clock_base *base;
902 903 904 905
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
906
	rem = ktime_sub(timer->expires, base->get_time());
907 908 909 910
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
911
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
912

913
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
914 915 916 917 918 919 920 921
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
922 923
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
924 925 926 927
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

928 929
	spin_lock_irqsave(&cpu_base->lock, flags);

930 931 932
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
933

934 935
			if (!base->first)
				continue;
936

937 938 939 940 941 942
			timer = rb_entry(base->first, struct hrtimer, node);
			delta.tv64 = timer->expires.tv64;
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
943
	}
944 945 946

	spin_unlock_irqrestore(&cpu_base->lock, flags);

947 948 949 950 951 952
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

953
/**
954 955
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
956
 * @clock_id:	the clock to be used
957
 * @mode:	timer mode abs/rel
958
 */
959 960
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
961
{
962
	struct hrtimer_cpu_base *cpu_base;
963

964 965
	memset(timer, 0, sizeof(struct hrtimer));

966
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
967

968
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
969 970
		clock_id = CLOCK_MONOTONIC;

971
	timer->base = &cpu_base->clock_base[clock_id];
972
	hrtimer_init_timer_hres(timer);
973 974 975 976 977 978

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
979
}
980
EXPORT_SYMBOL_GPL(hrtimer_init);
981 982 983 984 985 986

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
987 988
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
989 990 991
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
992
	struct hrtimer_cpu_base *cpu_base;
993

994 995
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
996 997 998

	return 0;
}
999
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

			if (basenow.tv64 < timer->expires.tv64) {
				ktime_t expires;

				expires = ktime_sub(timer->expires,
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

			__remove_hrtimer(timer, base,
					 HRTIMER_STATE_CALLBACK, 0);
1060
			timer_stats_account_hrtimer(timer);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

			/*
			 * Note: We clear the CALLBACK bit after
			 * enqueue_hrtimer to avoid reprogramming of
			 * the event hardware. This happens at the end
			 * of this function anyway.
			 */
			if (timer->function(timer) != HRTIMER_NORESTART) {
				BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
				enqueue_hrtimer(timer, base, 0);
			}
			timer->state &= ~HRTIMER_STATE_CALLBACK;
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

static void run_hrtimer_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

1105 1106
		timer_stats_account_hrtimer(timer);

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
			if (timer->base->first == &timer->node)
				hrtimer_reprogram(timer, timer->base);
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

#endif	/* CONFIG_HIGH_RES_TIMERS */

1137 1138 1139
/*
 * Expire the per base hrtimer-queue:
 */
1140 1141
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
				     int index)
1142
{
1143
	struct rb_node *node;
1144
	struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1145

1146 1147 1148
	if (!base->first)
		return;

1149 1150 1151
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

1152
	spin_lock_irq(&cpu_base->lock);
1153

1154
	while ((node = base->first)) {
1155
		struct hrtimer *timer;
1156
		enum hrtimer_restart (*fn)(struct hrtimer *);
1157 1158
		int restart;

1159
		timer = rb_entry(node, struct hrtimer, node);
1160
		if (base->softirq_time.tv64 <= timer->expires.tv64)
1161 1162
			break;

1163 1164 1165
#ifdef CONFIG_HIGH_RES_TIMERS
		WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
#endif
1166 1167
		timer_stats_account_hrtimer(timer);

1168
		fn = timer->function;
1169
		__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1170
		spin_unlock_irq(&cpu_base->lock);
1171

1172
		restart = fn(timer);
1173

1174
		spin_lock_irq(&cpu_base->lock);
1175

1176
		timer->state &= ~HRTIMER_STATE_CALLBACK;
1177 1178
		if (restart != HRTIMER_NORESTART) {
			BUG_ON(hrtimer_active(timer));
1179
			enqueue_hrtimer(timer, base, 0);
1180
		}
1181
	}
1182
	spin_unlock_irq(&cpu_base->lock);
1183 1184 1185 1186
}

/*
 * Called from timer softirq every jiffy, expire hrtimers:
1187 1188 1189 1190
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
1191 1192 1193
 */
void hrtimer_run_queues(void)
{
1194
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1195 1196
	int i;

1197 1198 1199
	if (hrtimer_hres_active())
		return;

1200 1201 1202 1203 1204 1205 1206 1207
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
1208
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1209 1210
		if (hrtimer_switch_to_hres())
			return;
1211

1212
	hrtimer_get_softirq_time(cpu_base);
1213

1214 1215
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		run_hrtimer_queue(cpu_base, i);
1216 1217
}

1218 1219 1220
/*
 * Sleep related functions:
 */
1221
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1234
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1235 1236 1237
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1238 1239 1240
#ifdef CONFIG_HIGH_RES_TIMERS
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
#endif
1241 1242
}

1243
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1244
{
1245
	hrtimer_init_sleeper(t, current);
1246

1247 1248 1249 1250
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);

1251 1252
		if (likely(t->task))
			schedule();
1253

1254
		hrtimer_cancel(&t->timer);
1255
		mode = HRTIMER_MODE_ABS;
1256 1257

	} while (t->task && !signal_pending(current));
1258

1259
	return t->task == NULL;
1260 1261
}

1262
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1263
{
1264
	struct hrtimer_sleeper t;
1265 1266
	struct timespec __user *rmtp;
	struct timespec tu;
1267
	ktime_t time;
1268 1269 1270

	restart->fn = do_no_restart_syscall;

1271
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1272
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1273

1274
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1275 1276
		return 0;

1277
	rmtp = (struct timespec __user *) restart->arg1;
1278 1279 1280 1281 1282 1283 1284 1285
	if (rmtp) {
		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (time.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(time);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1286

1287
	restart->fn = hrtimer_nanosleep_restart;
1288 1289 1290 1291 1292 1293 1294 1295 1296

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1297
	struct hrtimer_sleeper t;
1298 1299 1300
	struct timespec tu;
	ktime_t rem;

1301 1302 1303
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
1304 1305
		return 0;

1306
	/* Absolute timers do not update the rmtp value and restart: */
1307
	if (mode == HRTIMER_MODE_ABS)
1308 1309
		return -ERESTARTNOHAND;

1310 1311 1312 1313 1314 1315 1316 1317
	if (rmtp) {
		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (rem.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(rem);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1318 1319

	restart = &current_thread_info()->restart_block;
1320 1321 1322 1323 1324
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
1325 1326 1327 1328

	return -ERESTART_RESTARTBLOCK;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
	struct timespec tu;

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1340
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1341 1342
}

1343 1344 1345 1346 1347
/*
 * Functions related to boot-time initialization:
 */
static void __devinit init_hrtimers_cpu(int cpu)
{
1348
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1349 1350
	int i;

1351 1352 1353 1354 1355 1356
	spin_lock_init(&cpu_base->lock);
	lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1357
	hrtimer_init_hres(cpu_base);
1358 1359 1360 1361
}

#ifdef CONFIG_HOTPLUG_CPU

1362 1363
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
1364 1365 1366 1367 1368 1369
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1370 1371
		BUG_ON(hrtimer_callback_running(timer));
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1372
		timer->base = new_base;
1373 1374 1375 1376
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1377 1378 1379 1380 1381
	}
}

static void migrate_hrtimers(int cpu)
{
1382
	struct hrtimer_cpu_base *old_base, *new_base;
1383 1384 1385
	int i;

	BUG_ON(cpu_online(cpu));
1386 1387
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1388

1389 1390
	tick_cancel_sched_timer(cpu);

1391
	local_irq_disable();
1392 1393
	double_spin_lock(&new_base->lock, &old_base->lock,
			 smp_processor_id() < cpu);
1394

1395 1396 1397
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
1398 1399
	}

1400 1401
	double_spin_unlock(&new_base->lock, &old_base->lock,
			   smp_processor_id() < cpu);
1402 1403 1404 1405 1406
	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1407
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1408 1409
					unsigned long action, void *hcpu)
{
1410
	unsigned int cpu = (long)hcpu;
1411 1412 1413 1414

	switch (action) {

	case CPU_UP_PREPARE:
1415
	case CPU_UP_PREPARE_FROZEN:
1416 1417 1418 1419 1420
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1421
	case CPU_DEAD_FROZEN:
1422
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1434
static struct notifier_block __cpuinitdata hrtimers_nb = {
1435 1436 1437 1438 1439 1440 1441 1442
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1443 1444 1445
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
#endif
1446 1447
}